Finite Element Analysis for Design Engineers

Second Edition
Other SAE books of interest:

Dynamic Analysis and Control System
Design of Automatic Transmissions
Shushan Bai, Joel M. Maguire, and Huei Peng
(Product Code: R-413)

Principles of Vibration Analysis with Applications in Automotive Engineering
Ronald L. Huston and C. Q. Liu
(Product Code: R-395)

Fundamentals of Automobile Body Structure Design
Donald E. Malen
(Product Code: R-394)

Design and the Reliability Factor
John Day
(Product Code: PT-174)

CAE Design and Failure Analysis of Automotive Composites
Srikanth Pilla and Charles Lu
(Product Code: PT-166)

For more information or to order a book, contact:
SAE International
400 Commonwealth Drive
Warrendale, PA 15096, USA
Phone: 1+877.606.7323 (U.S. and Canada only)
or 1+724.776.4970 (outside U.S. and Canada)
Fax: 1+724.776.0790
Email: CustomerService@sae.org
Website: books.sae.org
Finite Element Analysis for Design Engineers

Second Edition

Paul M. Kurowski
Acknowledgements

This book is dedicated to my wife Elzbieta Kurowska for her encouragement and support.

Paul M. Kurowski
Contents

Acknowledgements .. v

Preface ... xiii

Chapter 1: Introduction ... 1
1.1 What Is Finite Element Analysis? 1
1.2 What Is the Place of Finite Element Analysis Among Other Tools of Computer-Aided Engineering? 2
1.3 Fields of Application of FEA and Mechanism Analysis; Differences Between Structures and Mechanisms 2
1.4 Fields of Application of FEA and CFD 4
1.5 What Is “FEA for Design Engineers”? 4
1.6 Importance of Hands-On Exercises 5

Chapter 2: From CAD Model to Results of Finite Element Analysis ... 7
2.1 Formulation of the Mathematical Model 7
2.2 Selecting Numerical Method to Solve the Mathematical Model ... 10
 2.2.1 Selected Numerical Methods in Computer Aided Engineering ... 10
 2.2.2 Reasons for the Dominance of Finite Element Method ... 11
2.3 The Finite Element Model .. 12
 2.3.1 Meshing ... 12
 2.3.2 Formulation of Finite-Element Equations 13
 2.3.3 Errors in FEA Results ... 14
2.4 Verification and Validation of FEA Results 15

