Index

A

Alloy 336.0, 20, 31–37, 117
Alloy 355.0, 20–21, 26, 39–55
Alloy 356.0, 15–16, 22, 57–78, 115–120
Alloy 359.0, 15–16, 22, 79–94
Alloy 390.0, 15–16, 22, 95–105, 118
Alloy 413.0, 107–115, 117–118
Alloy 7075, 16–17, 23–25
Alloy C355, 8
Alloy C356, 5
Aluminum, in oxide inclusions, 116–119
Aluminum, lattice parameters, 3
Aluminum content, 7
ASTM standards, 1
Atomic diameter, 1
Atomic force microscopy, 21
Average stress, 5

B

Bands, 74, 99, 101–104, 114
Bands of dimples, 33–34, 36
Bonding, 1, 3–4, 12
Boundary zone, 49–51, 55
Bridges, 16–17
Brittle cracks, 41–42, 44, 73, 92, 97
Brittle-ductile fracture, 14, 19
Brittle fracture, 4–5, 7, 12–14, 21, 26, 62, 64, 71, 90, 93–94, 99–101, 111
Burgers vector, 9

C

Calcium, in oxide inclusions, 116–118
Carbon, in oxide inclusions, 118
Carbon film, 11
Carbon replicas, 11
Cast iron, 1
Cast steel, 1, 13–17, 19–21, 24–26, 27
Cast technology, 5
Cell ridges, 29
Chemical composition, 1, 11, 31, 39, 57, 79, 95, 107
Chemical etching, 11
Chemical strengthening, 29
Chevrons, 16, 73, 93
Chlorine, in oxide inclusions, 116–119
Classification series, 1
Cleaning, 11
Cleavage cracks, 33, 41, 44–45, 48, 50–52, 59–60, 64, 68, 74, 76, 80, 86–87, 98, 102, 110
Cleavage energy, 3
Cleavage fracture, 13–16, 19, 34, 45, 52, 55, 63, 65, 67, 73, 75, 77, 82, 84, 86, 90–91, 98, 109, 113–114
Cleavage lines, 15–16, 21–22, 42–43, 60, 80, 82–83
Cleavage work, 4
Coefficient of profile development, 23–24
Confocal laser microscopy, 21
Coordination number, 1, 3
Copper content, 7–9
Corrosion, 19–20
Crack energy, 24–27
Crack energy during static bending, 24
Crack front displacement, 62
Crack initiation, 7, 16, 29, 92, 102, 104
Crack path, 11, 29
Crack path reconstruction during fatigue fracture, 27
Crack zone, 70
Crack zone ranges, 11
Critical stress, 1
Crystal structure, 3, 5
Cyclic loading, 12

D

Decohesion zone, 51
Defects, 115–120
Deformation twins, 15–16
Degree of deformation, 11
Degree of dispersion, 7–9
Dendrite arms, 5, 16, 32, 58
Density, 1, 7
Die cast parts, 32
Dimple bands, 48, 51, 53, 76, 78, 87, 98
Dislocations, 2–5, 8–9, 16
Dislocation stress field, 5
Disperse particles, 19
Dispersion-hardened alloys, 20–21, 26
Dispersion strengthening, 29
Ductile fracture, 12–14, 18–19, 21, 24–27, 29, 36, 45, 52, 87, 112–113
Ductile transcrystalline fracture, 21, 26
Dynamic loading, 12

E

Edge dislocations, 8
Elastic modulus, 1, 3, 27
Electrolytic etching, 11
Elongation, 8, 31, 39, 57, 79, 95, 107
El-Soudani’s rule, 21–23
Equiaxial dimples, 18–19
Equilibrium phase diagrams, 1–2, 7–8
Experimental yield strength, 3
Linear void sequence, 24–25
Line defects, 2
Line factor of the profile development, 21–23, 27
Line method, 24, 26
Line of shear, 15–16, 22
Line of the shear ridge, 16, 21
Loading cycles, 21
Low-cycle fatigue test, 42–44, 52–55

