Index

Anisotropic magneto-resistive sensors, 8-99–100
Automated manual transmissions, 8-47–8-65
dual-clutch transmissions, 8-48–8-49
powershift concept study, 8-49–8-65
actuation calculations, 8-65r
actuation requirements, 8-52
actuation technology, 8-53–8-54
alternative configurations, 8-62
cost, 8-62
double gear engagement, 8-52
FMEA and safety constraints, 8-51–8-52
fuel economy simulation, 8-61–8-62
loss of electrical power, 8-52
lubrication, 8-59
market perspective, 8-50
overall design, 8-60–8-61
rollback and park, 8-59
shaft and gear layout, 8-51
simulation details, 8-61–8-62
subsystem solutions, 8-54–8-60
technical approach, 8-50–8-51
transmission attribute weightings, 8-50
powershift transmissions, 8-48–8-49
hill-hold control, 8-48–8-49
launch clutch control, 8-48, 8-49
synchronizer control, 8-49
Automatic transmission control components, 8-65–8-112
development technology, 8-112–8-118
dynamic models, 8-112
fuel economy prediction models, 8-112
software tools, 8-112–8-113
auto-code generation, 8-113
closed-loop bench, 8-113
de-bugger, 8-113
open-loop bench, 8-113
virtual development process, 8-113–8-118
benefits of, 8-114
hydraulics and valve body, 8-65–8-95
design of valve body and governor systems, 8-70–8-90
hydraulic control systems, 8-65–8-70
manufacturing aspects of valve body design, 8-90–8-95
cast-iron versus aluminum valve body, 8-92–8-93
leakage versus bore clearance in cast-iron and aluminum,
8-92–8-93
separate ditch plate versus ditches cast in case, 8-93
valve body bolt pattern, 8-93
valve body bores, 8-91
valves, 8-93–8-94
natural frequency of a spring, 8-73
sensors, 8-95–8-110
acronyms and definitions, 8-110–8-111
anisotropic magneto-resistive sensors, 8-99–100
barometric absolute pressure, 8-105–8-106
design overview, 8-96
EMC considerations, 8-109–8-110
environmental and test conditions, 8-96–8-97
Hall sensors, 8-98–8-99
position sensors, 8-100–8-104
pressure sensing, 8-104–8-105
speed sensing, 8-97–8-100
surface acoustic wave technology, 8-106–8-108
temperature sensing, 8-105
torque sensing, 8-106–8-109
six-speed transmission
application of design strategy, 8-114–8-115
dynamometer environment, 8-116
final results of feasibility, 8-118
in-vehicle testing, 8-118
model-in-the-loop testing, 8-115–8-116
rapid prototyping, 8-116–8-117
see also Design of valve body and governor systems; Hydraulic
control systems; Hydraulic valve body design, manufacturing
aspects
Automatic transmission controls, 8-40–8-44
direct electronic control of shifting elements, 8-44
electronic controls, 8-41–8-43
solenoids, 8-41–8-43
hydraulic controls, 8-40–8-41
indirect electronic controls, 8-43
Automatic transmission fluids
basestocks, 12-8–12-10
API classification of, 12-9t
impact on performance, 12-9–12-10
properties of, 12-9t
Automatic transmission operational features, 8-44–8-47
multiple system functions, 8-45–8-46
quality improvement features, 8-45–8-46
service improvement features, 8-46–8-47
shift scheduling features, 8-45
transmission efficiency improvements, 8-46
Automatic transmission pump design, see Pump design

Bands, 6-30–6-46
advantages of, 6-42–6-44
clutch pack vs. band, 6-42
controllability, 6-44
design analysis, 6-34–6-38
design factors, 6-36, 6-37
failure modes, 6-41–6-42
bond, 6-41–6-42
friction material, 6-41
mechanical, 6-41
selecting, 6-31
servo apply and band anchoring, 6-31–6-34
testing, 6-38–6-40
fatigue, 6-39
friction, 6-38–6-39
transmission design considerations, 6-31

Basestocks for automatic transmission fluids, 12-8–12-10
API classification of, 12-9
impact on performance, 12-9–12-10
properties of, 12-9

