Into life’s ocean the youth with a thousand masts
daringly launches;
Mute, in a boat sav’d from wreck, enters the
greybeard the port!
Friedrich von Schiller (1759-1805)

Biography

I was born on January 15, 1909, in Jungingen, a small village of farmers, crafts
and tradesmen, and industry workers. (In 1975, Jungingen became a borough of the
University City Ulm.) My father Carl Christian and my mother Walburga, née
Ruhland, were both born in 1869 and married in 1895. They owned and operated
a small farm and a workshop for harnessmaking, upholstery and home decorating.
My father, a certified master of his trade, actively participated in community affairs.
He was elected to the Village Council, and served as treasurer of the local savings
bank and of the church. Furthermore, he acted as official meat inspector and as a
veterinarian assistant. I was the youngest of six children, with three sisters and two
brothers.

One of my earliest recollections is the start of the First World War, with the
conscription of men and horses. Alarming rumors, fear of spies and of an invasion
prompted the villagers to set up makeshift road barriers.

The war brought many hardships to us, but hunger was not one of them. My
parents, brothers and sisters were keen to teach me reading and writing to provide
me with a head start in school. At the age of six, I entered the local elementary
school. In 1917, I transferred to the Realschule (secondary school) in Ulm, four
miles from home. I felt great wearing the traditional student cap (Figure B.1). My
transportation was by train, bicycle or on foot, depending on the weather.

My brother Carl, drafted in 1915, was wounded in the Battle of the Somme. After
his recuperation in an Ulm hospital, he was sent to the eastern front. My brother
Ernst was delegated to the Balkan theater in 1917.

The November 1918 revolution ended the war on the military battle fronts, but
not at home. I saw machine guns in the streets and squares of Ulm, shattered shop
windows, and demonstrations by the workers. For the first time I heard the battle
cry of the socialist Internationale, “All wheels of industry will be standing still if
your strong arm exerts your will!”
Fortunately, my brothers returned home before Christmas, Carl from Taganrog on the Sea of Azov in Russia, and Ernst from Macedonia. Both suffering from malaria, they never wanted to discuss their war experiences with me or anybody else. Ernst enrolled at the TH Stuttgart in special courses for teaching in vocational schools; Carl emigrated to the United States via Ellis Island in 1925.

My secondary school ended in 1924. My father already had arranged for my apprenticeship with a notary in Ulm. My headmaster, however, discussed my interest and good grades in mathematics and science with my parents and tried to persuade them to have me continue my education. My parents finally agreed to the headmaster’s suggestion, despite the financial strain associated with it; the hyper-inflation of 1923 had wiped out their savings. I appreciated my family’s sacrifice; it increased my continual endeavor to strive for excellence in my education and profession.

I continued my studies at the Ulm Oberrealschule (Senior High School). A highlight of my last school year was an excursion to the Deutsches Museum in Munich, one of Europe’s famous permanent exhibits for science, technology and industry. I then decided to study engineering; I preferred dealing with the laws of physical science rather than with people.\footnote{At that time, that was one of my major misconceptions of the realities of the world. My career taught me a different lesson in this respect.} Graduation in 1927 with the Abitur (Final Examination) allowed me to enter a university or equivalent institute. For the study of engineering, a six-month factory apprenticeship was mandatory prior to enrollment.
My brother Ernst occupied a teaching position at a new vocational school in Schweinfurt, the ball bearing city that became famous as an air-raid target in WW II. He offered to let me stay with him and his family. I gratefully accepted and absolved my apprenticeship with the Schweinfurter Präzisions-Kugellager-Werke Fichtel & Sachs A.G. (acronym F&S). Manufacturing included the Torpedo, a patented rear hub for bicycles, and antifriction bearings, both at a production rate of 25,000 per day. As a blue collar worker with black fingernails, I had to perform hard, highly disciplined work, manually, physically and mentally. I learned all metal manufacturing and inspection techniques, scheduling including the recently heralded JIT (Just In Time) deliveries, zero scrap rates, etc. I extended my apprenticeship to 18 months, with the last months in the Design Department. There we established the groundwork for the later-famous Sachs engines by operating, disassembling and analyzing all available domestic and foreign specimens of small engines. My work at F&S provided a good foundation for the engineering profession in general and the techniques for mass-producing precision components and aggregates in particular. Since then, I feel comfortable with both blue and white collar workers. Though I "lost" a year, I still feel it was a worthy, excellent investment for my career.

Enrolling in the TH Stuttgart in the Fall of 1928, I studied electrical and mechanical engineering. The faculty included professors with international reputations. To name a few prominent ones: Carl von Bach (1847–1931, materials and their testing), Richard Grammel (1889–1964, dynamics and mechanical vibrations), Wilhelm Kutta (1867–1944, mathematics, Kutta-Joukowski formula for the lift of airfoils), Erich Regener (1881–1955, physics, cosmic ray investigations with high-flying balloons), and Paul Bonatz (1877–1956, architect; his Stuttgart Central Station of 1913 is still modern today).

In my second year the TH celebrated its 100th anniversary. For the full month of May 1929, faculty and students reigned supreme; we students received free tickets for commuter trains, tram cars, theaters, movie houses, etc. A variety of activities testified to the excellent cooperation of the city and its citizenry with their TH. Highlights were a Festvorstellung (gala performance) in the Staatstheater, a daylight parade of faculty and students through the inner city as well as a torchlight parade to the Neues Schloß, and last but not least, a Festkommers (festival with beer and pretzels) in the Stadthalle (sports arena) sponsored by the local breweries. As a member of the A.W.V. Makaria (academic-scientific fraternity) I proudly participated in most of these festive events.

I graduated as Diplom-Ingenieur\(^2\) in 1932, i.e., during the Great Depression, without a job opportunity. The TH, with the financial assistance of the Verein

\(^2\) The grade of Diploma Engineer lies between a Bachelor of Science (B.S.) and a Master of Science (M.S.) degree.
Deutscher Ingenieure (VDI, Society of German Engineers), other organizations and the local industry, was conducting a study and research program for graduate engineers. It supported my further education.\(^3\)

After a year in this program, I was fortunate to obtain jobs in Stuttgart and Berlin that provided me with enough time and resources for doctoral work. In 1937, the TH Stuttgart awarded me the Doctor of Engineering with my thesis Schalldämpfer für Rohrleitungen (sound dampers for pipelines). The VDI included excerpts in its journals, particularly my concept and test results of a very effective, adjustable Helmholtz resonator for the attenuation of gas vibrations in a pipe over a wide frequency range. It also published and promoted my thesis as a book. It received favorable reviews in 25 domestic and foreign business newspapers, professional journals and magazines, two of them in the U.S. These accolades also helped me to gain a position in the engine industry at Bramo in Berlin-Spandau.

In Berlin I occasionally called on Tante Rickchen (Aunt Fredericka), a native of Jungingen who had attended my parents' wedding. There I met at dinner my future wife M. Magda Pfister who was staying with the daughter of our hostess. It was a fortunate coincidence, two Swabians meeting in the Berlin metropolis. After a one-year courtship, our wedding took place in the Summer of 1938 in the Friedenskirche (Peace Church) in Heilbronn am Neckar. We also utilized this stay to survey the industry in southern Germany for a desirable relocation from Berlin. Our honey-moon trip with a DKW cabriolet took us along the romantic Neckar and Rhine valleys to the Harz mountains and to Berlin. I then decided to accept an offer from the Hirth-Motoren Company in Stuttgart-Zuffenhausen as research and development engineer in its Applied Research Department. In December 1938 we settled in a Stuttgart suburb.

After living 14 years in the United States, my brother Carl paid his first visit to Germany, arriving in Stuttgart in July 1939, on the day Magda gave birth to our first baby, Rose-Marie. Her christening gave Carl the happy opportunity to meet Magda’s parents and family. On a visit to Jungingen we assembled for a photo of my parents and their children (Figure B.2). This was going to be the last time we were all together. To our question on the length of his stay, Carl surprised us to our disbelief with his remark, “I’ll have to return soon because there will be war in Europe!” His hunch proved right; he departed with the S.S. Bremen on her last trip to New York. On September 1, Hitler’s invasion of Poland triggered World War II.

Further events of my professional and family life are included in the previous chapters of this book.

\(^3\) I am happy to note that SAE is pursuing a similar program for engineering students.
Concerning my ancestry and family background, Carl Bentele, an auditor/accountant of the city of Ulm, used his retirement to investigate the history of the Bentele clans. We were unknown to him as he was to us. Assuming there must be more Benteles around, he searched for their origins and whereabouts. It took him a few years and the perusal of scores of documents in secular and church archives. He traced the name back to the Lords of Pentelingen/Bentelingen in the years 1070 to 1095 A.D. Other documents of 1200 A.D cited the names Bendelin and Bändelin. Late 14th century archives abound with the names of Bentelin, Bentelli and Bántelli, all living in southern Germany, eastern Austria and northern Switzerland. They comprise craftsmen, tradesmen, artists, sculptors, painters, and writers. He established in detail 25 branches and named them mostly according to their predominant locations.

Our own Bentele family belongs to the Günzburg/Leipheim/Ulm branch; our family tree is continuously documented back to the year 1500. It contains mostly craftsmen and farmers, occasionally municipal officials, but no celebrities who
made the history books. Our coat-of-arms, dated 1400, depicts on a silver background a bull’s head in red. My brother Ernst, an excellent amateur artist, painted it on parchment as his wedding gift to us. He later wrote and illustrated a handbook on calligraphy which was distributed worldwide.

