Index

A
a priori probability, 28
activity, 150, 220, 230, 234–235
adaptive, 225, 228, 233
aided target recognition, 1
all-versus-all, 229
anomaly detection, 36
asynchronous clock, 225
automatic target tracker, 134
autonomous land vehicle, 201–202
autonomy, 249
axons, 217, 219

B
bagging, 118
Bayer pattern, 177
Bayes average, 191
Bayes belief integration, 192
binding, 167, 170, 174
biomimicry, 57
bistatic radar, 171–172
boosting, 118
Borda count, 190

C
CFAR detector, 63
classification, 103, 230, 236
clock frequency, 220
clutter level, 20
clutter object, 11
cognitive radar, 199–200
committee machine, 118
common operating picture, 203–204
compressive imaging, 58
computational explanatory gap, 254
computational imaging, 58
concept of operations, 81
conceptual knowledge, 248
confidence interval, 29
confusion matrix, 25
constant false alarm rate per image, 36
continuous learning, 221, 227–228
convolutional neural network, 121, 223, 231
correlation, 36

decision tree, 22, 229, 230
decision tree classifier, 118
dependent learning, 118
Dempster–Shafer theory, 193
dendrites, 217
detection criterion, 7
don’t care object, 13

E
embodied, 222, 228, 232
ensemble classifiers, 118
events, 150, 231
experimental design, 29
expert system, 207
F
false alarm rate, 12
false alarm, 11
feature extraction, 92
feature selection, 97
feature-aided tracking, 148
feature-level fusion, 187
fingerprinting, 8
force structure, 56, 251
forensics, 152
frequency, 172

G
generative adversarial network, 235
graphics processing unit, 119, 223, 226
ground truth, 5

H
hierarchical temporal memory, 120, 229–230, 235, 238
histogram of optical flow, 100
histogram of oriented gradients, 100
human subjects, 32, 237
hyperspectral imagery, 64

I
image truth, 6, 8
Institutional Review Board, 32
intelligent preparation of the battlespace, 202–203
Integrated Product Team, 80

J
Joint Directors of Laboratories, 176

K
Kalman filter, 141

L
latency, 216, 220, 225
learning vector quantization, 112
learning-on-the-fly, 57
Lightweight Laser Designator Rangeﬁnder, 178
linear classiﬁer, 104
long short-term memory, 120, 228

M
majority voting, 189
manned–unmanned teaming, 205
map-seeking circuit, 116
mean-shift tracker, 149
metacognition, 254
model-based classiﬁer, 116
moving target indication, 37
MSTAR, 116
multiclassiﬁer fusion, 176, 187, 194
multifunction radio frequency, 199–200
multifunction radio, 172
multilayer perceptron, 114
multimodality, 227
multisensor fusion, 167, 172, 176, 195, 227, 253
mutual information, 185

N
 naïve Bayes classiﬁer, 110
narrative, 204, 206
neocortex, 216, 219
neural network, 53, 214
neuromorphic chip, 223, 225
neuroplasticity, 228, 233
No Free Lunch theorem, 76

O
Occam’s razor, 78
one-versus-all, 112, 229
one-versus-one, 229
ontology, 21
operating conditions, 5
order of battle, 251
Index

P
parallelism, 223, 227
pattern of life, 152
perceptron, 111
performance parameters, 33
persistent surveillance, 152
photon, 59
plastic, 228, 233
polarization, 181–183
pre-mission briefing, 247
probability of (correct) classification, 25
probability of detection, 14
probability of false alarm, 14
situated, 228, 232
sleep, 225
spatial scale, 38
spikes, 217, 219, 222, 225
spoke filter, 52
stacking methods, 118
stationary target indication, 37
stereo camera, 180
strawman, 214, 228–230, 233
strong artificial intelligence, 255
super-intelligent ATR, 255
support vector machine, 105
surprise, 59
synapse, 216–217, 223, 225
system design, 80

Q
quaternions, 159

R
Random Forest™, 118
receiver operating characteristic curve, 15
recurrent neural network, 119–120, 150, 214, 223, 226, 228, 234
Reed–Xialo algorithm, 65
region-of-interest, 12, 231
reinforcement learning, 228, 233, 236
rules of engagement, 250

target, 5
target classifier, 76
target detection, 7, 10
target polarity, 38
taxonomy, 21, 229
template matcher, 55
test plan, 31
track fusion, 196–197
transfer learning, 235, 249
triple window filter, 41
Turing test, 238, 242

U
Ugly Duckling theorem, 76
unattended ground sensor, 186–187

X
XPATCH®, 116

Z
zero-shot learning, 204–205, 209
Bruce J. Schachter is an engineer whose work has focused on automatic target recognition (ATR) for more than forty years. He was on the team that developed the first Automatic Target Recognizer, at the University of Maryland then later at Northrop Grumman. He has been program manager or principal investigator of a dozen ATR programs. His previous books are *Pattern Models* and the award-winning *Computer Image Generation*. The author can be contacted at Bruce.Jay.Schachter@gmail.com.