ABS (anti-lock brake sensor) system(s), 12, 13(F)
absolute pore size, definition of, 223
accelerated corrosion test, definition of, 223
acicular powder, definition of, 223
Acrawax C, 41–42(F,T)
delubrication, 83–84(F)
green density, effect on, 35(F)
green strength, effect on, 35(F)
lubricant effects, 41(F), 42(F,T), 43(F,T), 44(F)
magnetic performance, effect on, 139(T)
thermograms of, 45(F)
activated sintering
definition of, 223
and requirements for liquid-phase-forming additives, 94–95(F,T)
activation, 62–63, 156(F), 158
definition of, 223
activation energy, definition of, 223
activator, definition of, 223
active potential, definition of, 223
adhesion, definition of, 223
aerator, definition of, 223
agglomerate (noun), 31, 172
definition of, 223
agglomerate (verb), 76, 172
definition of, 223
aggregate (noun), definition of, 223
aggregate (verb), definition of, 223. See also agglomerate (verb)
aggregate, definition of, 223
air classification, definition of, 223
alloy compositions and metallurgy. See metallurgy and alloy compositions
alloying elements, 101–103(F,T)
alloy powder, alloyed powder, definition of, 223
American Iron and Steel Institute (AISI), 6, 29
American Society for Testing and Materials (ASTM), 6, 29
amorphous powder, definition of, 223
angle of repose, definition of, 223
annealed powder, definition of, 223
anodic polarization, 101(F), 152, 156–157(F)
definition of, 223 (see also polarization)
antechamber, definition of, 223
anti-lock brake sensor (ABS) system(s), 12, 13
anti-lock brake system (ABS) sensor rings, 186–187, 188(F)
aperture size, definition of, 223
apparent density
definition of, 223
effect of silicon on, 29
particle shape, influence on, 26–27(F)
various stages in metal powder compaction, 40(F)
apparent hardness
definition of, 223
resin impregnation, 179
apparent pore volume, definition of, 223
applications
automotive (major)
anti-lock brake system (ABS) sensor rings, 186–187, 188(F)
exhaust systems, 187–188, 189(F)
flanges, 188–190(F), 191(F)
rearview mirror bracket, 186, 187(F)
metal injection molding (MIM), 195–196(F)
overview, 185(F), 186(T), 187(T)
stainless steel filters/other porous stainless steels filters, 190–193(F)
metal foams and cellular structures, 193–195(F)
stainless steel flake pigments, 197(F)
stainless steel parts (award winning)
actuator output gear, 197–198(F)
bull guide, 197(F)
bevel gear/indexing ratchet, 197(F)
mortise deadbolt, 196–197(F)
rotor hub, 196(F)
spring seals, 197(F)
valve handle insert lockout assembly, 198–199(F)
argon-oxygen decarburization (AOD), 82
ASTM International, 6, 29
atlas of microstructures
austenitic stainless steels, 206–207(F)
compaction pressure on porosity, effect of, 205(F)
ferritic stainless steels, 208–209(F)
PM stainless steels, corrosion of, 215–216(F)
PM stainless steels, fractographs of, 217–218(F)
powder morphologies, 203–204(F)
sintered stainless steels, carbides in, 212(F)
atlas of microstructures (continued)
sintered stainless steels, nitrides in, 213–214(F)
sintered stainless steels, oxides in, 210–211(F)
atomization, definition of, 223
atomized metal powder, definition of, 223
Auger
atomization, 30
oxygen control during cooling, 76–77(F)
oxygen control during sintering, 70–71(F), 72(F)
sintering in hydrogen-nitrogen gas mixtures, 84–85(F), 91(F)
surface-modified stainless steels, 105–106(F)
austenitic grades
nonstandard austenitic alloys
boronized grades, 18
higher-alloy grades, 18
tin-modified grades, 18
overview, 14–15(F)
PM austenitic alloys, composition of, 15–18((F,T))
automatic press, definition of, 224
average density, definition of, 224
axial loading, definition of, 224
bake (verb), definition of, 224
ball mill, definition of, 224
ball milling, definition of, 224
batch, definition of, 224
batch sintering, definition of, 224
billet, definition of, 224
binder (noun), definition of, 224
binder metal, definition of, 224
binder phase, definition of, 224
binder removal, definition of, 224
blank, definition of, 224
blend (noun), definition of, 224
blend, blending (verb), definition of, 224
blistering, definition of, 224
body-centered cubic (bcc) lattice, 7, 19, 47, 81, 82, 176
body-centered tetragonal crystal structure, 110
bonding, definition of, 224
brazing
basic considerations, 178–179
overview, 178
breakdown potential, definition of, 154, 224
bridging, definition of, 224
briquet(te), definition of, 224. See also compact (noun)
buffer gas, definition of, 224
bulk density, definition of, 224
bulk volume, definition of, 224
burnoff, definition of, 224
burr, definition of, 224
C