Chapter 3: Fundamental Concepts of Finite Element Analysis ... 17
3.1 Formulation of a Finite Element 17
 3.1.1 Closer Look at Finite Element 17
 3.1.2 Requirements to be Satisfied by Displacement Interpolation Functions ... 20
 3.1.3 Artificial Restraints .. 20
3.2 The Choice of Discretization 22
3.3 Types of Finite Elements .. 23
 3.3.1 Element Dimensionality ... 23
 3.3.2 Element Shape .. 29
 3.3.3 Element Order and Element Type 29
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.4</td>
<td>Summary of Commonly Used Elements</td>
<td>31</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Element Modeling Capabilities</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Chapter 4: Controlling Discretization Errors</td>
<td>35</td>
</tr>
<tr>
<td>4.1</td>
<td>Presenting Stress Results</td>
<td>36</td>
</tr>
<tr>
<td>4.2</td>
<td>Types of Convergence Process</td>
<td>38</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Convergence by Global Mesh Refinement</td>
<td>38</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Convergence Process by Local Mesh Refinement</td>
<td>42</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Adaptive Convergence Process</td>
<td>45</td>
</tr>
<tr>
<td>4.2.4</td>
<td>p Convergence Process</td>
<td>47</td>
</tr>
<tr>
<td>4.2.5</td>
<td>The Choice of Convergence Process</td>
<td>49</td>
</tr>
<tr>
<td>4.3</td>
<td>Discretization Error</td>
<td>49</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Convergence Error</td>
<td>50</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Solution Error</td>
<td>50</td>
</tr>
<tr>
<td>4.4</td>
<td>Problems With Convergence</td>
<td>51</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Stress Singularity</td>
<td>51</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Displacement Singularity</td>
<td>57</td>
</tr>
<tr>
<td>4.5</td>
<td>Hands-On Exercises</td>
<td>64</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Hollow Plate (Figure 4.33)</td>
<td>64</td>
</tr>
<tr>
<td>4.5.2</td>
<td>L Bracket (Figure 4.34)</td>
<td>66</td>
</tr>
<tr>
<td>4.5.3</td>
<td>2D Beam (Figure 4.35)</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Chapter 5: Finite Element Mesh</td>
<td>69</td>
</tr>
<tr>
<td>5.1</td>
<td>Meshing Techniques</td>
<td>69</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Manual Meshing</td>
<td>69</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Semiautomatic Meshing</td>
<td>70</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Automeshing</td>
<td>71</td>
</tr>
<tr>
<td>5.2</td>
<td>Mesh Compatibility</td>
<td>74</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Compatible Elements</td>
<td>74</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Incompatible Elements</td>
<td>74</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Forced Compatibility</td>
<td>76</td>
</tr>
<tr>
<td>5.3</td>
<td>Common Meshing Problems</td>
<td>77</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Element Distortion</td>
<td>77</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Mesh Adequacy</td>
<td>80</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Element Mapping to Geometry</td>
<td>82</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Incorrect Conversion to Shell Model</td>
<td>83</td>
</tr>
<tr>
<td>5.4</td>
<td>Hands-On Exercises</td>
<td>84</td>
</tr>
<tr>
<td>5.4.1</td>
<td>BRACKET01 (Figure 5.24)</td>
<td>84</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Cantilever Beam (Figure 5.25)</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Chapter 6: Modeling Process</td>
<td>87</td>
</tr>
<tr>
<td>6.1</td>
<td>Modeling Steps</td>
<td>88</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Definition of the Objective of Analysis</td>
<td>88</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Selection of the Units of Measurement</td>
<td>88</td>
</tr>
</tbody>
</table>
6.1.3 Geometry Preparation .. 89
6.1.4 Definition of Material Properties 90
6.1.5 Definition of Boundary Conditions 90
6.2 Modeling Techniques ... 91
 6.2.1 Mirror Symmetry and Antisymmetry Boundary Conditions ... 91
 6.2.2 Axial Symmetry ... 96
 6.2.3 Cyclic Symmetry ... 97
 6.2.4 Realignment of Degrees of Freedom 99
6.3 Hands-On Exercises .. 100
 6.3.1 BRACKET02-1 (Figure 6.14) 100
 6.3.2 BRACKET02-2 (Figure 6.15) 101
 6.3.3 BRACKET02-3 (Figure 6.16) 102
 6.3.4 Shaft (Figure 6.17) 103
 6.3.5 Pressure Tank (Figure 6.18) 104
 6.3.6 RING (Figure 6.19) 105
 6.3.7 Link (Figure 6.20) 106
Chapter 7: Nonlinear Static Structural Analysis 109
 7.1 Classification of Different Types of Nonlinearities 109
 7.2 Large Displacement Analysis 110
 7.3 Membrane Stress Stiffening 117
 7.4 Contact ... 123
 7.5 Hands-On Exercises .. 128
 7.5.1 Cantilever Beam (Figure 7.1) 128
 7.5.2 Torsion Shaft (Figure 7.7) 129
 7.5.3 Round Plate (Figure 7.12) 129
 7.5.4 LINK (Figure 7.17) 130
 7.5.5 Sliding Support (Figure 7.18) 130
 7.5.6 CLAMP01 (Figure 7.21) 131
 7.5.7 CLAMP02 (Figure 7.26) 131
 7.5.8 Shrink Fit (Figure 7.27) 132
Chapter 8: Nonlinear Material Analysis 133
 8.1 Review of Nonlinear Material Models 133
 8.2 Elastic–Perfectly Plastic Material Model 134
 8.3 Use of Nonlinear Material to Control Stress Singularity ... 137
 8.4 Other Types of Nonlinearities 139
 8.5 Hands-On Exercises .. 140
 8.5.1 BRACKET NL (Figure 8.3) 140
 8.5.2 L BRACKET (Figure 8.7) 140
Chapter 9: Modal Analysis ... 143
 9.1 Differences Between Modal and Static Analysis 143
 9.2 Interpretation of Displacement and Stress Results in Modal
 Analysis ... 144
 9.3 Modal Analysis With Rigid Body Modes 145
 9.4 Importance of Supports in Modal Analysis 147
 9.5 Applications of Modal Analysis ... 148
 9.5.1 Finding Modal Frequencies and Associated Shapes of
 Vibration ... 148
 9.5.2 Locating “Weak Spots” in Structure 149
 9.5.3 Modal Analysis Provides Input to Vibration Analysis 150
 9.6 Prestress Modal Analysis ... 150
 9.7 Symmetry and Antisymmetry Boundary Conditions in Modal
 Analysis ... 152
 9.8 Convergence of Modal Frequencies 154
 9.9 Meshing Consideration for Modal Analysis 155
 9.10 Hands-On Exercises ... 155
 9.10.1 Tuning Fork (Figure 9.12) ... 155
 9.10.2 Box (Figure 9.1) ... 156
 9.10.3 Airplane (Figure 9.2) .. 156
 9.10.4 Ball (Figure 9.4) ... 157
 9.10.5 Link (Figure 9.5) ... 157
 9.10.6 Helicopter Blade (Figure 9.7) 158
 9.10.7 Column (Figure 9.8) .. 159
 9.10.8 Bracket (Figure 9.10) .. 159