Bearings
analysis procedures and results, 5-51–5-52
drawn-cup shaft supports, 5-52
reverse idler support bearings, 5-52
speed gear needle bearings, 5-51–5-52
thrust bearings for countershaft transmissions, 5-52
bearing/mating materials combinations, 5-4f
bushing/ washer material and design applications, 5-6–5-7
bearing journal surface specifications, 5-11f
design considerations, 5-9–5-13
design pitfalls, 5-7–5-9
minimum press fit, 5-10f
recommended material specifications, 5-8f
countershaft arrangements, 5-50–5-51
current bushing/washer operating conditions, 5-2–5-6
effect of bushing and shaft finish on bushing performance, 5-13–5-19
failure modes, 5-65
front oil pump bushing, 5-5–5-6, 5-5f
front support bushing, 5-4–5-5, 5-5f
groove design, 5-4
hardness of bushing material, 5-18f
loads and speeds, 5-3–5-4
lubrication, 5-49
materials, 5-2–5-3, 5-2f
plain thrust washer design, 5-1–5-20
planet pinion thrust washer, 5-6
planetary bearing speeds, 5-53–5-54
planetary bearing calculations, 5-54–5-63
rear extension housing bushing, 5-6
sleeve bearing design, 5-1–5-20
test procedure, 5-13–5-14
 load capacity ratings, 5-15–5-19
 lubrication procedure, 5-15
 physical measurements, 5-15
 thrust washer tests, 5-3t
 types used, 5-48–5-49
 typical applications, 5-49–5-50
Bearings, component-to-shaft support, 5-49
Bearings, drawn cup radial, 5-48
Bearings, pump shaft support, 5-49
Bearings, rolling element, 5-30–5-65
design details, 5-40t
planet pinions, 5-30–5-42
thrust bearings, 5-44–5-46
 see also Planet pinions; Thrust bearings
Bearings, sprocket support, 5-48–5-49
Bearings, tapered roller, 5-66–5-86
calculated bearing life, 5-69t
cone and cup force, 5-81
contact pressure, 5-80–5-81
critical point loading, 5-68–5-69
cup creep, 5-78
dynamometer durability testing, 5-76–5-77
equations, 5-81–5-86
housing rigidity effects, 5-72–5-74
internal design, 5-75–5-76
load and speed histograms, 5-69–5-70
lubrication, 5-74–5-75
noise, 5-78
 nomenclature, 5-67–5-68
 thermal effects on performance, 5-78
transaxle housing and shaft design, 5-70–5-72
vehicle durability testing, 5-77–5-78
Bearings, thrust, 5-44–5-46
 bearing capacity and life factors 5-48
 lubrication, 5-48
 speeds and loads, 5-46
 thrust needle roller bearing design, 5-46
 thrust washers, 5-46–5-48
Blade design, 2-67–2-70
 reactor blade, 2-69
 specifications and data, 2-67t, 2-68t
 turbine blade, 2-69
Blade spacing to reduce noise, 2-12
Cavitation prevention, 2-11–2-12
Centrifugal bypass clutch, 2-125–2-140
description, 2-126–2-131
ingine model, 2-130–2-131
 geartrain, 2-129
 nomenclature, 2-125
self-excited behavior results, 2-132–2-135
self-excited oscillations, 2-139–2-140
 system equations, 2-131
tip-in and tip-out response, 2-135–2-136
tire model, 2-130
variable degrees of freedom, 2-129
vibration damper, 2-128
Chain case design, 3-80–3-81
clearances, 3-81
construction, 3-81
shaft parallelism, 3-81
 sprocket offset, 3-81
thermal expansion, 3-81
Chain drives, 3-75–3-86
 allowable elongation, 3-85–3-86
 automotive all-wheel drive, 3-75
 automotive friction drive chains, 3-84
 automotive transmissions, 3-75
 bearing loads, 3-81–3-82
 chain case design, 3-80–3-81
 design procedure, 3-78–3-79
 driveline characteristics, 3-75–3-86
 laydown, 3-78
 lubrication, 3-78, 3-82–3-84
 noise considerations, 3-76–3-77
 oil grade recommendations, 3-82t
 oil levels, 3-83
 oil temperature guidelines, 3-83
 required life and duty cycle, 3-78
 specialized high-speed drives, 3-75
 sprocket design, 3-79–3-80
 wear life analysis, 3-73–3-86
Chain drives, chain joint types, 3-75–3-76
 rocker joint design, 3-76
 round pin design, 3-75–3-76
Chain drives, sprocket design, 3-79–3-80
 dimensional considerations, 3-80
 material considerations, 3-79–3-80
 specialized high-speed drives, 3-75
Chemical composition of automatic transmission fluids,
 12-10–12-12
 antioxidants, 12-12
 anti-wear and extreme pressure agents, 12-11
 detergents, 12-12
 dispersants, 12-12
 foam inhibitors, 12-12
 rust and corrosion inhibitors, 12-11
 seal swell agents, 12-12
 viscosity index improvers, 12-10–12-11
Clutches, pawl one-way
 axial-apply, 7-49–7-59
 clutch operation, 7-49–7-50
 drag torque, 7-55
 pawl dynamics, 7-53–7-55
 initial to full engagement, 7-54–7-55
 overrunning pawl position, 7-53
 spring-induced pawl movement, 7-54–7-55
 transition from overrunning to lockup, 7-53–7-54
 pawl equilibrium, 7-50
 system stresses, 7-51–7-53
 pawl buckling prediction, 7-51–7-53
 strength considerations, 7-51
Index

Clutches, pawl one-way (cont.)
radial-apply, 7-55–7-59
clutch operation, 7-55
pawl dynamics, 7-58–7-59
pawl equilibrium, 7-57
system stresses, 7-57–7-58

Clutches, roller-type one-way
design considerations, 7-3–7-6
cage, 7-3–7-4
lubrication, 7-6
material and heat treatment, 7-5, 7-6
oil holes, 7-6
race concentricity control, 7-4–7-5
roller energizing springs, 7-3
stresses, 7-5
surface finish, 7-5
energizing springs, 7-22–7-25
failure analysis, 7-25–7-29
fatigue, 7-25–7-26
load path on cylindrical races, 7-28–7-29
load patterns on cams, 7-26–7-28
operational modes, 7-20
stresses, 7-8–7-11
contact, 7-8–7-9
hoop, 7-9–7-11
shock loading, 7-11
system analysis, basic assumptions, 7-20–7-21
system dynamics, 7-16–7-22
roller floats, types of, 7-16–7-20
system equilibrium, 7-6–7-8
roller forces, 7-6–7-7
strut angle limits, 7-7–7-8
system kinematics, 7-11–7-12
axial space, 7-12
roller skew, 7-13–7-16
variations in roller space, 7-11–7-12
system resonance, 7-20–7-22
types of, 7-2–7-3