cake, definition of, 224
capillary attraction, definition of, 224
carbon control: delubrication and sintering conditions
austenitic stainless steels, 79–81(F)
delubrication, 82–84(F)
ferritic stainless steels, 81–82(F)
martensitic stainless steels, 84
thermodynamics and kinetic background, 79(F), 80(F)
carbonyl powder, 51
definition of, 224
charge, definition of, 224
chemical decomposition, 40
definition of, 224
chemical deposition, definition of, 224
chemically precipitated powder, definition of, 224
chemical vapor deposition, 40, definition of, 225
CIP, definition of, 225
classification, classifying, classify, definition of, 225
closed pore, definition of, 225
cloth, definition of, 225
crude fraction, definition of, 225
cold compacting. See cold pressing
cold isostatic pressing, definition of, 225
cold pressing, definition of, 225
cold welding, 39–40
definition of, 225
compact (noun)
definition of, 225
dimensional change, 47, 49
green strength of, 40
lubricant effects, 41
sinter bonding, 179
sintering, rate of, 48
variation in compact properties, 61(F)
compact, compacting, compaction (verb), definition of, 225
compactibility, definition of, 225
compacting and shaping (powders)
dimensional change, 47–50(F), 55
hot isostatic pressing of, 55–56(F)
MIM (metal injection molding), 51–55(F,T)
overview, 39
PM stainless steels, extrusion of, 55(T)
rigid die compaction, 39–47(F,T)
compacting crack, definition of, 225
compressibility, definition of, 225
compressibility curve, definition of, 225
compressibility test, definition of, 225
compression crack. See compacting crack
compression ratio, definition of, 225
concentration cell, definition of, 225
concentration polarization, definition of, 225
copper sulfate test, 36
corrosion fatigue
avoiding, 176
definition of, 225
corrosion potential (Ecorr), 153, 156, 157–158(F)
definition of, 225
corrosion rate, 5(F), 28(F)
definition of, 225
corrosion resistance
ferroxyl test, 159–160(T)
overview, 147
sintered stainless steels, corrosion data of, 161–163(F,T)
testing and evaluation
electrochemical tests, 153–158(F), 159(F)
elevated-temperature oxidation resistance, 160–161(F)
ferric chloride test, 158
immersion testing, 149–151(F,T)
immersion tests with mass loss, 149–150
immersion tests without mass loss, 150–151(F,T)
part preparation, 148–149
reasons for, 147–148(T)
salt spray tests, 151–153(F,T), 154(T), 162(F)
crevice corrosion, definition of, 225
critical crevice temperature (CCT), 87
critical pitting temperature (CPT), 87
cross-product contamination, definition of, 225
cyclic polarization, 155–156(F)

