References

References

References

References

T. Y. Lin Taiwan (1993). “Vibrations of elevated bridge structures caused by train loadings of the west Taiwan High Speed Rail Project — Supplementary final report,” Provisional Eng. Office of High Speed Rail, Ministry of Transportation and Communications, Taiwan, R.O.C.

References

References 525

This page intentionally left blank
Subject Index

1940 El Centro Earthquake, 426
1994 Northridge Earthquake, 426
1999 Chi–Chi Earthquake, 409, 426

AASHTO, 20
added mass, 50, 63
alignment irregularity, 356, 375
anti-symmetric mode, 35
asymmetric crossing movement, 391
axle load decrement ratio (PD), 399

ballast, 14, 158, 160, 188
bandedness, 18, 155, 167
base-line correction, 433
beam element, 489
Bernoulli–Euler beam, 30, 313, 413
bi-directional excitation, 463
bogie, 46, 273
bogie-side lateral to vertical force ratio (BYQ), 401
braking, 245, 265
bridge codes, 20
bridge element, 282, 334, 419, 507
bridge model, 9

cancellation, 15, 27, 29, 56, 77, 81, 102, 108, 111, 112, 116, 121, 143, 146
central finite rail (CFR) element, 279, 311, 327, 332, 414, 418
central track segment, 279
Central Weather Bureau, 463
centrifugal force, 48, 50, 126, 242
classical damping, 493
comfort index, 306
condensed equation of motion, 165, 243, 287, 346
condensed stiffness matrix, 166
consistent nodal loads, 19, 167, 206, 212, 236, 242
constraint condition, 237, 278, 323
contact force, 2, 15, 19, 156, 160, 171, 233, 236, 240, 277, 291, 314, 321, 324, 443
correlation, 188
critical car length, 56
critical speed, 186
cross-level irregularity, 380
crossing movement, 391
crossing of two vehicles, 14, 390
curved beam, 125, 481, 483
damped frequency of vibration, 33
damping, 30, 38, 43, 62, 68, 69, 82, 85, 93, 245, 289, 349, 489
deceleration, 244, 262
derailment, 14, 313, 399, 447
derailment index, 411
Dirac delta function, 45, 72, 106
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>direct integration method</td>
<td>16, 477</td>
</tr>
<tr>
<td>driving frequency</td>
<td>23, 75, 106</td>
</tr>
<tr>
<td>Duhamel's integral</td>
<td>76</td>
</tr>
<tr>
<td>dynamic amplification factor</td>
<td>20</td>
</tr>
<tr>
<td>dynamic condensation</td>
<td>16, 70, 157</td>
</tr>
<tr>
<td>dynamic increment factor</td>
<td>20</td>
</tr>
<tr>
<td>earthquake</td>
<td>409</td>
</tr>
<tr>
<td>effective load vector</td>
<td>216, 479</td>
</tr>
<tr>
<td>effective resistant force vector</td>
<td>169</td>
</tr>
<tr>
<td>effective stiffness matrix</td>
<td>169, 216, 479</td>
</tr>
<tr>
<td>elastic bearing</td>
<td>14, 69, 102, 122</td>
</tr>
<tr>
<td>elastically-supported beam</td>
<td>69, 73</td>
</tr>
<tr>
<td>elevation irregularity</td>
<td>356</td>
</tr>
<tr>
<td>equations of motion for the structure</td>
<td>48, 72, 105, 106, 106, 106, 168, 213, 493</td>
</tr>
<tr>
<td>equivalent stiffness equation</td>
<td>163, 169, 209, 479</td>
</tr>
<tr>
<td>Eurocode</td>
<td>305</td>
</tr>
<tr>
<td>excitation frequency</td>
<td>4, 21, 33</td>
</tr>
<tr>
<td>external damping coefficient</td>
<td>30, 72</td>
</tr>
<tr>
<td>far field excitation</td>
<td>426</td>
</tr>
<tr>
<td>fast Fourier transform (FFT)</td>