Some noteworthy items of Ulm’s history are inscribed in my memory. The Ulm Münster (minster) dominates the city’s skyline from all directions as an impressive Gothic cathedral. During a period of prosperity in 1377, the Ulm citizenry had laid its foundation stone and ceremoniously showered it with money, indicating the building as a citizen church, not one founded by a bishop or a prince. In 1890 the church was finally completed; the top stone knob was put on the main tower, elevating it to the highest cathedral in the world with 161 meters (528 feet). The suspicion that the spire had been “stretched” in order to exceed the 156-meter high Cologne Dom was dismissed as nonsense. A gothic structure prohibits such a perversion, the architects say. Still, a then-issued illustrated brochure compares the Münster with ten other European cathedrals, from St. Peter in Rome to St. Paul in London and St. Giraldi in Seville to the Stephansdom in Vienna, proudly depicting the Ulm Münster as the highest. As a remarkable sight in appearance and height, it attracted visitors from all over the world, and still does.

The Münsterfest of June 1890 followed the official inauguration of this magnificent monument. It included a parade in which my father proudly participated with the Jungingen contingent wearing traditional costumes. As youngsters we often climbed all steps to the top, the octagon deck, to demonstrate our athletic prowess and to enjoy the grand view of the town and country, our small village four miles to the north, and on a clear day the majestic Alp mountains 90 miles to the south. This tradition continues with our children and grandchildren.

The 100th anniversary of the completion of the Ulm Münster was celebrated in May 1990. The Lord Mayor of Ulm greeted the ecclesiastical and secular official guests in the Rathaus (City Hall), again emphasizing the Münster as a citizen church. Highlights of the anniversary celebration were: a Ständchen (serenade) to the church by several choral societies, one from East Germany, and joined by other attendees; an illumination of the Münster with superimposed pictures of past events such as the half-finished building, the flight of the Tailor of Ulm, among others; and a concert presented by 10,000 trombone players, another record in numbers.

Schwörmontag (oath-Monday) is a unique Ulm holiday celebrated each August and dating back 400 years. From an alcove of the Schwörhaus, the Lord Mayor delivers in the morning to the assembled citizenry his state-of-the-city message, ending with the solemn oath that he will be impartial to rich and poor alike, without reservation. The official ceremony is followed by traditional festive events on the Danube river and in the streets and squares of the city. Locals in antique garb perform age-old competitions; citizens also take part in parades, dances and candle serenades. Thousands of spectators and visitors rejoice in the serene, jubilant and romantic events.
Ulm is also one of the cradles of aviation. As schoolchildren we used to sing in Swabian dialect, “D’r Schneider von Ulm hot’s Fliege probiert, no hot en d’r Teufel en d’Donau neig’führen!” (the tailor of Ulm tried to fly, but the devil dumped him into the Danube river). The tailor, Albrecht Ludwig Berblinger (1770-1829), had glided with his self-built flying machine (Figure B.3) in a vineyard from one cabin to a lower one; he also had flown from Ulm mountainsides. To impress the King of Württemberg on his visit to Ulm in May 1811, Berblinger was wheedled to perform a spectacular glide across the Danube, from the Adler-Bastei (eagle bastion), a tower of the city wall, to the Bavarian river bank, a distance of 40 meters (131 feet). Analyzing his previous achievements, his calculations required an additional wooden structure. With this he saw a chance for success, and he agreed to the performance. His flight failed, however, most probably due to downdrafts and ill winds. He ended in the river, physically unhurt, but suffering the jeers of the spectators and the continuous scorn of the Ulm populace. He was unable to resume his tailor business. “Who would order a coat from Berblinger; one would have to fear it could have wings instead of sleeves!” was the common saying. After a second, troubled marriage, he died as a pauper. Eighty years later, Otto Lilienthal (1848-1896) was more successful with his gliders, but lost his life in a flight.

Fig. B.3. Albrecht Ludwig Berblinger’s flying machine (1811).
In 1986, to commemorate and probably exonerate its aviation pioneer, the City of Ulm inaugurated the 175th anniversary of Berblinger’s venture with an International Competition offering a cash prize of 50,000 Deutschmarks (approximately $25,000). Only gliders similar to that of the tailor were permitted. All but one of the two-dozen final competitors shared the tailor’s fate by falling into the river. With a plane constructed by his father, a 19-year-old made it over the Danube, to the delight and applause of officials and spectators. The tailor’s ridicule was thus transformed to admiration.

The University City Ulm represents the best of the Swabian enterprising spirit, diligence, and perseverance. As a unique high-tech center it pursues research in medicine and electronics, manufacturing of top firefighting equipment and vehicles, luxury tour buses, specialty trucks, diesel engines, and machine tools, among others. “In Ulm, you can see the future,” said a prominent Federal official. Its sons of the last century, Max von Eyth (1836-1906), engineer in agriculture and author of tales from the industrial world, and Albert Einstein (1879-1955), would have been proud of its present environment, culture and achievements. They probably would not have had the urge to leave for other countries. Similar feelings apply to myself. If the present conditions had been prevalent when I was at the start of my career, I might have stayed “at home in Swabia.” In that case, my Wanderlust would have presented a nagging demand, I would hardly have had such a fascinating and rich life, made so many friends worldwide, and gathered experiences in all respects. If this book would have been written at all, it certainly would be different.
Index

A/S Vapenfabrikk Kongsberg KG 2/3, Radial-inflow turbine, 49
AAPS. See Alternative Automotive Power Systems
AB Volvo, 228
Abingdon-Cross engine, 11
Acoustics, Helmholtz resonator sound dampers, 142
Adiabatic diesel engine, 226
Adjustable Helmholtz resonator, 258
Advanced gas turbine engines, 189
Advanced Integrated Propulsion System (AIPS), 227
AEG. See Allgemeine Elektrizitäts-Gesellschaft
Aero-engines, turbocharging in conjunction with engine-driven supercharger, 15
Aeroacoustics, 142
Aerodynamics, superchargers, 13
Aerodynamische Versuchsanstalt (AVA), 45, 52, 83-84, 91, 102
Aeroelastic instability, gas turbine compressor, 148-149
Aeroelastic stability, compressor blades, 171
AGT 1500, tank gas turbine, 191-193, 197
AIAA. See American Institute for Aeronautics and Astronautics
Air Force Aerospace Research Laboratories, 65
Air Force Museum, 61, 66
Air Ministry, 21, 25-27, 29, 34-35, 38, 45, 51, 61, 68, 82, 116
 Conference on cooled exhaust turbines, 25
 jet engine development program, 44
Air Research Division, Garrett Corporation, 82
Air-cooled aero-engines, Hirth Motoren Company, 7
Air-cooled blade, turbine cooling, 146
Air-cooled DISC engine, Curtiss-Wright, 211
Air-cooled engines, 6
Air-cooled gasoline engine, Curtiss-Wright, 211
Air-cooled jet engines, 146
Air-cooled radial turbocharger, BMW 801 J engine, 26
Air-cooled turbines, 26, 57-61, 81, 100, 146
 ceramic rotor, 121
Air-cooled turbochargers, 146
Air-cooling, Wankel aircraft engines, 211
Air-cushion vehicles,
 alternative railroad, 144
 Curtiss-Wright, 144-145
Aircraft, Curtiss-Wright X-19 experimental aircraft, 178
Aircraft engines,
 BMW 003 single-shaft jet engine, 47
 compressor blade failures, 189-191
 propulsion, 33

263
Engine Revolutions

TL Turbinen-Luftstrahltriebwerk, 61
see also specific engines by name
Aircraft propulsion,
 engine/fan jets, 33
 gas turbines, 91, 187, 221
ML Motordruckstoß-Luftstrahltriebwerk engine jet propulsor, 61
PTL Propeller-TL turboprop, 61
ramjet, 33
turbojet, 33, 61
ZTL Zweikreis-TL turbofan, 61
Airflow pattern, Wankel diesel application, 166
ALF 502 high-bypass turbofan, British Aerospace B Ae 146, 201
Allgemeine Elektrizitäts-Gesellschaft (AEG), 49
Allison Division, General Motors, 176-177
Allison regenerative turboprop engine, 176-177
Alternative automobile engines, Daimler-Benz, 225
Alternative Automotive Power Systems (AAPS),
 EPA, 216
 Symposium, 212
Alternative engines, 189, 208, 216, 223, 225
Alternative fuels, 218
 Low Pollution Power Systems Development Program (LPPSD), 216
Alternative railroad,
 air-cushion vehicles, 144
 magnetic levitation (MAGLEV), 144
American Institute for Aeronautics and Astronautics, 68, 243
 Symposium for the 50th Anniversary of the first jet-powered flight, 68
American Institute of Aeronautics and Astronautics (AIAA), 68, 165, 243
American Society of Mechanical Engineers, 22
“Anglo-American Jewel” J65 jet engine, Curtiss-Wright, 161
Applied Research Department, Hirth Motoren Company, 7-8
Arado 79, Hirth engine, 7
Arado Ar 234 reconnaissance aircraft, Junkers Jumo 004 engine, 47
Armstrong-Siddeley, 118, 146, 148, 161
Armstrong-Siddeley engine, 137
Army Aviation Systems Command (AVSCOM), 189-190
Aspin, rotary valve engine, 10
Astronaut “cap pistol”, WAD aviation and aerospace design studies, 177
ATAR. See Atelier Aeronautique de Rickenbach
ATAR engine, SNECMA, 122
ATD. See Automotive Technology Department
Atelier Aéronautique de Rickenbach (ATAR), 83
Austin Co. Hayes transmission, toroidal traction drive, 177
Automatic transmission, Heinkel touring scooter, 112
Automobile engines,
 alternative engines, 189, 208, 216, 223, 225