debinding, 52–53(T)
dercomposition, definition of, 225
degassing, definition of, 226
delube, definition of, 226
delubrication, 41, 44, 61, 82–84(F), 92
demixing, definition of, 226
dendritic powder, definition of, 226
density
absolute, definition of, 226
dry, definition of, 226
wet, definition of, 226
density ratio, 192(F)
definition of, 226
dewaxing, definition of, 226
dewpoint, definition of, 226
dewpoint window, 88–91(F)
diametrical strength, definition of, 226
die, definition of, 226
die barrel, definition of, 226
die body, definition of, 226
die bolster, definition of, 226
die breakthrough, definition of, 226
die cavity
definition of, 226
dimensional change, determining, 47
die fill, definition of, 226
die insert, definition of, 226
die liner, definition of, 226
die lubricant, definition of, 226
die opening, definition of, 226
die plate, definition of, 226
die set, definition of, 226
die volume. See fill volume
die-wall lubricant, definition of, 226
diffusion, definition of, 226
diffusion-alloyed powder, definition of, 226
diffusion porosity, definition of, 226
dimensional change
compaction-related factors, 49(F)
definition of, 226
factors affecting, 47–48
powder-related factors, 48–49(F)
sintering-related factors, 49
test data, interpretation of, 50
variables, statistical analysis of, 50
disintegration, definition of, 226
dispersing agent, definition of, 226
dispersion strengthening, definition of, 226
dissociated ammonia (DA), 59
definition of, 226
distribution contour, definition of, 226
double-action press, definition of, 226
double pressing, 45(F), 46(F)
definition of, 226
double sintering, 45(F), 46(F)
definition of, 227
drum test, definition of, 227
duplex and precipitation-hardening grades, 19, 20(T)

electrochemical tests
ferric chloride test, 158
ferroxyl test, 159–160(T)
fundamentals, 153–155(F)
long-term exposure tests, 157–158, 159(F,T)
open-circuit (or corrosion) potential, 157–158, 159(F)
stepwise polarization, 158, 159(T)
microstructural defects and porosity, 155
short-term exposure tests, 155–157(F)
anodic polarization, 156, 157(F)
cyclic polarization, 155–156(F)
EPR method, 156–157(F), 158(F)
electrolytic powder, definition of, 227
electrochemical potentiokinetic reactivation (EPR),
89, 102, 156–157, 158(F), 159(F)
electrochemical tests
ferric chloride test, 158
ferroxyl test, 159–160(T)
fundamentals, 153–155(F)
low-term exposure tests, 157–158, 159(F,T)
open-circuit (or corrosion) potential, 157–158, 159(F)
stepwise polarization, 158, 159(T)
microstructural defects and porosity, 155
short-term exposure tests, 155–157(F)
anodic polarization, 156, 157(F)
cyclic polarization, 155–156(F)
EPR method, 156–157(F), 158(F)

EBS (ethylene bisstearamide), 41–42(F,T)
edge stability, definition of, 227
edge strength, definition of, 227. See also drum test
ejection, definition of, 227
elevated-temperature oxidation resistance
overview, 160
pores, beneficial effect of, 160–161(F)
porosity, effect of, 160
elutriation, definition of, 227
embrittlement, potential problems with
475°C (885°F) embrittlement, 14
high-temperature embrittlement, 14
introduction, 13–14
sigma-phase embrittlement, 14(F)
endothermic atmosphere, definition of, 227
ethylene bisstearamide (EBS), 41–42(F,T)
extrusion, 23, 32, 39, 55(T), 116, 191
exudation, definition of, 227

F
face-centered cubic (fcc) lattice, 7, 47, 73(F), 82, 109
fatigue endurance ratio (FER), 121–123(F)
feedstock, 51–52(F,T), 53
definition of, 227
ferric chloride test, 158
ferrite number (FN), 174(F)
ferritic grades
embrittlement, potential problems with 475°C (885°F) embrittlement, 14
high-temperature embrittlement, 14
overview, 13–14
sigma-phase embrittlement, 14(F)
overview, 12
PM ferritic alloys, composition of, 12–13(F,T)
ferroxyl test, 36–37(T), 159–160(T)
fill density. See apparent density
fill depth, definition of, 227
fill factor, definition of, 227
fill height, definition of, 227
fill position, definition of, 227
fill ratio. See compression ratio
fill volume, definition of, 227
filter, definition of, 227
final density, definition of, 202, 227
fines, definition of, 227
flake powder, definition of, 227
flash, definition of, 227. See also burr
floating die, definition of, 227
flow factor. See flow rate
flow meter, definition of, 227
flow rate, definition of, 227
flux density, 131–132(F)
fraction, definition of, 227
fragmentation, definition of, 227
fugitive binder, definition of, 228
fully dense material, definition of, 228