Clutches, sprag one-way, 7-29–7-49
design considerations, 7-32–7-34, 7-41–7-47
built-in drag, 7-46
concentricity, 7-43
drag torque, 7-45t
full phasing, 7-41–7-42
length of sprags, 7-41
lubrication, 7-46
mounting provisions, 7-45–7-46
number of sprags, 7-41
overrunning, 7-44
pop-out, 7-42–7-43
races, 7-43–7-44
sprags, 7-46
strut angle gage, 7-47
effective race width, 7-35
function and operation, 7-29–7-31
sprag dynamics, 7-40–7-41
sprag forces, 7-34–7-35
strut angle limit, 7-33f, 7-35

system deflections, 7-36–7-37
contact, 7-36
hoop, 7-36–7-37
rollover torque, 7-37
system equilibrium, 7-34–7-35
system stresses, 7-37–7-40
contact, 7-37–7-38
hoop, 7-38–7-40
theory of operation, 7-31–7-32
wear, 7-47–7-49
Continuously variable transmissions
lever analogy analysis method, 3-47–3-48
metal belt drive for, 13-1–13-28
shift torque analysis, 8-21–8-26
see also Lever analogy analysis method, continuously variable transmission analysis; Metal belt drives; Shift torque analysis
Countershaft arrangements, 5-50–5-51
Crescent gear pumps, design factors, 9-7–9-8
flow, 9-7–9-8
leakage, 9-8
power consumption, 9-8
Die casting alloys, 1-7
Downshift control study, 8-16–8-20
conditions, 8-16
hardware, 8-16
kickdown control and output torque, 8-17–8-19
power-off downshifts or pulldowns, 8-19–8-20
power-on/kickdown shift, 8-16–8-19
Drag torque design variables, 6-17–6-20
garage shift clunk, 6-20
grooves, 6-17
heat transfer, 6-19–6-20
high-speed cooling effects, 6-20
housing drainage, 6-19
hub and housing rotation, 6-19
idle ticking, 6-20
oil feed rate, 6-18
oil temperature, 6-18
pack clearance, 6-19
radial section, 6-18–6-19
transmission efficiency, 6-20
waved friction plates, 6-18
Driveline fluids, see Automatic transmission fluids
Effective fit concept for involute splines, 3-68–3-74
flexibility of, 3-68
Elastomers for gaskets, 10-5–10-8
acronyms and definitions, 10-12–10-13
comparison of, 10-5
design of, 10-6–10-8
aluminum edge-bonded gasket, 10-6
over-molded steel gasket, 10-6–10-7
press-in-place gaskets, 10-7–10-8
void-volume carrier gasket, 10-7
External gear pumps, design factors, 9-8–9-10
flow, 9-8–9-10

1-4
leakage, 9-9
power consumption, 9-10
tooth forms, 9-10

Filter design, see Transaxle filter design
Finite element models, 1-6–1-9
Flow pattern, torque converter, 2-88–2-90
comparison of Types 1 and 2, 2-90
efficiency, 2-90–2-92
theoretical considerations, 2-92–2-93
Type 1, 2-88
Type 2, 2-89
Fluid coupling, 2-1–2-17
with angular blades, 2-9–2-11
cavitation prevention 2-11–2-12
charge pressure, 2-11–2-12
with core ring, 2-3f
coupling without core rings, 2-5–2-6
fabrication methods, 2-11
flow or circulation loss coefficient, 2-8
for core ring, 2-8f
for coreless type, 2-8f
fluid circulation, rate of, 2-9
hydraulic forces, 2-14
noise reduction, 2-12
nomenclature, 2-2
oil circulation for cooling, 2-12
reservoir fluid coupling, 2-15
shell and core curves, 2-6–2-8
shifting coupling, 2-15–2-17
split-torque application, 2-12–2-14
torque capacity, 2-14
two-member drive coupling, 2-2f
Friction clutches, multi-plate, 6-8–6-29
clutch components, 6-8–6-13
air bleed mechanism, 6-13
apply, backing, and cushion plates, 6-11–6-12
balance dam, 6-13
ball bleed valve, 6-13
clutch housing, 6-10–6-11
clutch hub, 6-13–6-14
clutch piston and seals, 6-11
cushion plate design, 6-12
friction and separator plates, 6-8–6-10
piston return springs, 6-11
snap ring, 6-13
design and analysis, 6-14–6-16
centrifugal loads, 6-15–6-16
clutch capacity, 6-14
shift energy, 6-14–6-15
spline tooth stress, 6-16
see also High-energy wet friction materials; Wet friction system
design considerations
Fuel economy, lock-up clutch, 2-110–2-117
absorption, 2-111–2-113
compressibility of friction materials, 2-113–2-114
damping effects, 2-114
fiber effects, 2-114
speed effects, 2-116–2-117
temperature effects, 2-116
Gaskets, 10-1, 10-2–10-13
cure-in-place gaskets, 10-9
design considerations, 10-2–10-3
elastomeric gasket design, 10-6–10-8
aluminum edge-bonded gasket, 10-6
over-molded steel gasket, 10-6–10-7
press-in-place gaskets, 10-7–10-8
void-volume carrier gasket, 10-7
finite element analysis, 10-8–10-9
liquid injection sealing, 10-10
materials, 10-3–10-6
cork and cork/rubber, 10-4
elastomers, 10-5–10-8
acronyms and definitions, 10-12–10-13
comparison of, 10-5f
rubber coated metal, 10-4
room temperature vulcanizing (RTV) gaskets, 10-9–10-10
concerns with, 10-10
surface finish, 10-3
testing and design validation, 10-10–10-12
ASTM test standards, 10-11
Fuji pressure measurement, 10-11–10-12
sealability testing, 10-11
thermal cycle testing, 10-12
Gear failure, 3-8–3-14
Gear ratios, 2-20, 2-27
reverse gear ratio calculations, 2-28f
Gear teeth, 3-10–3-16
bending strength, 3-11–3-12
bending stress, 3-12, 3-13
failure of tooth surfaces, 3-13–3-14
root clearance, 3-12
scuffing, 3-15–3-16
wear, 3-10–3-11
Gearing, effect of, 2-39–2-40
input gearing, 2-39
output gearing, 2-40
split-torque gearing, 2-40
Gerotor pumps, design factors, 9-4–9-7
flow, 9-5–9-6
losses, 9-6–9-7
power consumption, 9-6–9-7
Hall sensors, 8-98–8-99
High-energy wet friction materials
evolution of friction materials, 6-2–6-8
current friction materials, 6-2–6-3
with good friction characteristics, 6-3–6-5
with good μ-ν characteristics for slipping applications, 6-6
with high mechanical strength, 6-5–6-6
non-papermaking technologies, 6-7–6-8
trends and directions, 6-6
see also High-energy wet friction materials; Wet friction system
typical ingredients of, 6-5f
Hoop stress, 7-9–7-11
discrete load approximation, 7-10–7-11
uniform pressure approximation, 7-9–7-10
Index