264
alternative fuels for, 218
gas turbine technology, 88
Automotive engine technology, 215
Automotive gas turbine,
Ford, 225
Mahle piston factory, 120-122
Automotive gas turbine engines, 83-84, 120-121, 194-195, 220, 222, 225
Automotive gas turbines, ceramic components, 223
Automotive History Collection, Detroit Public Library, 241-242
Automotive Technology Department (ATD), 216,225
AVA. See Aerodynamische Versuchsanstalt
AVCO,
Lycoming Stratford Division, 82, 103, 178, 182, 187-203, 206
Pollution Conference, 194
Aviation and aerospace design studies, WAD, 177
AVRO, Vulcan delta-wing bomber, 118
AVSCOM. See Army Aviation Systems Command
Axial turbine, 68, 195
Axial-flow,
jet engine, 41-48
supercharger, 13
turbomachinery, 67
He S 30 engine, 41-44
Axial-flow compressors, 67-68, 81, 84, 200
Ayres, Robert U., 218

Baer, rotary valve engine, 10
Baker, R.J.S., 11
Barber, Everett M., Texaco Combustion Process (TCP) stratified charge, 166
BASF, Technische Prüfstand (Engine Laboratory), 29
BASF Otto-Diesel aircraft engine, Wilke, Wilhelm, 29
Bayerische Motorenwerke (BMW), 26
Beier, 27
Beier CVT, 181
Beier transmission, 112
Heinkel touring scooter automatic transmission, 112
Toroidal traction drive, 177
Beier variable-speed drive, 27
Bensinger, Daimler-Benz Wankel engine, 8
Bensinger flat-disk valve engine, Daimler-Benz DB, 8
Bensinger, Wolf-Dieter, 8
Bentele, Brigitte Regina, 46
Bentele, Magda, 46, 69-72, 203, 206-207
Berblinger, Albrecht Ludwig, 261-262
Berner, Roland T., 161, 172, 205
Betz, Albert, 84

265
Engine Revolutions

Blade vibration, compressor, 148, 171
Blanton, Ray, 207
BMW 003 engine, vibration fatigue turbine blade failures, 47-48
BMW 801 J engine, air-cooled radial turbocharger, 26
BMW (Bayerische Motorenwerke), 10, 21, 26, 33, 38, 47-48, 54, 61, 83
 Bramo, 47
 rotary valve engine, 10
Boeing, 120, 173, 225
Boeing B-17 bombers, 46
 Moss turbochargers, 27, 61
Boeing gas turbine, Kenworth truck, 120
Boeing Stratocruiser passenger airplane, 102
Boeing truck, vehicular gas turbine, 225
Bonatz, Paul, 257
Bosch, “R” engine fuel injection system, 29-30
Bosch Company, 29, 123
Bouchard, Phillipe O., 65
Bowden, Andrew T., 83, 88, 99, 102
Brabazon, Lord, 101
Brabazon passenger airplane, Bristol, 101
Bradley, James J., 241
Braig, Hans, WMF Topfschaufel (tubular or bootstrap blade), 24
Bramo, 1, 47, 258
 BMW, 47
 Siemens Group, 1
Bramo SH 14a engine, FW-61 heliocopter, 1-2
Brandenburgische Motorenwerke (Bramo), Instrumentation and Measurement Laboratory, 1
Braun Company, 206-207
Braun, Hans, 206
Braun, Karl Otto, 206
Brayton cycle, gas turbine engine, 222
Brayton cycle (gas turbine), Low Pollution Power Systems Development Program (LPPSD), 216
Brenneke, Arthur, 159
Bridge collapse,
 Ohio River Bridge, 23
 Tacoma Narrows suspension bridge, 22-23
Briggs & Stratton, 83
Bristol Aeroplane Company, 3
Bristol Brabazon passenger airplane, 101
Bristol Centaurus, air-cooled engine, 6
Bristol engine, 3, 5-6
 Fedden, Alfred H.R. (Sir Roy), 3-4
 single sleeve aero-engine, 3-4
Bristol Hercules, air-cooled engine, 6

266
British Whittle Group, 81
Brooklyn Bridge, Roebling, John A., 23
Bruckner, Canis & Co., 52
Burt and McCollum, 3
 single-sleeve engine, 3, 5
Butter Brothers, Sprengniete (explosive rivet), 116
Butter, Karl, 116
Butter, Otto, 116

C.A. Parsons & Co., 83, 88
 coal burning gas turbine, 99-100
 gas turbine design department, 88-89
 gas turbine laboratory, 88, 99
 Marine Division, 88
Cabin scooter “Kabine”, Heinkel, 115
Cal Tech, Jet Propulsion Lab (JPL), 220
Campbell diagram, 21
Canadair CL84 tilt-wing aircraft, Curtiss-Wright hollow propeller blades, 178
Canberra twin-jet, Armstrong-Siddeley, 118
Caproni-Campini engine, 64
Carl Zeiss, 60
Carter, A.T.D.S., 148
Centaurus engine, 6
Centrifugal compressor, 198
 tank gas turbine, 89
Centurion tank, 90, 99
Ceramic components,
 automotive gas turbines, 223
 gas turbines, 59-61, 223
Ceramic gas turbine, 222-226
 Ford, 222
 Westinghouse, 222
Ceramic materials, 222, 225
 gas turbine engine, 222
Ceramic turbine “Fernwagen”, Daimler-Benz, alternative automobile engines, 225
Champion Spark Plug Company, 201, 217
 “Ignition and Engine Performance Conference”, 217
Chilton Book Company, 241-242
Chrysler Corporation, 192, 194, 221-223, 225-226
 gas turbine-driven passenger car, 221-223, 225
Chrysler/Lycoming, AGT 1500 tank gas turbine, 192, 226-228
Club der Luftfahrt von Deutschland, 72
Coal burning gas turbine, 100
 C.A. Parsons, 99-100
 fluidized beds under pressure, 100
General Motors, 100
industrial applications, 100
locomotives, 100
steam boilers, 100
Combustion, 2nd Annual Rotating Combustion Conference, 179-181
Combustion system, Joseph Lucas Co., 90
Combustor development, He S 011 jet engine, 57
Commercial applications, stratified-charge Wankel engine, 211
Committee on the Challenge of Modern Society (CCMS), NATO, 216
Committee of the National Academy of Science, 38
Committee to assess compressor disk failures, 189-191
Commuter car, flywheel, 232
Composite hollow propeller blades, 178
 Curtiss-Wright, 178
 Rolls-Royce, 178
Compression ratio, Curtiss-Wright Wankel rotary development, 165-166
Compressor, 198
 advanced gas turbine engines, 148
 blade vibration, 148
Compressor blade failure, T53-L-13 engine, 189-191
Compressor blades,
 aeroelastic stability, 171
 friction dampers, 171
 mechanical dampers, 171
 vibration fatigue, 171-172
Compressor development, He S 011 jet engine, 52-56
Compressors, axial-flow compressors, 67-68, 81, 84, 200
CONCO Medical Company, 206-208
Conference on air-cooling of gas turbines, NACA Lewis Flight-Propulsion Laboratory, 146
Conference on Ceramic Gas Turbine Components, Lilienthal Society, 60-61
Conference on cooled exhaust turbines, Air Ministry, 25
Conference marking the 40th Anniversary of the first jet flight, National Air and Space Museum, 68
Conference on radial and axial compressors, Royal Aeronautical Society, 68
Conference, Second Annual Rotating Combustion, Curtiss-Wright Wankel rotary development, 179
Conference on SST, FAA, 173
Conference in Toronto, Parsons powerplant failure, 101
Conference with Whittle and von Ohain on development of jet engine,
 Air Force Museum, 65-66
Constellation passenger airplane, Lockheed, 102
Continental Motor Corporation, 5
Continually variable transmission (CVT), Heinkel touring scooter, 112
Contractors Coordination Meetings (CCM), 217
Convection cooling, turbine cooling, 146-149
Cooled turbine technology, 148
Cooled turbines, advanced gas turbine engines, 148
Cooling problem, Wankel rotary engine development, 151
Crawford Auto-Aviation Museum, 61
“Cross cool combustion chamber”, rotary valve engine, 10
Cross, Roland and Michael, 11
Cross rotary valve, 11
Cross-Baker engine, 11
Cummins Engine Co., 226, 228
 oil-cooled turbocharged diesel, 227-228
 air-cooled DISC engine, 211
 air-cooled gasoline engine, 211
 air-cushion vehicles, 144-145
 “Anglo-American Jewel” J65 jet engine, 161
 Composite hollow propeller blades, 178
 Cyclone 9 air-cooled piston engine, 137
 DISC experimental engine, 168
 hollow propeller blades,
 Canadair CL84 tilt-wing aircraft, 178
 Curtiss-Wright X-2 experimental aircraft, 178
Research Division, Muffling Turbo Compound TC 18, 142
 rotary engine technology, 182
 Sapphire J65 turbojet engine, 137
 transpiration cooling of turbine blades, 147-148
 Turbo Compound TC 18, 6, 27-28, 197
 Turbo Compound TC 18 supercharger, 27
 Twin-spool jet and ramjet engine, 148
 U.S. Patent Wankel engine, 153-154
Vertical takeoff and landing airplanes (VTOL), Wankel engine, 159
Wankel rotary engine development, 151, 153, 156, 158
 2nd Annual Rotating Combustion Conference, 179-181
 advancing the engine, 164
 axial flow cooling, 157
 burning heavy fuels, 164
 champagne luncheon, 160
 compression ratio, 165-166
 design parameters, 164, 179
 DISC (direct injection stratified charge), 166-168
 engine applications, 159
 engine geometrics, 158, 179
 gas sealing problem, 159, 164
 Perfect Circle Company, 159
 gas sealing system, 159, 179
 low compression ratio, stratified-charge, 166-168
Engine Revolutions