M
Macrogrowth, 16
Macroporosity, 11
Magnesium, in oxide inclusions, 116, 119
Magnesium content, 7–9
Mandelbrot’s scheme, 24
Manganese content, 7–9
Material deformation, 13
Maximum solubility, 7
Mechanical properties, 1, 3, 5–7
Melting point, 7
Metal mold cast parts, fracture surfaces, 33–34
Metal mold cast parts, fracture surfaces, modified, 35–37
MgZn2 phase, 24–25
Microcracks, 13, 19, 54, 108
Microdeformation, 46, 64, 101, 110–112
Microdeformation zone, 51, 53, 55, 69, 111
Mikroligaments, 16
Macroporosity, 13, 19, 110
Microstructure, 1, 2, 5–7, 11, 15–17, 19, 29–31, 39, 57, 79, 95, 107
Microvoid coalescence, 14, 17–18, 36–37
Microvoid formation, 36
Microvoids, 13–14, 17–18, 36, 93
Minkowski’s scheme, 24
Mixed brittle-plastic fracture, 14, 19
Mixed cellular fracture, 15, 19–20
Mixed fracture, 13–14, 19–21, 26, 37, 45, 65, 68, 70, 73–74, 86, 112
Monophase regions, 60

N
Necks, 29, 42, 82
Nitrogen, in oxide inclusions, 116–118
Nondestructive fracture analysis methods, 21
Nonmetallic inclusions, 61, 110
Number of the partition of initial line, 23
Number of the segment of the initial fractal motive, 23

O
Orowan model, 8–9
Overaging, 8
Oxide film, 11–12, 115–116, 118–119
Oxide inclusions, 45, 115–119
Oxygen, in oxide inclusion, 116–119