Hydraulic control systems, 8-65–8-70
 accumulator, 8-69–8-70
 cost, 8-70
 design of, 8-75–8-90
 basic valves and circuits, 8-71–8-75
 factors affecting control design, 8-70–8-71
 valve body and governor systems, 8-70–8-90
 hydraulic shift controls, 8-68
 natural frequency of a spring, 8-73
 reliability, 8-70
 testing, 8-70
Hydraulic valve bodies, 8-93–8-94
 bolt pattern, 8-93
 bores, 8-91
 cast iron vs. aluminum, 8-91–8-93
 current dimensioning practice, 8-94–8-95
Hydraulic valve body design, manufacturing aspects, 8-90–8-95
 cast-iron versus aluminum valve body, 8-92–8-93
 current dimensioning practice, 8-94–8-95
 ditch plates, 8-93
 drive range pressures, 8-79t
 governor circuit design, 8-83–8-84
 governor pressure, 8-80
 leakage, effect of clearance on, 8-93
 leakage vs. bore clearance in cast-iron and aluminum, 8-92–8-93
 line pressure, sample computations, 8-89
 manual valve design, 8-85–8-86
 separate ditch plate versus ditches cast in case, 8-93
 shift valve design, 8-86–8-87
 special purpose valve design, 8-87–8-89
 throttle pressure, 8-80–8-82, 8-83f, 8-89t
 throttle valve systems, 8-80–8-81
 vacuum control, 8-81
 valve body
 bolt pattern, 8-93
 bores, 8-91
 cast iron vs. aluminum, 8-91–8-93
 current dimensioning practice, 8-94–8-95
 valves, 8-93–8-94
Hydrodynamic drive units, 2-31–2-48
 advantages of, 2-33
 blade angle and vector systems, 2-44–2-46
 combined operation, 2-37–2-39
 operating conditions, 2-38f, 2-39t
 definitions and terminology, 2-31–2-33
 design of, 2-42–2-45
 design problems, 2-47–2-48
 effect of gearing, 2-39–2-40
 input gearing, 2-39
 output gearing, 2-40
 split-torque gearing, 2-40
 element torque equation, 2-42
 equation governing application, 2-36
 flow velocity, estimating, 2-45
 fluid flow, 2-34
 force equation, 2-43
 functional uses of, 2-34–2-35
 impeller torque versus impeller speed, 2-38f
 laboratory experiments, 2-46
 location in passenger car, 2-35
 losses, friction and shock, 2-45
 operation of, 2-34
 output speed plot, 2-37f
 sizing of, 2-41–2-42
 speed-ratio plot, 2-37
 stall speeds, 2-41
Internal flow, torque converter, 2-73–2-82
 field, 2-77–2-76
 losses, 2-73–2-76
 measurements, 2-82
 performance analysis, 2-82–2-83
 potential flow analysis, 2-76–2-79
 viscous flow analysis, 2-79–2-82
 flow conditions, 2-79
Lever analogy analysis method, 3-40–3-49
 combining levers, 3-42
 compound gearset, 3-40
 connections, 3-42
 interconnections, 3-41–3-42
 justification for substitutions, 3-41
 levers, 3-40
 simple gearset, 3-40
Lever analogy analysis method, continuously variable transmission
 analysis, 3-47–3-48
 nutating drive transmission, 3-48
 reversing devices, 3-47
 variable-sheave belts, 3-47
Lever analogy analysis method, transmission analysis, 3-43–3-47
 planet pinion speeds, 3-44–3-46
 Ravigneaux gearset, 3-43–3-44
 rotational inertias, 3-46
 Simpson gearset, 3-43
 split-torque input, 3-47
 stepped planet pinion gearset, 3-46
 synthesis, 3-48
Linear position sensors, typical characteristics, 8-101–8-102
Linear variable differential transformer sensors, 8-104
Lock-up clutch, 2-103–2-117
 clutch facing, 2-108
 cooling, 2-109
 description, 2-104–2-107
 durability, 2-108
 fail-safe valve, 2-105–2-107
 fuel economy, 2-110–2-117
 improved pump efficiency, 2-109
 isolator parts, 2-108
 lock-up valve, 2-105
 performance, 2-109–2-110
 permanent magnet, 2-109
 pressure relief valve, 2-107
 reverse line pressure modulation, 2-109
 revised control system, 2-107
 shift quality, 2-108
 switch valve, 2-107
 thrust bearing, 2-108–2-109
 torsional vibrations, 2-108
 see also Fuel economy, lock-up clutch
Index

Lubrication circuits, design and validation of, 11-30–11-43
 clutches, lube path, 11-33–11-34
 lubrication flow targets, 11-30
 math model of circuit, 11-34–11-36
 nomenclature, 11-30
 oil delivery strategy, 11-31
 distribution calibration features, 11-34
 initial lube routing, 11-32–11-34
 lube sources, 11-31–11-32
 lube zones, 11-31
 parts requiring lubrication, 11-30–11-31
 planetary carries, lube path, 11-33
 validation of, 11-33–11-43
 component characterization test, 11-41–11-42
 flow visualization test, 11-42–11-43
 lube zone characterization test, 11-38–11-41
 lubrication distribution test, 11-36–11-38