multifuel engine, 164, 179
presentation at SAE, 164-165
Princeton University meeting, 165
RC1-60 experimental engine, 161
RC4-60 experimental engine, 161
rotor and housing structure and cooling, 157, 179
sleeve bearings for rotor and power shaft, 157
use of heavier fuels, 165-168
Wankel rotary engine applications,
 boats, 159
 buses, 159
 cars, 159
 generator sets, 159
 industrial drives, 159
 tractors, 159
 trucks, 159
Wright Aeronautical Division (WAD), 81, 137
X-19 experimental aircraft, 159, 178
Vertol/Bell X-22 Osprey, 178
X-2 experimental aircraft, Curtiss-Wright hollow propeller blades, 178
Cyclone 9 engine, Curtiss-Wright, 137
Cyclone aircraft engine, Wright, 123

D. Napier & Son Ltd., 27
DAC. See Douglas Aircraft Company
DAC/CW, “Project Smoothie”, 142
Daimler Motoren-Gesellschaft (DMG), Knight double-sleeve engine, 3
Daimler-Benz, 8, 33, 38, 47, 63, 83, 108, 123, 139, 141, 194, 201, 225
 Alternative automobile engines ceramic turbine “Fernwagen”, 225
 DB 600, flat-disk aero-engine, 8
 DB 612, Bensinger’s flat-disk valve engine, 8
 Mercedes 300, 141
 Wankel engine, Bensinger, 8
 ZTL DB 007 experimental engine, 63
Daimler-Benz/Heinkel-Hirth, PTL DB/He S 021 experimental engine, 63
Dart Aircraft Company, 118
De Havilland, DH 110 fighter, 118
De Havilland Company, 68, 90, 118-119
 radial compressor, 90
de Saunier, L. Baudry, 230
Decher, Siegfried H., 198, 201
deLavaud, Sensaud, 154
Department of Energy (DOE), 216
Detroit Public Library, National Automotive History Collection, 212, 241
Deutsche Akademie (German Academy), 2
Deutsche Versuchsanstalt für Luftfahrt (DVL), 8, 13, 16, 19, 21, 26, 54, 63, 82

270
Institut für Motorische Arbeitsverfahren und Thermodynamik, 24
Institut für Strömungsmaschinen (Institute for Turbomachinery), 14
Deutsches Museum, Munich, 160
Deutz Company, 181
Development of tank gas turbine, C.A. Parsons & Co., 88-99
DGLR, Symposium “50 Jahre Turbostrahlflug - 50 Years of Jet-Powered Flight”, 69
DGLR (Deutsche Gesellschaft für Luft und Raumfahrt), 69, 72, 139
DH 110 fighter, De Havilland, 118-119
Diesel, high compression ratio, 168
Diesel engine, 120, 160, 181, 195, 197, 215, 218, 227-229
turbocharger development, 83
Diesel passenger car, General Motors, 141
Diesel, Rudolf, 160, 166, 181, 216
Diesel tank engine, 226-228
Diesel-driven Leopard II tank, 227
Diesel-driven vehicles, 230
Differential gas turbine, 198-200
Differential turbine application,
 helicopter, 198
turboprop, 198
 vehicle, 198
Differential turbine principle, Kronogard Turbine Transmission, 225
“Diluent stator”, WAD aviation and aerospace design studies, 177
DISC (direct injection stratified charge) engine, Wankel rotary development,
166-168, 228
DISC experimental engine,
 Curtiss-Wright, 168
 wide range of fuels, 168
DISC multifuel stratified-charge engine, 210
 FVRDE, 210
 jet fuel, 210
DKM (Drehkolbenmaschine dual rotation machine), NSU/Wankel project, 152-153
DKW (Das Kleine Wunder) cabriolet, 4, 258
DMG. See Daimler Motoren-Gesellschaft
DOE. See Department of Energy
Dornier, Claude, 34, 118
Douglas Aircraft Company (DAC), 141
Drives, toroidal traction drive, 177
Dual-cycle engine, jet and ramjet, 123
DuPont Company, 116
Dutch Philips Company,
 Stirling engine, 219-220
 Stirling engine-driven bus, 220

271
Engine Revolutions

DVL. See Deutsche Versuchsantalt fur Luftfahrt
DVL turbocharger, 13-14, 16
DVL/Hirth, 59
DVL/Hirth turbocharger, 16, 45, 59
 Junkers supercharged engine Jumo 211, 16
 KHD Dz 710 diesel engine, 26
 model 9-2216, 16-19
 model 9-2281, 16-21
 model 9-2426, Junkers Jumo 222 engine, 26
vibration fatigue turbine blade failures, 16-21
Dynamit-Nobel-Konzern, 116

Eagle engine, Rolls-Royce, 6
Early jet engine development, 65-72
Ebert drive, Hydrostatic axial piston pump transmission, NSU scooter, 112-113
Ebert, Heinrich, Hydrostatic axial piston pump transmission, 112-113
Einstein, Albert, 262
Electric bus, 232
Electric car, Whisper electromobile, 231
Electric cars, 229-231
 Low Pollution Power Systems Development Program (LPPSD), 216
 Sinclair C5, 231
Electric motorcycle, 229
Electric vehicle, 229-231
Encke, 52, 55
Energy Research & Development Administration (ERDA), 216
Engine applications, Curtiss-Wright Wankel rotary engine development, 159
Engine development, DISC (direct injection stratified charge), 166-168
Engine geometry, rotary engine, 187
Engine/fan jets, aircraft propulsion, 33
Engines,
 advanced gas turbine engine compressors, 148
 air-cooled DISC engine, 211
 air-cooled engines, 6
 "Anglo-American Jewel" J65 jet engine, 161
 axial flow cooling, 157
 axial-flow jet engine, 41-47
 BMW 003 engine, 47
 burning heavy fuels, 164
 compression ratio, 165-166
 compressor blade failure, 175, 189-191
 compressor blades, 148, 171-172, 189-191
 Cyclone 9 air-cooled piston engine, 137
 design parameters, 164, 179
 development and engine applications, 159-177
 DISC experimental engine, 168

272
Index

engine geometries, 158, 179
jet engine, 65-66
reciprocating engines, 142
rotary engine technology, 182
Sapphire J 65 turbojet engine, 137
Turbo Compound TC 18 engine, 6
Twin-spool jet and ramjet engine, 148
U.S. Patent Wankel engine, 153-154
Wankel engine development, 151, 153, 156
Engines see also Curtiss-Wright
Environmental Protection Agency (EPA), 216
Alternative Automotive Power Systems (AAPS), 216
EPA. See Environmental Protection Agency
EPA/NATO, Low Pollution Power Systems Development Program, 216
ERDA (Energy Research & Development Administration), 216
Esso Oil Company, 11
Esso-Cross engine, 11
Exhaust gas turbine, turbocharger, 13

FAA. See Federal Aviation Administration
Faltschaufel, turbine blade, 24-25, 57
Farnborough Flying Display and Exhibition, Society of British Aircraft Constructors, 117
Farrar, Earl V., 81, 123, 137
Fedden, Alfred H.R. (Sir Roy), 3-4, 7
Bristol engine, 3-4
Federal Aviation Administration (FAA), 172-173
Conference on SST, 173
Fiat, 194
Fichtel & Sachs, 161
Wankel engine license, 161
Fichtel & Sachs (F&S), Schweinfurter Präzisions-Kugellager-Werke, 257
Fighting Vehicles Research and Design Establishment (FVRDE), 88-90, 93, 99, 102, 210
DISC multifuel stratified-charge engine, 210
MoS, 88
tank gas turbine, 210
First jet fighter, He, 38, 280
First jet propelled flight,
He 178 aircraft with He S 3 B engine, 35-41
Heinkel experimental airplane, 35-41
von Ohain, Hans, He S 3 B engine, 35-41
Flat-disk aero-engine, Daimler-Benz DB 600, 8
Flat-disk valve engine, 7-10
Flexible compressor blades, 171-175
Flexible compressor blades/friction dampers, WAD, 175