G
galvanic corrosion, 65, 69, 96, 104(T), 176
definition of, 228
gas atomization of
atomizing heads used, 32, 33(F)
coupling, 32
horizontal gas atomization, 32
overview, 24(F), 32, 33(F)
two fluid atomization designs, 33(F)
WIDEFLOW melt atomization technique, 34
gas classification, definition of, 228
gas metal arc welding (GMAW), 176
gas tungsten arc welding (GTAW), 176
granular powder, definition of, 228
granulation, granulating, definition of, 228
green, definition of, 228
green compact, 41, 47
definition of, 228
green density, definition of, 228
green strength, definition of, 228
grit, grit size, definition of, 228
growth, definition of, 228

H
heat-affected zone (HAZ), 176, 177
high-energy impulse welding (HEIW), 176
HIP, definition of, 228
hot densification, definition of, 228. See also hot pressing
hot exhaust gas outlet (HEGO), 12, 173, 178
hot isostatic pressing (HIP), 39, 53, 55–56(F)
definition of, 228
hot pressing, definition of, 228
hydride powder, definition of, 228
hydrogen loss, definition of, 228
hydrostatic compacting. See hydrostatic pressing
hydrostatic mold, definition of, 228
hydrostatic pressing, definition of, 228
hysteresis curve, 132, 133–134(F), 141(F)

I
immersion testing
with mass loss, 149–150
overview, 149
without mass loss, 150–151(F,T)
impact sintering, definition of, 228
impregnation
definition of, 228
oil (technique), 66(T), 154(T), 159(T)
resin, 69, 141, 142(T), 179–181(T)
infiltrant, definition of, 228
infiltration, definition of, 228
injection molding, definition of, 228
inside diameter (ID), 197
intercommunicating porosity. See interconnected porosity
interconnected pore volume, definition of, 228
interconnected porosity, 93–94, 161(F), 178, 179
definition of, 229
interface, definition of, 229
interface activity, definition of, 229
intergranular corrosion
avoidance of, 175
causes of, 14
definition of, 229
effect of carbon content/cooling rate on, 80–81(F)
effect of carbon/nickel content on, 28(F)
in ferritic stainless steels, 81–82(F)
immersion tests with mass loss, 149
optimal sintering, processing requirements for, 104(T)
potential for, 28
wrought stainless steels, 82
internal oxidation, definition of, 229
introduction (PM stainless steels)
background (historical), 1–3(F,T)
Half-truths about the corrosion resistance of sintered stainless steels, 2(T)
overview, 1
present state and scope, 3–4
stainless steel powder shipments, 2(F)
irregular powder, definition of, 229
isostatic mold, definition of, 229
isostatic pressing, definition of, 229
K
keying, definition of, 229
knockout (verb), definition of, 229
knockout punch, definition of, 229

L
lamination, definition of, 229
“L” grades, 81
linear shrinkage, definition of, 229
liquid disintegration, definition of, 229
liquid-phase sintering
definition of, 229
liquid-phase-forming additives, activated sintering and requirements for, 94–96(F,T)
overview, 93–94
long-term exposure tests
open-circuit (or corrosion) potential, 157–158, 159(F)
stepwise polarization, 158, 159(T)
loose powder, definition of, 229
loose powder sintering, definition of, 229
LSCs (tin- and copper-modified austenitic stainless steels), 169
lubricant, definition of, 229
lubricating, 34–35(F)
definition of, 229