<td>271</td>
</tr>
<tr>
<td>Federal Railroad Administration (FRA)</td>
<td>303, 357</td>
</tr>
<tr>
<td>flexural sine mode</td>
<td>73</td>
</tr>
<tr>
<td>forced vibration</td>
<td>31, 81, 108, 141</td>
</tr>
<tr>
<td>France-SNCF</td>
<td>305</td>
</tr>
<tr>
<td>free vibration</td>
<td>32, 34, 108, 139</td>
</tr>
<tr>
<td>frequency equation</td>
<td>74</td>
</tr>
<tr>
<td>frictional coefficient</td>
<td>244, 288, 348</td>
</tr>
<tr>
<td>frictional force</td>
<td>238, 244</td>
</tr>
<tr>
<td>fundamental frequency</td>
<td>105</td>
</tr>
<tr>
<td>Galerkin’s method</td>
<td>131</td>
</tr>
<tr>
<td>general contact force</td>
<td>244, 287, 347</td>
</tr>
<tr>
<td>general solution</td>
<td>132</td>
</tr>
<tr>
<td>generalized coordinate</td>
<td>31, 49, 73, 103</td>
</tr>
<tr>
<td>generalized forcing function</td>
<td>75</td>
</tr>
<tr>
<td>governing equations for curved beam</td>
<td>128</td>
</tr>
<tr>
<td>gravitational force</td>
<td>126</td>
</tr>
<tr>
<td>Guyan reduction technique</td>
<td>235</td>
</tr>
<tr>
<td>Hermitian function</td>
<td>205, 242</td>
</tr>
<tr>
<td>high-frequency excitation</td>
<td>367</td>
</tr>
<tr>
<td>high modes</td>
<td>41, 61, 176, 255</td>
</tr>
<tr>
<td>homogenous solution</td>
<td>132, 136</td>
</tr>
<tr>
<td>horizontal contact force</td>
<td>244</td>
</tr>
<tr>
<td>horizontal frequency</td>
<td>483</td>
</tr>
<tr>
<td>horizontal moving load</td>
<td>125</td>
</tr>
<tr>
<td>horizontal reaction force</td>
<td>265</td>
</tr>
<tr>
<td>$I - S$ plot</td>
<td>96, 150</td>
</tr>
<tr>
<td>idle train</td>
<td>435, 448</td>
</tr>
<tr>
<td>impact factor</td>
<td>9, 19, 29, 37, 90, 150, 299, 384</td>
</tr>
<tr>
<td>impact factor for end shear force</td>
<td>43</td>
</tr>
<tr>
<td>impact factor for midpoint bending</td>
<td>40</td>
</tr>
<tr>
<td>impact factor for midpoint displacement</td>
<td>36</td>
</tr>
<tr>
<td>impact formula</td>
<td>27</td>
</tr>
<tr>
<td>in-plane vibration</td>
<td>126</td>
</tr>
<tr>
<td>incremental-iterative analysis</td>
<td>173</td>
</tr>
<tr>
<td>inertia effect</td>
<td>2, 30, 47</td>
</tr>
<tr>
<td>infinite beam</td>
<td>273</td>
</tr>
<tr>
<td>initial pulse phenomenon</td>
<td>440</td>
</tr>
<tr>
<td>instability region</td>
<td>470</td>
</tr>
<tr>
<td>interaction element</td>
<td>18, 158</td>
</tr>
<tr>
<td>interaction force</td>
<td>171, 234</td>
</tr>
<tr>
<td>interlocking action</td>
<td>243, 262</td>
</tr>
<tr>
<td>internal damping coefficient</td>
<td>30, 72</td>
</tr>
<tr>
<td>internal resistant force</td>
<td>162</td>
</tr>
<tr>
<td>L'Hospital’s rule</td>
<td>55</td>
</tr>
<tr>
<td>Lagrange multiplier</td>
<td>235</td>
</tr>
<tr>
<td>Lagrange’s equation</td>
<td>16</td>
</tr>
<tr>
<td>lateral track force (Y)</td>
<td>402</td>
</tr>
<tr>
<td>left semi-infinite rail (LSR) element</td>
<td>279, 283, 311, 326, 337, 342, 420, 509</td>
</tr>
<tr>
<td>left track segment</td>
<td>279</td>
</tr>
<tr>
<td>light damping</td>
<td>76</td>
</tr>
<tr>
<td>linking action</td>
<td>291, 346</td>
</tr>
<tr>
<td>low-frequency excitation</td>
<td>367</td>
</tr>
<tr>
<td>master–slave relation</td>
<td>157, 165, 175, 235</td>
</tr>
</tbody>
</table>
Subject Index 529