P
Peierls-Nabarro (P-N) forces, 2–4
Permanent mold castings, after V-notch impact test at 21°C, 67–69, 76–78, 88–94
Permanent mold castings, after V-notch impact test at -160°C, 69–73
Permanent mold castings, heat treated, 45–48
Permanent mold castings, heat treated after static tensile test, 73–75
Permanent mold castings, modified, 40–44, 48–55
Permanent mold castings, modified and refined, 51–66, 96–97, 108
Permanent mold castings, nonmodified, after static tensile test, 115
Permanent mold castings, nonmodified, after V-notch impact test, 115
Permanent mold castings, refined, 80–83
Permanent mold castings, refined, after static tensile test, 109–110
Permanent mold castings, refined, modified, and heat treated, 58–60
Permanent mold castings, refined and modified, after static tensile test, 84–88, 110–114, 116, 118
Permanent mold castings, refined and modified, after V-notch impact test, 119–120
Permanent plastic deformation, 2
Phosphorus, in oxide inclusions, 117
Physical properties, 1
Pinpoint mechanism, 13, 17, 24
Plastic-brittle fracture, 14
Plastic flow, 13–14
Plastic fracture, 12–14, 17, 19, 24, 33–34, 103
Plastic-brittle fracture, 14
Plastic-ductile fracture, 14
Plastic-ductile fracture, 14
Plastic fracture, 12–13, 17, 24, 37, 49–50
Plastic profile line, 24, 26
Plastic strength, 0.2%
Point defects, 2–3
Point necking, 13
Polyphase microstructure, 1
Polyphase regions, 7, 40–41, 43–44, 48, 51, 53, 63, 80–81, 90, 105
Porosity, 11
Potassium, in oxide inclusions, 116–119
Precipitate hardening, 5–7
Precipitates, brittle phase, 81, 94
Precipitates, needle-shape, 44, 53–54, 75
Precipitation hardening, 5–7
Profile line, 21, 27, 41–42, 58–60, 80, 82
Profile of the main crack, 16, 21
Profile of the secondary crack, 16, 21
0.2% Proof stress, 5
Proof stress, 2, 4–5
Q
Qualitative fractography, 12–26
Quantitative fractography, 21–27
Quantitative fracture analysis, 21–27
R
Real fracture surface, 23–24, 26
Real fracture surface coefficient, 21
Real profile line length, 24, 26
Real strain, 3
Real stress, 3
Resistance to deformation, 3
Resistance to dislocation movement, 5
Retained cohesion zones, 76, 102
Rim zone, 45, 52, 59, 80, 82
River patterns, 15–16, 19–20, 29, 85, 89, 98, 100, 103
Rivers, 15–16, 19–20, 84–85, 100, 110–111
Rosette, 88, 92
S
SAEC. See Selected areas electron channeling (SAEC) pattern method.
Scanning electron microscopy (SEM), 4, 11–12, 14–26
Screen, 16, 32, 83
Screw dislocations, 8, 16
Screw grain boundary, 16
Selected areas electron channeling (SAEC) pattern method, 11
SEM. See Scanning electron microscopy (SEM).
Shear, 34
Shear bands, 50, 82
Shear dimples, 17–19, 24–25, 29, 47, 49, 53, 70–71, 74, 87, 93, 113
Shear edges, 32, 34, 37, 40–44, 50, 55, 59–60, 80, 82, 108
Shear fracture, 12–13, 17, 24, 37, 49–50
Shear lips, 17, 24
Shear matrix zone, 71
Shear modulus, 2–3, 9
Shear process, 63, 89
Shear steps, 108
Shear stress, 9, 19
Shear surfaces, 17, 24
Shear voids, 24–25
Shear zones, 53, 93
Shrinkage, interdendritic, 119–120
Shrinkage discontinuity, 118–120
Shrinkage microcavities, 42, 44
Silicon, in oxide inclusions, 116–119
Silicon, lattice parameters, 3
Silicon content, 1, 7–9
Silicon crystals, 1, 4, 52–53, 64, 69, 97–105, 116
Silicon dioxide, in oxide inclusions, 118
Sintered carbides, 24
Slag inclusions, 11
Slip, 2, 13, 17, 24, 29, 104
Slip bands, 59, 65–66
Slip fracture, 13
Slip planes, 13, 17, 19, 24, 59
Slip systems, 3–4, 13, 17, 29
Slip trace, 29
Sodium, in oxide inclusions, 116, 118–119
Solidification, 7
Solid solution strengthening, 8
Specific strength, 1
Spherical inclusions, 118
Spheroidization, 7
Stacking-fault energy, 2–3
Stacking faults, 2
Standards, 1
Static loading, 12
Step line, 44
Step profile, 14–16, 19, 21–22, 29, 40, 42–44, 46
Steps, screw, 99, 109
Step shelves, 69
Step system, 16
Stereo light microscope, 11
Stereopairs, 21
Strain, 19
Strain-hardening factor, 3
Strain stress, 13
Stress, 19
Stress concentration, 9, 12–13
Stress-concentration effect, 7
Stress-concentration factor, 7
Stress fields, 8, 11, 54
Stress-intensity factor, 5, 27
Stress relaxation, 13
Sulfur, in oxide inclusions, 116
Supersaturation, 8–9
Surface defects, 2
Surface energy, 2, 4, 13, 16, 103
Index / 123
Surface free energy, 1
Synthetic fractal structure, 23–24, 27

T

Tear dimples, 19
Tear edges, 103
TEM. See Transmission electron microscopy (TEM).
Tensile strength, 1–3, 7
Theoretical proof stress, 2
Theoretical tensile strength, 1–3
Theoretical yield strength, 3
Thermal fatigue, 19–20
Titanium, in oxide inclusions, 118
Tongues, 15–16, 19–20, 29, 46–47, 55, 64, 69, 84, 110–111
Transcrystalline, cellular fracture, 76
Transcrystalline brittle fracture, 12–17, 21, 26, 29, 71, 90, 93–94, 99, 112
Transcrystalline ductile fracture, 14, 18, 112
Transmission electron microscopy (TEM), 8, 11–12
Triaxiality factor, 27
Triaxial stress state, 13, 27

U

Ultimate tensile strength, 1, 5, 31, 39, 57, 79, 95, 107
Ultrasonic frequency, repeated loading of, 19–20

V

Vacancies, 2, 8
Void bands, 48
Void coalescence, 13–14, 29, 34, 47, 103, 113
Void formation, 47
Void nucleation, 13
Voids, 13–14, 19, 29, 34, 47, 100, 102–104, 113
Volume fraction, 1, 5, 8, 29

W

Wallner lines, 16–17, 29, 55, 70, 93, 98–101, 104–105
Wave bands, 16–17
Whisker tensile strength, 2–3
Wohler’s curve, 19

Y

0.2% Yield strength, 7–8