273
Flying Display and Exhibition of the Society of British Aircraft Constructors, 101
Flywheel,
 commuter car, 232
 subway train, 232
Focke, Henrich, 1, 122
 FW-61 helicopter, 1
Fokker, Anthony, 122
Ford Motor Company, 194, 220, 222-223, 225, 231
 automobile gas turbine, 225
 ceramic materials, 225
 ceramic turbine, 222
 model, 194, 704
 Stirling engine, 220, 225
Franz, Anselm, 44, 68, 82, 188
French Air Force, 80
French Hyperbar engine, 28
Friction dampers, compressor blades vibration fatigue, 171-172
Friedrich, Rudolf, 41, 52
Froede, Walter, 152, 164
Fuels, alternative fuels, 218
FVRDE. See Fighting Vehicles Research and Design Establishment
FW-61 helicopter, Focke, Henrich, 1
 Bramo SH 14a engine, 1-2
Garrett Corporation, 49, 228
 Air Research Division, 82
Garrett/Ford, 223
Gas generator, 89, 94, 99, 192
Gas generator rotor, 91
Gas sealing problem, Wankel rotary engine development, 151, 159
Gas sealing system, Curtiss-Wright Wankel rotary development, 159
Gas turbine, 179
 automotive application, 120
 ceramic materials, 223
 Chrysler, 223
 commercial vehicle application, 228-229
 industrial application, 99-103
 Ljungstrom rotary regenerator, 91
Gas turbine compressor,
 aeroelastic instability, 148-149
 vibration fatigue blade failure, 148
Gas turbine design department, C.A. Parsons & Co., 88
Gas turbine development, 82, 101, 120
Gas turbine development for industrial and marine applications, Parsons, 102
Gas turbine engine, 6, 59, 82-84, 87, 90, 94, 96, 98-99, 103, 121, 168, 187, 194, 197, 215-216, 220-223, 227-228
 Brayton cycle, 222
ceramic components, 59-61, 223
ceramic materials, 222
components, 195
for helicopters, 82
for ship propulsion, C.A. Parsons & Co. Marine Division, 88
industrial application, coal burning, 99
laboratory, C.A. Parsons & Co., 88, 99
materials, thermal shock tests, 98
powerplant, 99
technology, 205
 C.A. Parsons & Co., 88
industrial gas turbine, 88
steam turbine, 88
tank gas turbine, 88
vehicle gas turbine, 88
turboshaft engine, 197
Gas turbine-driven passenger car, 221, 229
 Chrysler Corporation, 221-222
 Rover Jet 1, 93, 120, 221
Gas turbine-powered automobile, 225
Gas vibrations in pipelines, 1, 258
Gasohol, alternative fuel, 218
Gear-driven supercharger, 13-14
General Dynamics, 173
General Electric Company (GE), 21, 41, 148, 173-176, 192, 226, 228
 GE-4 SST engine, 174
 J79 engine supersonic fighter/bombers, 174
 J93 B-70 bomber, 174
 single-spool jet engine, 148
General Electric/Ryan, vertical takeoff and landing aircraft (VTOL), 176
General Motors (GM), 100, 141, 176, 192, 194, 209-210, 220, 222, 231
 Allison Division, 176, 223
 coal burning gas turbine, 100
diesel passenger car, 141
gas turbine, Greyhound Super 7 Turbocruiser bus, 222
metallic gas turbines for bus, 222
metallic gas turbines for industrial applications, 222
metallic gas turbines for truck, 222
NSU/Wankel license, 209
Stirling engine, 220
Teledyne Continental diesel engine, 192
Wankel engine, 220
Wankel project, 209-210
Engine Revolutions

German Ministry of Defense, 173
German National Prize for Art and Science awarded, 1938, Heinkel, Ernst, 35
Gibb, Sir Claude D., 88, 96, 99, 101
Goetze, A.G., 179
Grammel, Richard, 257
Greyhound Super 7 Turbocruiser bus, General Motors gas turbine, 222
Gulf and Western, 231
Günter, Siegfried, 82, 122, 178
Russian MIG fighters, 122

H-Type Sabre engine, Napier Company, 6
Hahn, Max, 35-36
Hahn, Otto, 84
Hanaway, William L., 152-153
Hawthorne, E.P., 90, 96
Haxel, Otto, 84
Hayes transmission, Austin Co., 177
He 70, 82
He 111 bombers, Heinkel, 118
He 177 bomber, 35
He 178 aircraft with He S 3 B engine, first jet propelled flight, 35-41
He 280 first jet fighter, He S 8 A engine, 38
He 280 twin jet fighter, jet engine He S 8 A, 34
He S 011, 122
compressors, 83
jet engine, 59, 61
combustor development, 57
compressor development, 52-56
Heinkel-Hirth, 50-56
mixed-flow wheels, 52, 54
turbine development, 57-61
vibration fatigue turbine blade failure, 54, 57-61
He S 053 jet engine, Heinkel, 122-123
He S 30 engine, 48
axial-flow turbomachines, 41-44
Müller, Max Adolf, 41-44
Wagner-Müller-Heinkel, 41-44
He S 3 B engine, liquid-fuel combustion, 38
He S 8 A engine, 48
He 280 first jet fighter, 38
vibration fatigue turbine blade failure, 49
von Ohain, 48
Heat exchanger, 194, 228
liquid metal regenerator, 175-176
Heinkel, 34, 44, 49-51, 64, 82, 105-106, 108-110, 113, 115-119, 122-123,
137, 146

276
aviation and space ventures, 106
 cabin scooter "Kabine", 115
 engineering development, 106
 gas turbine, 106
 He 111 bombers, 118
 He 70, 82
 He S 011, 122
 He S 053 jet engine, 122-123
 Hilfsmotor bicycle auxiliary engine, 113
 jet engine, 34-44
 jet engine compressor development, 50-56
 Kasino, 122
 OEM engines, 106-108
 rocket propelled He 117, 176
 Sonderentwicklung Department (Special Development), 36
 touring scooter, 108-116
 automatic transmission, 112
 Beier transmission, 112
 continually variable transmission (CVT), 112
 Ebert Hydrostatic axial piston pump transmission, 112-113
 "Heinkel Tourist", 108-116
 Heinkel, Ernst, 34-38, 41, 48, 102, 105-106, 109, 111, 113-119, 122-124, 181
 German National Prize for Art and Science awarded, 1938, 35
 Hirth Motoren acquisition, 34
 Heinkel experimental airplane, First jet propelled flight, 35-41
 Heinkel Group, Maschinenfabrik G.F. Grotz, 80
 Heinkel He 70, Siegfried, Günther, 82
 Heinkel He I/II aircraft, 16
 Heinkel and Hirth, 71, 208
 Heinkel jet engine He S 011, Kombinationsverdichter, 50
 Heinkel, Karl Ernst, 106, 117
 Heinkel, Lisa, 106, 117
 Heinkel OEM engine,
 Schnürle loop-scavenging scheme, 106
 Tempo Matador, 106-108
 Heinkel-Butter, Sprengniete (explosive rivet), 116
 Heinkel-Hirth, 24, 49, 61, 63, 77-78, 80-84, 105, 120, 122, 146, 478
 He S 011 jet engine, 50-56
 He 280/He S 8 A, 50
 jet engine development, Wolff, Harald, 48
 ML He S 50 experimental engine, 63
 Schif, Curt, 48
 Heinkel-Hirth/Daimler Benz, PTL DB/He S 021 experimental engine, 63
 Heisenberg, Werner, 84
 Helmholtz resonator, 142, 258
Helmholtz resonator sound dampers,
 Aeroacoustics, 142
 Muffling Turbo Compound TC 18, 142
Hentrich, Paul, 88, 92
Hercules engine, 6
Hesselman engine, stratified-charge, 166
Hilfsmotor bicycle auxiliary engine, Heinkel, 113
Hindenberg syndrome, Hydrogen fueled vehicles, 218
Hirth, Albert, 7
Hirth engine, Arado, 7, 79
Hirth engines, 7
Hirth and Heinkel, 71, 208
Hirth, Hellmuth, 7, 35, 120
Hirth Motoren acquisition, Heinkel, Ernst, 34
Hirth Motoren Company, 7, 14-16, 18, 21, 23, 29, 33-34, 38, 50-51, 59, 120, 258
 air-cooled aero-engines, 7
 Applied Research Department, 7-8
 Otto-Diesel type “R” engine, 29
turbocharger, 14-15
turbochargers for reciprocating aircraft engines, 33-34
Hirth “R” engine program, 29-31
Hoeppner, Ernst, 152
Hollow air-cooled blades, turbine cooling technology, 146
Hollow propeller blades, Curtiss-Wright, 178
Hryniszak, Waldemar, 88, 92
Hurley, Roy T., 123, 142, 144, 151-152, 156, 158-161, 163, 181-182
Hydrogen fueled vehicles,
 Hindenberg syndrome, 218
 Stevens Institute of Technology study, 218
Hydrostatic axial piston pump transmission,
 Ebert, Heinrich, 112-113
 Heinkel touring scooter, 112-113
Hyperbar engine, 28

“Ignition and Engine Performance Conference”, Champion Spark Plug Company, 217
Industrial applications,
 Beier transmission, 112
 Beier transmission, Toroidal traction drive, 177
c oal burning gas turbine, 100
gas turbine, 99-103, 222
Industrial gas turbine, gas turbine technology, 88
Industrial turbines, transpiration-cooling, 175
Industrial Turbines International (ITI), 228
Institut für Motorische Arbeitsverfahren und Thermodynamik, DVL, 24
Institut für Strömungsmaschinen, DVL, 14
Internal combustion engine, 1, 222
Internal water-cooling of gas turbines, hollow blades, 100
Isuzu, 231
ITI, 228-229
ITI-500, gas turbine engine, 229
ITI-GT601, gas turbine engine, 228