Chapter 10: Buckling Analysis .. 161
 10.1 Linear Buckling Analysis .. 162
 10.2 Convergence of Results in Linear Buckling Analysis 165
 10.3 Nonlinear Buckling Analysis .. 165
 10.4 Summary ... 176
 10.5 Hands-On Exercises ... 177
 10.5.1 Notched Column—Free End (Figure 10.1) 177
 10.5.2 Notched Column—Sliding End (Figure 10.2) 178
 10.5.3 Button (Figure 10.11) ... 178
 10.5.4 Curved Column (Figure 10.15) 179
 10.5.5 Stand (Figure 10.16) ... 179
 10.5.6 CURVED_SHEET (Figure 10.17) 179

Chapter 11: Vibration Analysis .. 181
 11.1 Modal Superposition Method .. 181
 11.2 Time Response Analysis ... 183
 11.3 Frequency Response Analysis ... 186

11.4 Nonlinear Vibration Analysis ... 190
11.5 Hands-On Exercises ... 193
 11.5.1 Hammer Impulse Load (Figure 11.2) 193
 11.5.2 Hammer Beating (Figure 11.2) 194
 11.5.3 ELBOW_PIPE (Figure 11.7) 194
 11.5.4 Centrifuge (Figure 11.10) 195
 11.5.5 PLANK (Figure 11.13) ... 196

Chapter 12: Thermal Analysis .. 197
12.1 Heat Transfer Induced by Prescribed Temperatures 197
12.2 Heat Transfer Induced by Heat Power and Convection 198
12.3 Heat Transfer by Radiation ... 201
12.4 Modeling Considerations in Thermal Analysis 202
12.5 Challenges in Thermal Analysis .. 204
12.6 Hand-On Exercises .. 205
 12.6.1 Bracket (Figure 12.1) ... 205
 12.6.2 Heat Sink (Figure 12.2) ... 205
 12.6.3 Channel (Figure 12.4) ... 206
 12.6.4 Space Heater (Figure 12.6) 207

Chapter 13: Implementation of Finite Element Analysis in the Design Process .. 209
13.1 Differences Between CAD and FEA Geometry 209
 13.1.1 Defeaturing ... 210
 13.1.2 Idealization .. 211
 13.1.3 Cleanup .. 213
13.2 Common Meshing Problems ... 214
13.3 Mesh Inadequacy .. 217
13.4 Integration of CAD and FEA Software 218
 13.4.1 Stand-Alone FEA Software 218
 13.4.2 FEA Programs Integrated With CAD 218
 13.4.3 Computer-Aided Engineering Programs 218
13.5 FEA Implementation .. 219
 13.5.1 Positioning of CAD and FEA Activities 219
 13.5.2 Personnel Training ... 220
 13.5.3 FEA Program Selection .. 222
 13.5.4 Hardware Selection .. 225
 13.5.5 Building Confidence in the FEA 225
 13.5.6 Return-On Investment ... 226
13.6 FEA Project ... 227
 13.6.1 Major Steps in FEA Project 227
 13.6.2 FEA Report .. 230
 13.6.3 Importance of Documentation and Backups 231
Contents

13.6.4 Contracting Out FEA Services 232
13.6.5 Common Errors in the FEA Management 233

Chapter 14: Misconceptions and Frequently Asked Questions

14.1 FEA Quiz .. 235
14.2 Frequently Asked Questions 239

Chapter 15: FEA Resources 251
References ... 252

Chapter 16: Glossary of Terms 253

Chapter 17: List of Exercises 259

Index ... 261

About the Author ... 267
Preface

During 60+ years of its development the Finite Element Analysis evolved from an exotic analysis method accessible only to specialized analysts into a mainstream engineering tool. Phenomenal progress in computer hardware and operating systems combined with same progress in Computer Aided Design made the Finite Element Analysis available to design engineers to use as a design tool during product design process.

Many books have been written about the Finite Element Analysis. At one end of the spectrum we find books going very deep into theory and at the other end of the spectrum, software manuals explaining how to use certain FEA program. There is little FEA literature taking “middle ground” approach and specifically addressing the needs of design engineers who use the FEA as an everyday design tool. This book attempts to fill this void by focusing on understanding of FEA fundamentals which are explained by simple, intuitive examples understandable by any mechanical engineer. “Finite Element Analysis for Design Engineers” takes practical approach, characteristic to the attitudes of design engineers, and offers the readers an opportunity to try out all discussed topics by solving downloadable exercises using their own FEA program.

Finite Element Analysis for Design Engineers is a very broad field of knowledge. It is difficult to write a book in a “linear” fashion; repetition in discussing concepts, techniques and methods can’t be avoided. For this reason, some topics are discussed more than once taking advantage of a growing body of knowledge as reader progresses through the book.