M
macropore, definition of, 229
magnetic and physical properties
B-H curve, 132–133(F)
flux density, 131–132(F)
fundamental relationships
hard magnetic materials, 134
overview, 131
soft magnetic materials, 134
units of magnetism, defined, 131–134(F)
hysteresis curve (B-H loop), determining, 133–134(F)
magnetic domains, 132(F)
magnetic materials
density and morphology, effect of, 135–136(F)
overview, 134–135(T)
PM stainless steels, 136–142(F,T)
soft magnetic materials, applications of, 136
Maxwell, definition of, 131
physical properties
overview, 142
PM stainless steels, 143–145(F)
shrinkage, 142–143(T)
PM stainless steels
coefficient of thermal expansion, 144–145
elastic modulus, 145(F)
factors affecting, 137–138(F,T)
MIM, benefits of, 141–142
nitrogen-containing sintering atmospheres, effect of, 140–141
overview, 136–137
powder/process variables, effect of, 138–140(T)
specific heat, 143
thermal diffusivity/conductivity, 143–144(F)
magnetic domains, 132(F)
manufacture and characteristics of stainless steel powders. See stainless steel powders
martensitic grades
nonstandard grades, 19
standard alloys, 18–19(T)
master alloy powder, definition of, 229
material properties
300-series PM stainless steels, 219(T)
400-series PM stainless steels, 221(T)
matrix metal, definition of, 229
Maxwell, definition of, 131
mechanical properties
elevated-temperature
creep and stress rupture properties, 124–127(F,T)
static mechanical properties, 123–124(T)
stress rupture properties and creep, 124–127(F,T)
factors affecting
cold work, 116
porosity, 111–112(F)
sintering atmosphere/interstitial content, 113–115(F,T)
sintering temperature, 115–116(F)
sintering time, 116
thermal history, 116–117
MIM processed stainless steels, 127–128(T)
overview, 109
room-temperature
fatigue properties, 118–123(F)
static mechanical properties, 117–118(F,T)
standards, 117
strengthening mechanisms
austenitic stainless steels, 109–110(T)
chromium, 111
ferritic stainless steels, 109–110(F)
martensitic stainless steels, 110–111
nitrogen addition, 111
precipitation-hardening grades of stainless steels, 111
solid-solution strengthening, 109
mesh size, definition of, 229
metal injection molding (MIM)
debinding, 52–53(T)
definition of, 229
feedstock, 51–52(F,T)
historical background, 3
molding, 52(T)
molding machines, 52
overview, 50–51
powders for, 51
process criteria/design guidelines, 54–55(F,T)
sintering, 53–54
tooling, 52
metallurgy and alloy compositions
identification/specification, 6–7(T)
introduction, 5–6(F)
metallurgical principles, basic, 7–11(F)
MIM grades, 19–20(T)
wrought and PM stainless steels, characteristics/chemical composition of
metallurgy and alloy compositions (continued)
austenitic grades, 14–18(F,T)
duplex/precipitation grades, 19, 20(T)
ferritic grades, 12–14(F,T)
introduction, 11–12
martensitic grades, 18–19(T)
metal powder, definition of, 229
Metal Powder Industries Federation (MPIF), 29, 62, 117, 185
micromesh, definition of, 229
micromesh sizing, definition of, 229
micropore, definition of, 229
microstructures, atlas of
austenitic stainless steels, 206–207(F)
compaction pressure on porosity, effect of, 205(F)
PM stainless steels, corrosion of, 215–216(F)
PM stainless steels, fractographs of, 217–218(F)
powder morphologies, 203–204(F)
sintered stainless steels, carbides in, 212(F)
sintered stainless steels, nitrides in, 213–214(F)
sintered stainless steels, oxides in, 210–211(F)
milling, definition of, 229–230
milling fluid, milling liquid, definition of, 230
MIM. See metal injection molding (MIM)
MIM grades, 19–20(T)
mixed powder, definition of, 230
molding. See compact, compacting, compaction
multiple-die pressing (verb), definition of, 230
multiple-punch press, definition of, 230

N
nitrogen alloying, definition of, 230

O
oil impregnation, 66(T), 154(T), 159(T)
open-circuit (or corrosion) potential, 157–158, 159(F)
definition of, 230
open pore, definition of, 230
open porosity. See interconnected porosity
optimal sintering, 103–105(F,T)
overfill, definition of, 230
overnix (verb), definition of, 230
oversinter (verb), definition of, 230
oversize powder, definition of, 230
overvoltage, definition of, 230
oxide network, definition of, 230