maximum allowable lateral axle force Y_{lim}, 402
maximum allowable speed, 470
maximum static deflection, 37, 76
minimal bridge segment, 273, 277
modal damping coefficient, 494
modal damping ratio, 75
modal equation, 494
modal mass, 494
modal superposition method, 16, 103
modified Newton–Raphson method, 172
moving load, 2, 6, 28, 30, 47, 105, 129, 167, 184, 249
moving mass, 6, 167, 252
natural deformation, 417
near fault excitation, 426, 427
Newmark’s β method, 16, 63, 163, 169, 208, 239, 247, 292, 425, 477
Ontario Code, 20
optimal condition, 64
optimal design criterion, 15, 29, 57
Ormsby filtering, 433
orthogonality property, 494
out-of-plane vibration, 126
particular solution, 132, 137
pavement roughness, 7, 11
pitching, 199, 399
possible derailment zone, 447
power spectral density (PSD), 271, 356
procedure of iterations, 171
profile irregularity, 375
Provision DS-804, 434
rail element, 507
rail irregularity, 7, 11, 158, 183, 186
railway bridge, 3, 12, 118, 435, 450
Rayleigh damping, 49, 161, 183, 205, 247, 292, 353, 489, 495
Rayleigh’s method, 74
renumbering, 292
residual response, 56, 60, 81, 108, 139, 140, 142, 485
resonant speed, 56, 81
riding comfort, 2, 19, 170, 177, 182, 191, 222, 234, 257, 303, 305
right semi-infinite rail (RSR) element, 279, 285, 311, 326, 340, 343, 423, 510
right track segment, 279
rigid beam, 104
rigid car body, 204
rigid displacement, 73, 107, 417
rigid vehicle–bridge interaction element, 207, 211
rocking motion, 419
rolling, 399, 443
seismic force, 102
series of moving loads, 45, 106, 140
serviceability, 222
single wheel lateral to vertical force ratio (SYQ), 400, 446
spectral representation method, 357
speed parameter, 21, 33, 106, 110, 133, 384
Sperling’s ride index, 271, 306
sprung mass, 7, 159, 176, 184, 234, 254
stability limit, 460
steady-state response, 29, 275, 296
stiffness ratio, 73, 104
superelevation irregularity, 356
support displacement, 417
surface roughness, 10, 11, 30
suspension damping, 194, 226
suspension stiffness, 191, 223
symmetric crossing movement, 391
symmetric mode, 37
symmetry, 18, 155, 167, 213, 292
Taiwan-HSR, 70, 305
TAP003 motion, 426
TCU068 motion, 426
torsional vibration, 14
track classification, 356
track irregularity, 11, 202, 223, 229,
303, 323, 354, 372
train–bridge interaction, 413
train–rails–bridge interaction, 8, 411
train–rails–bridge resonance, 298
tuned mass, 186
two-axle system, 217

unbalanced force, 161, 171
uni-directional excitation, 460
unit step function, 45, 106
upper-bound envelope, 38

vehicle equation, 160, 162, 204, 236,
277, 314, 322
vehicle–bridge interaction (VBI), 2,
28, 155, 157
vehicle–bridge interaction (VBI)
element, 165, 343
vehicle–rails interaction (VRI), 286
vehicle–rails interaction (VRI)
elements, 286, 311, 425
vehicle–rails–bridge interaction, 271,
311, 361, 366, 413
vertical contact force, 242, 286
vertical frequency, 481
vertical moving load, 129
wheel assembly, 46
wheel climb, 447
wheel load function, 47
wheelset, 46
wheelset lateral to vertical force (YQ)
ratio, 400, 446
Winkler foundation, 284, 338, 422
yawing, 399