Magnesium casting alloys, 1-8

Metal belt drive continuously variable (CV) transmission
 application considerations, 13-2–13-4
 engine characteristics, 13-3
 terms used, 13-1–13-2
 transmission requirements, 13-3–13-4
 vehicle requirements, 13-2–13-3
 cross sections, 13-26
 design of controls, 13-18–12-20
 functional requirements, 13-18
 types of controls, 13-18–12-20
 requirements
 components, 13-4
 duty cycle/durability, 13-4
 packaging, 13-1
 power flow, 13-3
 ratio range, 13-4
 strategy goals, 13-20
 transmission oil tests, 13-27f, 13-28t

Metal belt drive CV transmission, belt design, 13-5–13-9
 compression-type belts, 13-5–13-8
 belt capacity, 13-5–13-7
 belt length, 13-6
 construction of, 13-5–13-6
 failure mechanisms, 13-8
 noise mechanisms, 13-8
 pitch line definition, 13-6
 power loss mechanisms, 13-7
 terms used, 13-1–13-2
 tension-type belts, 13-8–13-9
 belt capacity, 13-8
 belt length, 13-8
 construction, 13-8
 failure mechanisms, 13-9

Metal belt drive CV transmission, fluid, 13-20–13-22
 hydraulic properties, 13-20–13-22
 air entrainment and foam, 13-21–13-22
 viscosity and temperature effects, 13-21
 lubrication, 13-21–13-22
 antiwear, 13-21
 metal corrosion, 13-21
 power transmission, 13-20–13-21

Metal belt drive CV transmission, sheave design, 13-9–13-11
 construction, 13-9–13-10
 hydraulic oil supply, 13-10
 material selection, 13-10
 piston sizing, 13-9
 rotational balance, 13-10
 sheave metallurgy, 13-10
 stiffness, 13-10
 stops, 13-10
 transmission case design, 13-11

Metal belt drive CV transmission, variator system, 13-11–13-18
 belt alignment, 13-15–13-16
 packaging in the transmission, 13-11–13-12
 belt type, 13-12
 control system, 13-12
 input torque and speed, 13-12
 manufacturing and service, 13-12
 method of oil feed, 13-11
 ratio range, 13-11
 ratio changing, 13-16–13-18
 torque capacity, 13-12–13-15
 axial clamping force, 13-13–13-15
 belt length, 13-12–13-13
 belt tension, 13-14–13-15
 coefficient of traction, 13-13

Multi-plate friction clutch, see Friction clutches, multi-plate

Multiturbine torque converters, 2-17–2-31
 axial thrusts, 2-30
 basic energy equation, 2-26
 construction, 2-28–2-30
 control mechanism, 2-23–2-24
 converter capacity, 2-22, 2-23
 dimensional data, 2-24t
 efficiency, 2-24
 flow coefficient, 2-25
 gear ratios, 2-20, 2-27
 reverse gear ratio calculations, 2-28t
 losses, flow and shock, 2-24–2-25
 nomenclature, 2-17
 operation of converters, 2-18–2-21
 performance characteristics, 2-22–2-28
 comparisons of, 2-18f
 stall torque ratios, 2-21
 torque equations, 2-25–2-26
 turbulent flow of fluids, 2-25
 vector diagrams, 2-20f

Noise factors, transmission pumps, 9-11
Noise reduction, 2-12, 3-25–3-39
 derivation of forces normal to teeth, 3-38–3-39
Noise reduction (cont.)
gear noise challenges, 3-25
involute and helical contact ratio, 3-27–3-28
main design parameters, 3-27
noise generation and transmissibility, 3-25–3-27
pinion spacing, 3-39
planetary geartrain speed relationships, 3-36–3-37
tooth contact frequency, 3-27
Noise reduction design parameters, 3-28–3-36
approach and recess angles, 3-30
helix angle, 3-31
module/pitch, 3-28–3-30
pinion spacing and tooth counts, 3-31–3-34
pressure angle, 3-30
shaft and support design
 countershaft transmission arrangements, 3-34
 planetary gear arrangements, 3-34–3-35
tolerances and modification 3-35–3-36