P
partially alloyed powder, definition of, 230
particle morphology, definition of, 230
particle shape, definition of, 230
particle size, definition of, 230
particle size distribution, definition of, 230
passivation
definition of, 230
electrochemical testing, 148
primary purpose of, 148–149
properties of, improving, 101, 102(F), 104(T)
sintering and corrosion resistance, 62, 68, 79
wrought stainless steels, 181–182
passivation treatments, 148–149
PH (precipitation-hardening), 10
physical and magnetic properties. See magnetic and
physical properties
pitting, definition of, 230
pitting corrosion index, 87
pitting resistance equivalent number (PREN), 13, 18,
87, 102
plasticizer, definition of, 230
PM stainless steels
alloying elements, 101–103(F,T)
alloying elements (other), 103
extrusion of, 55(T)
hot isostatic pressing of, 55–56(F)
introduction, 1–4
background (historical), 1–3(F,T)
half-truths about the corrosion resistance of sintered
stainless steels, 2(T)
overview, 1
present state and scope, 3–4
stainless steel powder shipments, 2(F)
material properties
300-series, 219(T)
400-series, 221(T)
optimal sintering, 103–105(F,T)
physical properties of, 143–145(F)
powder injection molding of (MIM), 50–55(F,T)
surface-modified stainless steels, 105–106(F)
polarization, definition of, 230
polarization curve, 155(F), 156(F), 159(F)
definition of, 231
pore, definition of, 231
porosity, definition of, 231
powder, definition of, 231
powder designation, definition of, 231
powder fill, definition of, 231
powder flow meter, definition of, 231
powder forging, definition of, 231
powder injection molding (PIM), 50–55(F,T)
definition of, 230, 231 (see also metal injection
molding (MIM))
powder lubricant, definition of, 231
powder metallurgy, definition of, 231
powder metallurgy part, definition of, 231
Powder Metallurgy Parts Manufacturers Association
(PMPA), 7
prealloyed powder, definition of, 231
precipitation-hardening (PH), 10
preform, definition of, 231
premix (noun), definition of, 231
premix (verb), definition of, 231
PREN (pitting resistance equivalent number), 13, 18,
87, 102
presintering, definition of, 231
press (noun), definition of, 231
pressed density, definition of, 135, 231
protective atmosphere, protective gas, definition of, 231
protective potential, definition of, 231

R
reaction sintering, definition of, 231
redox curves, 69–70(F), 77(F)
reduced powder, definition of, 231
reduction of oxide, 62, 66, 71, 73, 104
definition of, 231
reduction ratio, definition of, 231
refractory metal, definition of, 231
re-pressing, 142(T), 181
definition of, 231
re-pressing and sizing, 142(T), 181
resin impregnation
benefits of, 180–181(T)
magnetic performance, effect on, 142(T)
methods of, 179–180
overview, 179
resintering, definition of, 231
restrike, 181
definition of, 231
rigid die compaction
die wall lubrication, 45
double pressing-double sintering, 45(F), 46(F)
general characteristics, 40–41
lubricant effects, 41–43(F,T), 44(F)
lubricants, identification of, 43–44, 45(F)
powder compaction, phenomenology of, 39–40(F)
powder compaction and tooling, basics of, 39–40(F)
tool materials selection, 40
warm compaction, 45–47(F)