J65 engine, turbine cooling technology, 146-147
J65 jet engine, 148
J79 engine supersonic fighter/bombers, GE, 174
J93 B-70 bomber, GE, 174
Jet engine, 6, 25, 34, 64, 66, 94, 96, 120, 123, 181, 215
 air-cooling, 146
 compressor development, Heinkel, 50-56
 development, 59, 101
 development program, Air Ministry Research Division, 44
 He S 8 A, He 280 twin jet fighter, 34
 Heinkel, 34-44
 technology, 205, 208
Whittle, 28
Jet fuel, DISC multifuel stratified-charge engine, 210
Jet plane He 178, Siegfried, Gunter, 82
Jet Propulsion Lab (JPL), Cal Tech, 220, 223
Jet and ramjet, dual-cycle engine, 123
John Deere Company, 165, 210
 multifuel stratified-charge engines, 210
 North American Wankel rights, 210
 SCORE (Stratified Charge Omnivorous Rotary Engines), 210
 twin-rotor turbocharged stratified-charge aircraft engine, 210
Jones, Charles (Charlie), 157, 210
 stratified-charge rotary engine, 210
Joseph Lucas Co., combustion system, 90
Junkers Aircraft Engine Division, 38, 44
Junkers Company, 16, 21, 26, 33, 38, 41, 44-46, 49, 54, 82-83
Junkers Ju 287 experimental bomber, Junkers Jumo 004 engine, 47
Junkers Jumo 004, axial-flow jet engine, 44-47
 Arado Ar 234 reconnaissance aircraft, 47
 Junkers Ju 287 experimental bomber, 47
 Messerschmitt Me 262 twin-jet fighter, 47
Junkers Jumo 004A engine, Messerschmitt Me 262 fighter plane, 45
Junkers Jumo 004B, vibration fatigue turbine blade failures, 45-46, 201
Junkers Jumo 211, supercharged engine, 16
Junkers Jumo 222 engine, 26
 DVL/Hirth turbocharger model 9-2426, 26

279
K-Cycle engine, 214-215
Kamm, Wunibald, 63
Karman Vortex Streets, 23
Karol engine, "Split Cycle Rotary Engine", 214
Kasno, Heinkel, 122
Kenworth truck, Boeing gas turbine, 120
KHD. See Klöckner-Humboldt-Deutz, 26
 Dz 710 diesel engine, DVL/Hirth turbocharger, 26
Kilpatrick, D.A., 148
KKM (Kreiskolbenmaschine stationary outer housing), NSU/Wankel
 project, 152
 difficulty with apex seals of rotor, 153
 NSU, 181
Klöckner-Humboldt-Deutz (KHD), 26, 228
Knight double-sleeve engine, Daimler Motoren-Gesellschaft, 3
Knudsen, William S., 46
Kolb, Paul, 88, 96
Kombinationsverdichter,
 Heinkel jet engine compressor, 50
 Heinkel jet engine He S, 011, 50
Kronogard, Lycoming AGT 1500 tank gas turbine, 225
Kronogard, Sven Olof, Kronogard Turbine Transmission, 225
 differential turbine principle, 225
 Volvo passenger car, 225
Kruckenberg, Franz, 142
Kutta, Wilhelm, 257

Lear, William P., 219
 Lear Jet, 219
 steam turbine, 219
Leist, Fritz, 63
Lenoir engine, 160
Lewis Flight Propulsion Laboratory, NACA, 146
Lewis Research Center, NASA, 189
LFA. See Luftfahrtforschungsanstalt Völknerode
LHR. See Low Heat Rejection
Lift/cruise engines, 171
Lightweight lift-cruise jet engines and turbofans, WAD jet engine
devolution, 171
Lilienthal Gesellschaft für Luftfahrtforschung, 2, 21, 60, 139
Lilienthal, Otto, 261
Lilienthal Society, Conference on Ceramic Gas Turbine Components, 60-61
Liquid Metal Regenerator (LMR), WAD, 175-176
Liquid rocket engines, 123
Liquid-cooled engine,
Index

Napier Sabre, 6
Rolls-Royce Eagle, 6
Liquid-cooled supercharger, Rolls-Royce Merlin engine series XLVI, XLVII, and 61, 26
Liquid-cooling,
 reciprocating aircraft engine, 211
 Wankel aircraft engines, 211
Liquid-fuel combustion, He S 3 B engine, 38
Ljungstrom rotary regenerator, 84
gas turbine, 91
Lockheed, 36, 173, 178
 Constellation passenger airplane, 102
 Orion, 82
Lockheed L-1011 Tristar jetliner, Rolls-Royce RB 211 high-bypass turbofan engine, 178
Locomotives, coal burning gas turbine, 100
L’Orange, Prosper, 29
L’Orange Company, 29, 123
L’Orange “R” engine fuel injection system, “pumpless injection”, 29-31
Lorenzen Exhaust Turbocharger, 176
Low compression ratio, stratified-charge, Curtiss-Wright Wankel rotary development, 166-168
Low cycle fatigue, Parsons powerplant failure, 101
Low Pollution Power Systems Development Program (LPPSD),
 alternative fuels, 216
 Brayton cycle (gas turbine), 216
 electric cars, 216
 EPA/NATO, 216
 Rankine cycle (steam engine), 216
Low-heat-rejection (LHR) engine, 216, 226
Low-power gas turbine engines, 195-200
Lowthian, Charles, S., 90, 96-98
Luftfahrtforschungsanstalt Völkenrode (LFA), 83
Lundquist, Wilton G., 81, 123, 137
Lycoming,
 AGT 1500 Abrams tank, 229
 AGT 1500 tank gas turbine Chrysler Corp., 192
differential turbine, 198
 low-power gas turbine, 195-200
 LTS 101 turboprop engine, 200
 LTS 101 turboshaft engine, 200
 PLT32 engine, 195
Roto-Lobe engine, 187-189
 auxiliary rotors, 187
 engine geometry, 187
 Marshall Tri-Dyne, 212

281
Engine Revolutions

- power rotor, 187
- T53 engine series, 189-193, 198
- T55 engine, 200-201
- T55 engine series, 189-193, 198
- tank gas turbine, 194

Lycoming Stratford Division, AVCO Corp, 187-192, 194-195, 198, 200-201, 203, 206, 212, 222, 229

Lycoming/General Electric, recuperated two-shaft turbine tank engine, 227-228

Lysholm, screw-type compressor, 84

M-1 Abrams Main Battle Tank, AGT 1500 tank gas turbine, 226-228

M-60 tank, 227

Mack Trucks, 228

Madelung, Georg, 122

Mader, Otto, 38

Magnetic levitation (MAGLEV), alternative railroad, 144

Mahle, Ernst, 120-121, 179, 207

Mahle Group, 121

Mahle, Hermann, 120

Mahle Morristown, 208

Mahle piston factory, automotive gas turbine, 120-122

MAN Company, 52, 181

Marine Division, Parsons, 100

Marshall, John, 187

Marshall Tri-Dyne, Lycoming Roto-Lobe, 212

Marshall Tri-Dyne rotary engine, 212

Marshall/Roto-Lobe engine, 187-189, 201

Maschinenfabrik G.F. Grotz, Heinkel Group, 80

Massachusetts Institute of Technology (MIT), 218

Mauch, Hans, 44

Maybach Motorenbau, 83

Mazda Motor Corporation, 166, 209-211

- rotary-engined passenger cars, 210-211
- Wankel engine, 211
- Yamamoto, Kenichi, 210-211

Mazda sports car, rotary engine development, Toyo Kogyo, 209

Mercedes, Daimler-Benz, 141, 300

Messerschmitt, 33, 49, 115, 118

Messerschmitt, Willy, 35

Messerschmitt Me 109 piston engine fighter, 49

Messerschmitt Me 262 fighter plane, Junkers Jumo 004A engine, 45

Messerschmitt Me 262 twin-jet fighter, Junkers Jumo 004 engine, 47
Index

Messerschmitt Me 262/Jumo, 004, 49
Metallic gas turbines,
 for bus, General Motors, 222
 for industrial applications, General Motors, 222
 for truck, General Motors, 222
Methanol, alternative fuel, 218
Military applications, stratified-charge Wankel engine, 211
Military pickup trucks, Stirling engine, 220
Military vehicles, M-1 Abrams Main Battle Tank, 226-228
Miller Jet Engine Group, 51
Ministry of Fuel and Power, 99
Ministry of Supply (MoS), 27, 87-88, 94, 96, 99, 102, 105
MIT. See Massachusetts Institute of Technology
ML He S 50 experimental engine, Heinkel-Hirth, 63
ML Motorrückstößer-Luftstrahltriebwerk engine jet propulsor, aircraft propulsion, 61
MoS. See Ministry of Supply
MoS, Fighting Vehicles Research and Design Establishment (FVRDE), 88
MoS/Parsons, 103
 tank gas turbine engine, 103
Moss, Sanford A., 41
Moss supercharger, 46
Moss turbocharger, Boeing B-17 bomber, 27, 61
Muffling, Turbo Compound TC 18, 142
 Curtiss-Wright Research Division, 142
 Helmholtz resonator sound dampers, 142
Müller, Max Adolf, 41, 44, 117
 He S 30 engine, 41-44
Müller-von Ohain, thermal compression gas turbine, 117
Multifuel engine, Curtiss-Wright, Wankel rotary development, 179
Multifuel piston engine, 165
Multifuel rotary engines, 165-168
Multifuel stratified-charge engines, John Deere Company, 210