Parallel axis gearsets, 3-48
Parking mechanisms, 1-10–1-13
 actuator spring, 1-12–1-13
 detent lever spring, 1-11
 lockout spring, 1-13
 parking pawl return spring, 1-11–1-12
Pawl one-way clutches, see Clutches, pawl one-way
Phased chain system, 3-86–3-95
 chordal action, 3-86–3-87
 evaluation of, 3-94, 3-95
 noise reduction, 3-86
 phasing, 3-88–3-90
 analysis of, 3-88–3-90
 randomization, 3-87–3-88
 robustness, 3-90–3-91
 special considerations, 3-92–3-93
 sprocket manufacturing considerations, 3-93–3-94
 variance effects, 3-91
 vehicle tests, 3-94–3-95
Pinion spacing and tooth counts, 3-31–3-34, 3-39
 hunting, 3-33–3-34
 phasing, 3-32–3-33
Planet pinions, 5-30–5-42
 bearing rollers, 5-43
 bearing selection, 5-38–5-39
 bearing types, 5-35
cage and roller assemblies, 5-43
capacity and life factors, 5-35–5-36
critical point on converter curve, 5-31
dimensions, 5-39
 life of, 5-30, 5-37, 5-38
 limiting speed 5-38
 lubrication, 5-42
metallurgy, 5-42
planet shaft retention, 5-43
planet shaft retention, 5-43
 planet gear calculations, 5-33r, 5-34r
 planetary transmission bearing data, 5-44r
 reliability 5-38
 slope calculations 5-3–5-37
 speed of planetary members 5-31
 surface finish, 5-43
 thrust washers and spacers, 5-39–5-42
tolerances, 5-42–5-43
tooth and bearing forces 5-31–5-35
Planetary gear trains, design of, 3-2–3-8
calculation of gear ratios, 3-2–3-3
 pinions, number of, 3-3–3-5
 spacing planets, 3-5–3-8
 speed relationships, 3-36–3-37
Polymeric thrust elements, 5-26–5-30
 frictional drag and parasitic losses, 5-28
 glass transition temperatures, 5-27
 material testing, criteria, and data, 5-28, 5-29
 polymers as thrust elements, 5-26
 washer functional criteria, 5-27–5-28
Position sensors, 8-100–8-104
 linear position sensors, typical characteristics, 8-101–8-102
 linear variable differential transformer sensors, 8-104
 potentiometric sensors, 8-104
Powershift concept study, 8-49–8-65
 actuation calculations, 8-65
 actuation requirements, 8-52
 actuation technology, 8-53–8-54
 alternative configurations, 8-62
 double gear engagement, 8-52
 fuel economy simulation, 8-61–8-62
 loss of electrical power, 8-52
 lubrication, 8-59
 market perspective, 8-50
 overall design, 8-60–8-61
 simulation details, 8-61–8-62
 rollback and park, 8-59
 shaft and gear layout, 8-51
 subsystem solutions, 8-54–8-60
 technical approach, 8-50–8-51
 transmission attribute weightings, 8-50
Powertrain, natural frequencies, 1-9
Pump design
 cavitation, 9-5
crescent gear pumps, design factors, 9-7–9-8
 flow, 9-7–9-8
 leakage, 9-8
 power consumption, 9-8
external gear pumps, design factors, 9-8–9-10
 flow, 9-8–9-10
 leakage, 9-9
 power consumption, 9-10
tooth forms, 9-10
gerotor pumps, design factors, 9-4–9-7
 flow, 9-5–9-6
 losses, 9-6–9-7
 power consumption, 9-6–9-7
 guidelines, 9-2–9-11
 common design factors, 9-2–9-4
determine pump requirements, 9-2–9-3
determine theoretical displacement, 9-3
inlet design, 9-3–9-4
performance factors, 9-4
NVH factors, 9-11
survey of transmission pumps currently in use, 9-11–9-12
construction materials, 9-12
operating clearances, 9-11–9-12
pump displacements, 9-12
tip leakage, 9-5
trends in, 9-12
types of pumps, 9-2f
types of pumping systems, 9-2
variable displacement vane pumps, design factors, 9-10–9-11
flow, 9-10
power consumption, 9-10–9-11
Radial shaft seals, 10-1, 10-13–10-23
design considerations, 10-15–10-17
bore, 10-16–10-17
bore surface roughness, 10-17
contamination exclusion features, 10-18
environment, 10-15
hydrodynamic aids, 10-18–10-19
outside diameter, 10-17
shaft, 10-15–10-16
shaft chamfer, 10-16t
shaft diameter tolerance, 10-16t
dimensions of, 10-14
failure analysis, 10-22–10-23
installation, 10-19–10-20, 10-21f
shaft, 10-22
material selection, 10-19, 10-20t
nomenclature, 10-14f
sealing mechanism, 10-14
testing, 10-22
Real-time torque sensor, 8-109
Roller-type one-way clutches, see Clutches, roller-type one-way
Rolling element bearings, see Bearings, rolling element
Rotary position sensors, typical characteristics, 8-103–8-104
Seals, 10-2; see also Radial shaft seals
Sensors, 8-95–8-110
acronyms and definitions, 8-110–8-111
anisotropic magneto-resistive sensors, 8-99–100
barometric absolute pressure, 8-105–8-106
design overview, 8-96
EMC considerations, 8-109–8-110
environmental and test conditions, 8-96–8-97
Hall sensors, 8-98–8-99
position sensors, 8-100–8-104
linear position sensors, typical characteristics, 8-101–8-102
linear variable differential transformer sensors, 8-104
potentiometric sensors, 8-104
rotary position sensors, typical characteristics, 8-103–8-104
transmission range sensor, 8-100–8-101
typical characteristics, 8-105
pressure sensing, 8-104–8-105
speed sensing, 8-97–8-100
surface acoustic wave technology, 8-106–8-108
temperature sensing, 8-105
torque sensing, 8-106–8-109
Shell and core curves, 2-6–2-8
calculations, 2-7f
core contour, 2-6
shell contour, 2-7
Shift processes, basic, 8-2–8-20
downshift control study, 8-16–8-20
conditions, 8-16
hardware, 8-16
kickdown control and output torque, 8-17–8-19
power-off downshifts or pulldowns, 8-19–8-20
power-on/kickdown shift, 8-16–8-19
output torque equation, 8-6–8-11
power-on downshift, 8-9–8-11
power-on upshift, 8-7–8-9, 8-11–8-12
initial gear, 8-12
shift parameters, 8-15–8-16
speed change, 8-13–8-14
torque phase, 8-12–8-13
upshift torque management, 8-13, 8-14
ratio changing
disturbance, 8-2–8-3
mechanics of, 8-3–8-6
modern perspective on, 8-11–8-16
nomenclature, 8-3
torque equations, 8-4f, 8-5t
Shift scheduling, 8-26–8-40
comparison of selected gears, 8-29f
control, 8-28–8-29
select transmission ratio, 8-36–8-39
using fuzzy logic, 8-33–8-34
using vehicle's navigation system, 8-34–8-36
down-grade road problems, 8-30–8-32
driver classification, 8-32–8-33
up-grade road problems, 8-29–8-30
vehicle mass influence, 8-32
Shift torque analysis and the continuously variable transmission,
8-21–8-26
power off downshift, 8-26
power on up-shift, 8-22–8-24
simulation insight, 8-24
Shoring and thrust washer performance, 5-20–5-26
basic design considerations, 5-24
bushing and washer materials, 5-21t
design considerations, 5-20
distress, 5-24–5-26
elements of, 5-25–5-26
Index