S
salt spray tests, 151–153(F,T), 154(T), 162(F)
screen, definition of, 231–232
screen analysis. See sieve analysis
screen classification. See sieve classification
screening, 34
definition of, 232
secondary operations
brazing
basic considerations, 178–179
overview, 178
definition of, 232
machining
cutting speed, effect of, 173
machinability additives, effect of, 170–172(T)
machinability of PM stainless steels, factors affecting, 169–173(F,T)
machining coolant, effect of, 173(F)
sintering parameters, effect of, 169–170, 171(F)
surface modification, effect of, 172–173(T)
wrought and PM stainless steels, machinability of,
167–169(F)
overview, 167
re-pressing and sizing, 181
resin impregnation
benefits of, 180–181(T)
methods of, 179–180
overview, 179
sinter bonding, 179
surface treatments, other, 181–182
welding
additional considerations, 177–178(F)
overview, 173–174
weldability, definition of, 175
welding methods, 176–177
welding stainless steel, basics of, 174–176(F,T)
shaping (powders). See compacting and shaping (powders)
short-term exposure tests
anodic polarization, 156, 157(F)
cyclic polarization, 155–156(F)
EPR method, 156–157(F), 158(F)
shrinkage, definition of, 232
sieve, definition of, 232
sieve analysis, definition of, 232
sieve classification, definition of, 232
sieve fraction, definition of, 232
sigma-phase embrittlement, 14(F)
sinter, sintering (noun). See powder metallurgy part
sinter, sintering (verb), definition of, 232
sinter bonding, 179
sintered, corrosion data of, 161–163(F,T)
sintered density
compaction-related factors, 49(F)
definition of, 232
dimensional change, 47
effect on corrosion resistance, 61(T), 62–69(F,T)
fatigue properties, 118, 122(F)
fundamental relationships, 61(F)
lubricant effects, 42, 43(F,T)
morphology, effect of, 135–136
powder/process, effect of, 139
salt spray tests, 151, 152(T), 154(T)
warm compaction, 46, 47(F)
sintered density ratio, definition of, 232
sintering
definition of, 232
in hydrogen-nitrogen gas mixtures
dewpoint window, 88–91(F)
nitrogen control during, 85
nitrogen control during cooling, 87–88(F), 89(F)
pitting corrosion index, 87, 88(F)
primary goal, 84
sinter-nitrided martensitic 410, 86–87
temperature/dewpoint requirements, 84–85(F)
thermodynamic relationships: nitrogen solubility of stainless steels, 85–86(F)
TTS diagrams, 88, 89(F), 90(F)
in vacuum
advantage of, 91
high vapor pressure of chromium, 91–92
overview, 91
superior oxygen/carbon removal, 92–93(F)
sintering (continued)
in hydrogen
 carbon control: delubrication and sintering conditions
 austenitic stainless steels, 79–81(F)
 delubrication, 82–84(F)
 ferritic stainless steels, 81–82(F)
 martensitic stainless steels, 84
 thermodynamics and kinetic background, 79(F), 80(F)
 oxygen control during
 carbon control: delubrication and sintering conditions, 79–84(F)
 cooling, 76–79(F)
 dewpoints, 69–71(F), 72(F)
 kinetic considerations, 71–76(F)
 microstructures, 71, 73(F), 74(F)
 redox curves, 69–70(F), 77(F)
 sintering, 69–76(F,T)
 upper critical cooling temperatures, 77–79(F)
sintering and corrosion resistance
 delubrication, importance of, 61
 liquid-phase sintering
 liquid-phase-forming additives, activated sintering
 and requirements for, 94–96(F,T)
 overview, 93–94
 overview, 59–60(T)
sintering
 in hydrogen-nitrogen gas mixtures, 84–91(F)
 in vacuum, 91–93(F)
sintering furnaces/atmospheres, 60–61(F), 70(F)
sintering of stainless steels, 61–93(F,T)
 acidic environment (testing in), 62–63(F)
 fundamental relationships, 61–62(F)
 in hydrogen, 69–84(F,T)
 neutral chloride-containing environment, 63–69(F,T)
 oxygen control during, 69–76(F,T)
 sintered density on corrosion resistance, effect of, 61(T), 62–69(F,T)
sintering atmosphere, definition of, 232. See also protective atmosphere
sintering atmospheres, 60–61, 70(F)
definition of, 232
sintering cycle, definition of, 232
sintering furnaces, 60(F)
sintering in vacuum
 high vapor pressure of chromium, 91–92
 overview, 91
 superior oxygen/carbon removal, 92–93(F)
sintering temperature, definition of, 232
sintering time
 definition of, 232
 dimensional change, influence on, 48(F), 49–50
 reduction of oxides, 62
 temperature/time, influence of, 115–116(F)
size fraction, definition of, 232
sizing, 181
 definition of, 232
sizing die, definition of, 232
Society of Automotive Engineers International (SAE), 6
solid-solution strengthening, 109
solid-state sintering, definition of, 232
specific gravity, definition of, 232
specific surface area, 48
 definition of, 232
spherical powder, 51
 definition of, 232
spheroidal powder, 51
 definition of, 232
stainless steel powders
 annealing, 34
 compaction of, 40–47(F,T)
 contamination, 35–36(F)
 copper sulfate test, 36
 drying and screening, 34
 extrusion of, 55(T)
 ferroxyl test, 36–37(T)
 gas atomization of, 24(F)
 atomizing heads used, 32, 33(F)
 coupling, 32
 horizontal gas atomization, 32
 two fluid atomization designs, 33(F)
 WIDEFLOW melt atomization technique, 34
 lubricating, 34–35(F)
 manufacture/characteristics of
 annealing, 34–35(F)
 contamination, 35–36(F)
 copper sulfate test, 36
 drying/screening, 34
 ferroxyl test, 36–37(T)
 gas atomization, 32–34
 overview, 23–24(F,T)
 water atomization, 24–32(F,T)
 powder injection molding of, 50–55(F,T)
 debinding, 52–53(T)
 feedstock, 51–52(F,T)
 molding, 52(T)
 molding machines, 52
 overview, 50–51
 powders for, 51
 process criteria/design guidelines, 54–55(F,T)
 sintering, 53–54
 tooling, 52
 screening and drying, 34
 sintered, corrosion data of, 161–163(F,T)
 surface-modified, 105–106(F)
 water atomization of
 atomization, 30–32(F)
 chemical powder characteristics, 27–30(F)
 compacting-grade powders, 24–25(F)
 examples, 23(F)
 high-pressure water atomization, 25
 particle shape, 26–27(F)
 particle size/particle size distribution, 25–26(F)
 physical powder characteristics, 25–27(F)
 process description (brief), 24–25(F,T)
 raw materials and melting, 30
 schematic of water-atomization system, 25(F)
 silicon and manganese, effects of, 28–30(F)
stepwise polarization, 158(T), 159(T)
subsieve analysis, definition of, 232
subsieve fraction, definition of, 232
subsieve size. See subsieve fraction
superfines, definition of, 232
surface-modified stainless steels, 105–106(F)