NACA Lewis Flight-Propulsion Laboratory, conference on air-cooling of gas turbines, 146
NAHBE (Naval Academy Heat Balanced Engine), 214
Napier, Nomad, 27-28
Napier Company, 6, 28
 H-Type Sabre engine, 6
Napier Nomad 2, turbocompound diesel engine, 27-28
Napier Sabre, liquid-cooled engine, 6
NASA, 190, 210
 Lewis Research Center, 189
National Air and Space Museum, Session marking the 40th Anniversary of the first jet flight, 68

283
Engine Revolutions

National Automotive History Collection, 243
 Detroit Public Library, 212
NATO. See North Atlantic Treaty Organization
Natural gas, alternative fuel, 218
Neumann, Gerhard, 174
Nissan, 194
Noise abatement, 1, 142
Nomad, Napier, 27-28
Norbye, Jan P., 241-242
North Atlantic Treaty Organization, (NATO), 216, 223
 Committee on the Challenge of Modern Society (CCMS), 216
 fighter/bombers, Sapphire J 65 turbojet engine, 137
NSU, 113, 151-154, 157-161, 181, 205, 209
 KKM, 181
 Prinz, 154, 181
 Ro80 twin-rotor Wankel engine family sedan, 209
 Spider, 181
NSU scooter, Ebert drive, Hydrostatic axial piston pump transmission, 112-113
NSU/Wankel, 152, 157, 158-160
 anti-friction ball and roller bearing, 157
 circumferential cooling flow, 157
 DKM (Drehkolbenmaschine dual rotation machine), 152-153, 158
 gas sealing network, 157, 159
 KKM (Kreiskolbenmaschine stationary outer housing), 152, 158
NSU/Wankel license, General Motors Corporation, 209

OEM engines, Heinkel, 106-108
Oestrich, Hermann, 47, 83
 BMW, 003, 47
Ohio River Bridge collapse, Roebling, John A., 23
Oldsmobile, 141
Orion, Lockheed, 82
Otto, Nikolaus August, Deutz Company, 181
Otto-Diesel engine, 29-32, 120, 165
Otto-Diesel type “R” engine, Hirth-Motoren, 29
Outboard Marine Corp (OMC), 165

Parsons,
 gas turbine development for industrial and marine applications, 102
 Marine Division, 100
 tank engine project, 102
 tank gas turbine, 228
Parsons, Charles A., 24, 88, 94, 96, 99-101, 103, 137, 225
Parsons powerplant failure,
 Conference in Toronto, 101
 low cycle fatigue, 101
 thermal expansion, 101
Passenger car, Chrysler gas turbine, 223
Perfect Circle Company, Curtiss-Wright Wankel rotary development, gas
sealing problem, 159
Peugeot Company, 31
Pfister, Magda (Bentele), 1
PIP, 137-139
piston engine, 121, 137, 194
 radial centrifugal supercharger, 13
Planck, Max, 33, 84
PLT 27 turboshaft engine, 197
 UTTAS military helicopter, 192
Pohl, Robert W., 36
Pollution Conference, AVCO, 194
Poppet valve, reciprocating engine, 5-6
Porsche Company, 31
Porsche, Ferdinand, 35
Potts, Matthew, 90
Power turbine, 94, 99
Prandtl, Ludwig, 24, 84
Pratt & Whitney, 148, 173
 twin-spool engine, 148
Prince Philip, Duke of Edinburgh, 96
Princess flying boat, 101
Princeton University, 165
Prinz,
 NSU, 181
Product Improvement Program (PIP), Wright Aeronautical Division
 (WAD), 137
"Project Smoothie", DAC/CW, 142
Propellertrain, Turbo Compound TC 18, 142-145
PTL DB/He S 021 experimental engine,
 Daimler-Benz/Heinkel-Hirth, 63
PTL Propeller- TL turboprop, Aircraft propulsion, 61
"Pumpless injection", L’Orange “R” engine fuel injection system, 29-31

“R” engine, 29-31
 fuel injection system,
 Bosch, 29-30
 L’Orange, 29-31
R-Engine, Svenska Rotor Maskiner, 212
Radial centrifugal supercharger, piston engine, 13
Engine Revolutions

Radial compressor, 68
 De Havilland Company, 90
Radial flow compressor, 200
Radial-inflow turbine, 49, 198
 A/S Vapenfabrikk Kongsberg KG 2/3, 49
 He S 8 jet engine, 49
Ramjet, 123
 aircraft propulsion, 33
Rankine cycle, steam or vapor engine, 218-220
Rankine cycle (steam engine), Low Pollution Power Systems Development
 Program (LPPSD), 216
RB 211 high-bypass turbofan engine, Rolls-Royce Composite hollow propeller
 blades, 178
RC1-60 experimental engine, Curtiss-Wright Wankel rotary development, 161
RC4-60 experimental engine, Curtiss-Wright Wankel rotary development, 161
Reciprocating aircraft engine, 138
 liquid-cooling, 211
Reciprocating engine, 5-6, 8, 33, 63-64, 84, 123, 137, 151, 157, 164, 187,
 194-195, 197, 221
 aeroacoustics, 142
 poppet-valve, 6
 sleeve-valve, 6
Reciprocating engine flat-disk valve, Wankel, 8
Reciprocating engine/propeller drive, 33
Regener, Erich, 257
Regenerated gas turbine, 84, 194, 197, 216, 222
Regenerated turbine, 222
Regenerator, 94
Reitsch, Hanna, 1
Research Division, Curtiss-Wright, 142
Reverse-flow combustor, Whittle, 68
Ricardo Consulting Engineers, 168
Ritz, Ludolf, 84, 88, 91-92
Ro80 twin-rotor Wankel engine family sedan, NSU, 209
Robinson, S.T., 81
Rocket engine, 215
Rocket propelled He, Heinkel, 117, 176
Rocket-assisted glider, von Opel, Fritz, 33
Rocket-powered He 176, Günter, Siegfried, 82
Rocket-propelled automobile, von Opel, Fritz, 33
Rockets, aircraft propulsion, 33
Roebling, John A.,
 Brooklyn Bridge, 23
 Ohio River Bridge collapse, 23
Rolls-Royce, 6, 26, 68, 178, 192, 195

286
Index

Composite hollow propeller blades, 178
Eagle engine, 6
Merlin engine series XLVI, XLVII, and 61, liquid-cooled supercharger, 26
RB 211 high-bypass turbofan engine,
 Lockheed L-1011 Tristar jetliner, 178
 Roll-Royce bankruptcy, 178
RS 360 engine, 192
Rotary compressor,
 Marshall engine, 212
 Marshall, John, 187
 Svenska Rotor Maskiner R-Engine, 212
Rotary engine, 149, 151-168, 187, 189, 231
 engine development, 168
 engine geometry, 158, 179, 187
 Toyo Kogyo, 209
 passenger, sports, and race cars, mazda, 210
Roto-Lobe, 187-189
 session, SAE International Congress, 164
 Svenska Rotor Maskiner AB (SRM), 212
 technology, 182, 205
 Curtiss-Wright, 182
 Yamamoto, Kenichi Mazda Motor Corp, 210-211
 test results, 163
Rotary regenerator, 84, 89, 91-92, 194
 tank gas turbine, 89
Rotary valve engine, 10
 Aspin, 10
 Baer, 10
 BMW, 10
 “Cross cool combustion chamber”, 10
Rotating Combustion Engine Development, WAD, 163-164
Roto-Lobe engine, Lycoming, 187-189
Rover, gas turbine-powered automobile, 120
Rover Company, 93, 120, 225
 gas-turbine-driven passenger car, 93
 Vehicular gas turbines, 93, 225
Rover Jet 1, gas turbine-driven passenger car, 221
Royal Aeronautical Society, Conference on radial and axial compressors, 68
Royal Aircraft Establishment (RAE), 81
Royal Automobile Club, 93, 119
Russel, William A., 90
Russian MIG fighters, Gunter, Siegfried, 122

SAAB, 108
SAE International Congress, Rotary Engine session, 164
Smithsonian Institution, 68
SNCF railroad, 144
SNECMA. See Société National d’Etude et de Construction de Moteurs d’Aviation, 83
Société National d’Etude et de Construction de Moteurs d’Aviation (SNECMA), 83
ATAR engine, 122
Society of Automotive Engineers. See SAE
Society of British Aircraft Constructors, 117
Society of Motor Manufacturers and Traders, 102
Society of the Sigma Xi, Steven Chapter, 165
Sollinger, Ferdinand (Freddie) P., 157
Sonderentwicklung Department (Special Development), Heinkel, 36
Southwest Research Institute, 31
Soviet Ministry of Defense, 178-179
Spider, NSU KKM, 181
“Split Cycle Rotary Engine”, Karol engine, 214
Sprengniete (explosive rivet),
 Butter Brothers, 116
 Heinkel-Butter, 116
Sputnik, 171
SRM. See Svenska Rotor Maskiner AB
SST. See Supersonic transport engine
Stationary recuperators, 91, 194
Steam boilers, coal burning gas turbine, 100
Steam engine, 160, 218-219
 vehicular application, 219
Steam turbine,
 gas turbine technology, 88
 Lear, William P., 219
Stevens Chapter, Society of the Sigma Xi, 165
Stevens Institute of Technology, 165, 218
Stirling engine, 219-220, 223
 bus, 220
 compact car, 220
 Dutch Philips Company, 219-220
 Ford Motor Company, 220, 225
 General Motors, 220
 generating set, 220
 military pickup trucks, 220
 riding mower, 220
 yacht, 220
Stirling engine-driven bus, Dutch Philips Company, 220
Stratified charge with coordinated fuel injection and ignition, Wankel diesel
 application, 166
Engine Revolutions