Sleeve bushing and thrust washer performance (cont.)
 material selection, 5-20–5-21
 mating surfaces, 5-23
 testing, 5-24
 thrust washers, 5-22–5-23
 types of bushings, 5-22
Splines and serrations, 3-50–3-67
 automotive industry applications, 3-60–3-61
 automatic transmissions, 3-61
 manual transmissions, 3-60–3-61
 rear axles, 3-60
 design of, 3-53–3-60
 length of spline engagement, 3-57
 number of teeth, 3-55
 pitch, 3-55
 pressure angle, 3-57
 size (diameter), 3-54–3-55
 tooth thickness, 3-55–3-57
 type of root, 3-58–3-59
 types of fit, 3-58
 drafting standards, 3-66
 hardness and tensile strength, 3-63f
 inspection, 3-66–3-67
 involute form, 3-50
 internal straight-sided serrations, 3-62
 machinability, 3-60
 manufacturing methods, 3-51–3-52
 broaching, 3-51
 cold roll forming, 3-52
 grinding, 3-52
 hobbing, 3-52
 shaper cutting, 3-51–3-52
 shear speed, 3-52
 materials, 3-59–3-60
 nomenclature, 3-53
 parallel-sided splines, 3-61–3-62
 physical considerations, 3-52–3-53
 pressure angle deviations, 3-65
 self-cutting serrations, 3-65
 spline considerations, 3-50–3-51
 spline data, 3-67t
 spline testing, 3-65
 tapered serrations, 3-62
 typical failure types, 3-65–3-66
 zero-backlash fit, 3-63–3-65
Splines, effective fit concept for, 3-68–3-74
flexibility of, 3-68
Split-torque application, 2-12–2-14
 coupling speed ratios, 2-14f
 efficiency comparison, 2-14f
Sprag one-way clutches, see Clutches, sprag one-way
Structural analysis case study, 1-6–1-10
Sump filter
 design features, 14-10–14-11
 attachment and structural geometry, 14-10
 backflow prevention, 14-10
 cold-flow enhancement, 14-10–14-11
 extended snouts, 14-10
 flow control and promotion, 14-10
 internal reservoirs, 14-10
 prevention of air ingestion, 14-10
 recirculation paths, 14-10
 performance tests, 14-13–14-16
 burst testing, 14-16
 capacity, 14-15–14-16
 cleanliness or sediment testing, 14-17
 durability testing, 14-16–14-17
 efficiency, 14-14
 extreme cold performance, 14-13–14-14
 flow vs. pressure drop, 14-13
 impact testing, 14-16
 life cycle testing, 14-16
 media capture testing, 14-16
 multi-pass efficiency testing, 14-14
 thermal cycle testing, 14-16
 transmission filter effectiveness, 14-14–14-15
 vacuum leak decay testing, 14-16
 vibration testing, 14-16

Tapered roller bearings, see Bearings, tapered roller
Temperature control and fuel consumption, 11-27–30
 fuel economy, 11-29–11-30
 test plan, 11-28–11-29
 conditions, 11-29
 procedure, 11-29
 results, 11-29
Transmission cooling strategy, 11-27, 11-28f
Temperature effects on transmission operation, 11-20–11-27
 cooling circuits, 11-20–11-21
 clutch and fluid friction, 11-26
 cooling tests, 11-21–11-22
 city driving, 11-22
 hot tunnel test, 11-22
 Pikes Peak test, 11-21–11-22
 turnpike driving, 11-22
 fluid coupling, 11-27
 rubber parts, 11-23
 temperature measurements, 11-21
 transmission fluid life, 11-23–11-26
 bench test, 11-24
 fluid level and foam, 11-26
 vehicle oxidation test, 11-25
Thrust bearings, see Bearings, thrust
Torque capacity, 2-14
Torque converter clutch, 2-117–2-124
 description, 2-118–2-119
 dimensionless analysis, 2-122–2-123
 engine torque variation interception, 2-119
 equation of motion, 2-120
 oscillation equation, 2-123–2-124
 shock absorption, 2-124
 stability of feedback control system, 2-120, 2-121–2-122
Torque converter, fluid flow, 2-85–2-93
 effect of centrifugal force, 2-86
 effect of coating material thickness, 2-86
 effect of spot material mixing ratio, 2-86
 flow pattern, 2-88–2-93
 flow visualization, 2-85–2-87, 2-86f
 relationship between efficiency and flow pattern, 2-90
 specifications and flow observations, 2-88–2-89

I-10
Index

Torque ratios, 2-17
Torque sensing, 8-106–8-109
development integration, 8-109
real-time torque sensor, 8-109
surface acoustic wave technology, 8-106–8-108
system control optimization, 8-108–8-109
wireless operation through rotary coupler, 8-108
Torque vs. speed relationship, 2-8–2-9

Transaxle filter design

see also
Sump filter

Transmission case, 1-1–1-10

torque fluids, 1-10–1-12

Torque converters and start devices, 2-1–2-140

see also
Torque equations, 2-25–2-26

wall tracing method, 2-85
see also Flow pattern, torque converter

Torque converter, improving performance, 2-93–2-103
calculations, 2-96–2-102
comparisons with experimental data, 2-97–2-98, 2-101–2-102
element performance, 2-94
experimental method, 2-96
nomenclature, 2-93–2-94
numerical analysis method, 2-95–2-96
pump flow passage contraction ratio, 2-99–2-102
relationship between turbine bias angle and efficiency, 2-96–2-99