T
tap density, definition of, 232
theoretical density, definition of, 232
time-temperature-sensitization (TTS), 80
transpassive region, definition of, 232
transverse-rupture strength, definition of, 233
triple-action press, definition of, 233
TTS diagrams, 88, 89(F), 90(F)

U
undersized powder, definition of, 233
uniaxial compacting, definition of, 233
unidirectional compacting, definition of, 233
Unified Numbering System (UNS), 6
uniform corrosion, definition of, 233
upper critical cooling temperatures, 77(F)
upset pressing, definition of, 233

V
vacuum sintering
chromium depletion, 91–92
definition of, 233
half-truths about, 2
at high temperatures, 62
magnetic performance, 140
nitrogen pickup, 117
oxygen control, 73–74, 138–139
sintering parameters, effect of, 169
void. See pore
volume filling, definition of, 233
volume fraction, definition of, 233
volume ratio, definition of, 233
volume shrinkage, definition of, 233

W
warm compaction, 45–47(F)
warpage, definition of, 233
water atomization
atomization, 30–32(F)
chemical powder characteristics, 27–30(F)
compacting-grade powders, 24–25(F)
examples, 23(F)
high-pressure water atomization, 25
particle shape, 26–27(F)
particle size/particle size distribution, 25–26(F)
physical powder characteristics, 25–27(F)
process description (brief), 24–25(F,T)
raw materials and melting, 30
schematic of water-atomization system, 25(F)
silicon and manganese, effects of, 28–30(F)
weldability, definition of, 175
welding
additional considerations, 177–178
basics of, 174–176(F,T)
methods, 176–177
overview, 173–174
stainless steel, basics of, 174–176(F,T)
welding methods, 174–176(F,T)
WIDFLOW melt atomization technique, 34
wrought and PM stainless steels, characteristics/
chemical composition of
austenitic grades
nonstandard austenitic alloys, 18
overview, 14–15(F)
PM austenitic alloys, composition of, 15–18(F,T)
duplex and precipitation-hardening grades, 19(T)
embrittlement, potential problems with
475°C (885°F) embrittlement, 14
high-temperature embrittlement, 14
sigma-phase embrittlement, 14(F)
ferritic grades
embrittlement, potential problems with, 13–14(F)
overview, 12
PM ferritic alloys, composition of, 12–13(F,T)
introduction, 11–12
martensitic grades
nonstandard PM martensitic grades, 19
standard PM martensitic alloys, 18–19(T)
wrought stainless steels
embrittlement mechanisms, 13–14
ferric chloride test, 158
ferroxyl test, 159, 160(T)
immersion testing, 149
“L,” grades, 81
liquid-phase-forming additives, 94
machinability of, 167–168
passivation treatments, 148–149
physical properties of, 142–143(T), 144(T)
pores, effect of, 161
sintering and corrosion resistance, 59–60, 62, 79, 80, 82,
163(T), 171–172
thermal history/cold work, 116
TTS diagrams, 88, 89(F)