Torque converter, single-stage, three-element, design of, 2-49–2-71
axial thrust, 2-62–2-63
blade design, 2-67–2-70
reactor blade, 2-69
specifications and data, 2-67t, 2-68t
turbine blade, 2-69
blading, 2-55–2-58
circuit size, 2-50–2-51
converter circuit design, 2-63–2-65
converter fluids, 2-61–2-62
cooling, 2-60–2-61
efficiency characteristics, impeller exit angles, 2-52/
fabrication of, 2-56, 2-58–2-59
flow area, 2-54t
flow circuit, 2-54–2-55
impeller torque equation, 2-56
operation at high altitude, 2-59–2-60
performance analysis, 2-51–2-54
speed ratios, 2-53
stall speed, 2-50
torque and power equations, 2-50–2-51
vector diagram development, 2-66–2-67
Torque converter, technology needs, 2-70–2-84
blade design considerations, 2-76–2-82
internal flow, 2-73–2-82
measurements, 2-82
performance analysis, 2-82–2-83
see also Internal flow, torque converter

Torque converters and start devices, 2-1–2-140

torque basic theory and formulas, 2-3–2-5
centrifugal bypass clutch, 2-125–2-140
design requirements, 2-3
flow or circulation loss coefficient, 2-8
fluid coupling, 2-1–2-17
fluid flow, 2-85–2-93
hydrodynamic drive units, 2-31–2-48
improving torque converter performance, 2-93–2-103
lock-up clutch, 2-103–2-117
multiturbine torque converters, 2-17–2-31
shunt and core curves, 2-6–2-8
shunting coupling, 2-15–2-17
single-stage, three-element, design of, 2-49–2-71
technology needs, 2-70–2-84
torque converter clutch, 2-117–2-124
unit diameter capacity factors, 2-8–2-9, 2-10f, 2-11f
see also Fluid coupling, Multiturbine torque converters

Torque equations, 2-25–2-26

Transmission cooling systems, air cooling type, 11-10–11-20
design, 11-12–11-15
cooling fin, 11-13–11-14
housing, 11-12
torque converter, 11-13

Factors affecting optimum temperatures, 11-12f
heat rejection calculations, 11-18–11-20
heat sink factor, 11-20
heat transfer from outer surface, 11-18–11-19
for steel fins, 11-19
for torque converter, 11-18
nomenclature, 11-10
objectives, 11-11–11-12
procedure for developing, 11-15
separate oil-air cooler, 11-17
testing, 11-15–11-17
dynamometer tests, 11-16
heat capacity, 11-17
vehicle tests, 11-15–11-16
Transmission cooling systems, oil-to-water type, 11-2–11-10
 flow resistance, 11-5–11-6
 generalizations, 11-3
 heat rejection rates, 11-3–11-4
 impeller head effects, 11-8–11-10
 pressure drop constant, 11-9
 performance and design features, 11-4–11-5
 permissible oil temperatures, 11-3
 transient temperatures, 11-9–11-10
 transient heat transfer equations, 11-6, 11-10
 thermal transients, effect on sizing, 11-6–11-8
 testing cautions, 11-7
 transient heat transfer equations, 11-6, 11-10
Transmission gear design, 3-8–3-17
 gear failure, 3-8–3-14
 geartrain selection, 3-8–3-10
 manufacturing considerations, 3-17–3-24
 broaching, 3-20–3-21
 finer-pitch gears, 3-22–3-23
 full topping hob, 3-17–3-18
 semi-topping hob, 3-21–3-22
 shaper cutting and shaving, 3-18–3-20
 shaving step, 3-23–3-24
 materials for, 3-16–3-17
see also Gear teeth
Transmission range sensor, 8-100–8-101
Transmission shaft fatigue design
 cumulative damage, 4-10–4-11
 example problems, 4-18–4-22
 fatigue properties, 4-4–4-5
 strength estimation factors, 4-5t
 load type, 4-7
 loading conditions, 4-8
 combined, 4-8
 effects, 4-7t
 mass relationship, 4-3
 mean stress components, 4-9–4-10
 miscellaneous effects, 4-8
 nomenclature, 4-2
 reliability factor, 4-6
 residual stress, 4-8
 size factor, 4-6
 S-N curve, 4-4
 modifying factors, 4-5
 stress calculation, 4-2–4-3
 stress concentration, 4-3–4-4
 factors, 4-12–4-17
 modifying factor, 4-5–4-4-7
 surface finish factor, 4-5
Turbulent flow of fluids, 2-25
Unit diameter capacity factors, 2-8–2-9
 for core ring type, single coupling, 2-9f
 for core ring type, double coupling, 2-9f
 for coreless couplings, 2-9f
 for flat angular blades, 2-10–2-11
Variable displacement vane pumps, design factors, 9-10–9-11
 flow, 9-10
 power consumption, 9-10–9-11
Vendors, 1-6
Viscosity of automatic transmission fluids, 12-2, 12-6–12-8, 12-6t
 bulk modulus, 12-8
 dynamic viscosity equation, 12-6
 effect of pressure on, 12-7
 effect of shear on, 12-7
 effect of temperature on, 12-6
 gas solubility in oils, 12-8
 index improvers, 12-10–12-11
 kinematic viscosity equations, 12-6
 specific gravity and density, 12-7
 volumetric thermal expansion, 12-8
Wet friction system design considerations, 6-8–6-26
 clutch friction system test methods, 6-26–6-29
 drag torque curve, 6-16–6-17
 drag torque design variables, 6-17–6-20
 hot spots and other thermal gradient effects, 6-24–6-26
 open clutch drag torque, 6-16
 thermal considerations, 6-20–6-22
 thermal degradation, 6-23
 thermal modeling, 6-22–6-23
 see also Drag torque design variables

see also Drag torque design variables