Stratified-charge, Hesselman engine, 166
Stratified-charge rotary engine, Jones, Charles, 210
Stratified-charge Wankel engine,
 commercial applications, 211
 military applications, 211
Stratocruiser passenger airplane, Boeing, 102
Stuttgart Technische Hochschule (TH Stuttgart), 1, 63
Subway train, flywheel, 232
Supercharged Otto-type engine, turbine cooling, 16
Supercharger, 26-28, 45, 64, 138-139
 axial flow, 13
 gear driven, 13
 radial centrifugal, 13
Supersonic transport (SST) engine, 172-174
 TJ70, 172-174
 WAD, 172-174
Svenska Rotor Maskiner AB (SRM), 212-214
 R-Engine, rotary compressor, 212
Symposium for the 50th Anniversary of the first jet-powered flight, AIAA, 68
Symposium, Alternative Automotive Power Systems (AAPS), 212
Symposium “50 Jahre Turbostrahlflug - 50 Years of Jet-Powered Flight”,
 DGLR, 69
Szydlowski, Joseph, 83

T53 engine, Lycoming, 189-193
T53-L-13 helicopter engine, compressor blade failure, 189-191, 201
Tacoma Narrows bridge collapse, von Kármán, Theodore, 22-23
Tank engine AGT, U.S. Army, 221, 1500
Tank engine project, Parsons, 102
Tank gas turbine engine, MoS/Parsons, 103
Tank gas turbine, 89-99, 105, 191, 220, 225-228
 AGT, 191, 1500
 centrifugal compressor, 89
 control system, 99
 FVRDE, 210
 gas turbine technology, 88
 rotary regenerators, 89
 Sinclair synchromoupling, 89
 single-stage axial turbine, 89
 thermal shock, 96-98
 two-stage axial turbine, 89
 U.S. Army, 103
 U.S. Army Tank Automotive Command (TACOM), 176
 Whittle-type combustion chambers, 89
Tank Museum, Bovington Dorset, 103
Index

Tanks, AGT 1500 tank gas turbine, 226-228
TC 18 Turbo Compound engine, 137
Technische Prüfstand, BASF, 29
Teledyne Continental diesel engine, General Motors Corp., 192
Tempo Matador, 107-108, 1400
 Heinkel OEM engine, 106-108
Texaco Combustion Process (TCP) stratified charge, Barber, Everett M., 166
Texaco engines, low compression ratio, 168
TGV. See Train à grand vitesse
TH Stuttgart (Stuttgart Technische Hochschule), 1, 63, 141, 257-258
Thermal compression gas turbine, Müller-von Ohain, 117
Thermal expansion, Parsons powerplant failure, 101
Thermal fatigue, vibration fatigue, 98
Thermal shock, 96, 98
 tank gas turbine, 96-98
tests, 98
 gas turbine materials, 98
 thermal stresses, 96
TJ60 engine, 172
 rig compressor, WAD, 174
 rig engine, compressor blade failures, 175
TJ70, Supersonic transport engine, 172-174
Topfschaufel,
 He S 011, 57
 Turbine blade, 24-25, 57
Tores-Schluss-Panik, 158, 161, 209
Toroidal traction drive,
 Austin Co. Hayes transmission, 177
 automotive and industrial applications, 177
 Beier transmission, 177
 WAD, 177
Touring scooter, Heinkel, 108-116
Toyo Kogyo Co., 166, 209
Train à grand vitesse (TGV), 144
Transmissions, Beier transmission, 112
Transpiration cooling,
 industrial turbines, 175
 stator and rotor blades, 172
turbine blades, 172
 Curtiss-Wright, 147-148
 WAD, 175
turbine cooling, 147-148
 variable area turbine, WAD J65 rig engine, 174
 WAD, 175
Transportation History Foundation, University of Wyoming, 174, 241-242

291
Engine Revolutions

Tri-Dyne engine, Marshall, John, 187
Truck diesel engine, vapor engine, 219
Turbine, 198
Turbine blade,
 Faltschaufel, 24-25, 57
 Topfschaufel, 24-25, 57
Turbine blade failure,
 frequency/resonance/vibration fatigue, 17-21
 Vertol Chinook helicopter Lycoming T55 turboshaft engine, 200
 vibration fatigue, Junkers Jumo 004 B engine, 45-46
Turbine cooling, 16-17, 23-26, 146
 air-cooled blade, 146
 convection cooling, 146-149
 DVL Institut für Motorische Arbeitsverfahren und Thermodynamik, 24
 Faltschaufel (folded blade), 24-25
 folded blade, WMF Topfschaufel (tubular or bootstrap blade), 24
 supercharged Otto-type engine, 16
technology, 137
 hollow air-cooled blades, 146
 J65 engine, 146
 transpiration cooling, 147-148
Turbine rotor blade failures, Junkers Jumo 004B, 45
Turbine rotor cooling, 121
Turbines,
 advanced gas turbine engines, 148
 AGT 1500 tank gas turbine, 191-193
 air-cooling, 146
 ceramic turbine blades, 222
 development of tank gas turbine, 88-99
differential turbine application, 198
Turbo Compound TC 18,
 engine, Curtiss-Wright, 6
 Moss supercharger, 138
 muffling, 142
 propellertrain, 142-145
 supercharger, Curtiss-Wright, 27
Turbo lag, 14-15
Turbocharged automobile engines, 15
Turbocharged diesel engine, 219
Turbocharger, 25-28, 51, 64, 66
 air-cooling, 146
 development, 82
diesel engine, 83
 DVL, 14
exhaust gas turbine, 13
for reciprocating aircraft engines, Hirth Motoren Company, 33-34
Index

Hirth-Motoren, 14-15
technology, 208
Turbocompound diesel engine, 27-28, 219, 229
 Napier Nomad, 2, 27
Turbojet, aircraft propulsion, 33, 38
Turbojet back to back radial compressor-turbine rotor, von Ohain, Hans, 35
Turbojet TL Turbinen-Luftstrahltriebwerk, aircraft propulsion, 61
Turbomachines, 103
Turbomeca, 83
Turboprop engines, 175
Turboshaft engines, 189-193
Twin-rotor turbocharged stratified-charge aircraft engine, John Deere Company, 210
Twin-spool, 200
 jet engines, 123
 jet and ramjet engine, Curtiss-Wright, 148
 turbomachinery, AGT 1500 Lycoming tank gas turbine, 191-193
Two-stage axial turbine, tank gas turbine, 89

U.S. Air Corps, 81
U.S. Air Force, 138, 171-172, 175, 178
 WAD, 172
U.S. Army, 161
 tank engine AGT, 221, 1500
 tank gas turbine, 103
U.S. Army Tank Automotive Command (TACOM), 176
 tank gas turbine, 176
U.S. Congress, 243
U.S. fighter/bombers, Sapphire J 65 turbojet engine, 137
U.S. Government, 220
U.S. Marine Corps, 223
U.S. Navy, 38, 81, 138-139, 147
 Blue Angels F11F-1 “Tiger”, Sapphire J 65 turbojet engine, 137
U.S. Patent, Wankel engine, Curtiss-Wright, 153-154
U.S. turbine cooling technology, 146
University of Wyoming, Transportation History Foundation, 174, 241
UTTAS, 192
 military helicopter, PLT-27 turboshaft engine, 192

Vapor engine, truck diesel engine, 219
Variable-area turbine, 174
VDI. See Verein Deutscher Ingenieure
Vehicle engine, 96
Vehicle gas turbine, gas turbine technology, 88
Vehicular application, steam engine, 219
Engine Revolutions

Vehicular gas turbine, 91, 93, 120, 191, 227-228
 Boeing truck, 225
 Chrysler Turbine car, 225
 engine, 208
 Rover passenger car, 93, 225
 technology, 176
Vehicular and industrial gas turbines, 101
Verein Deutscher Ingenieure (VDI), 139, 160, 258
Vertical takeoff and landing aircraft (VTOL), 159
 Curtiss-Wright, 159
 GE/Ryan, 176
 single rotor lift fan engine, 176-177
 WAD, 176-178
Vertol Chinook helicopter Lycoming T55 turboshaft engine, turbine blade failure, 200
Vertol/Bell X-22 Osprey, Curtiss-Wright X-19 experimental aircraft, 178
Vibration fatigue,
 compressor blades, 171-172
 of the lift-cruise engine, 171
 thermal fatigue, 98
 turbine blade failure, 17-21, 45-48, 81
 BMW 003 engine, 47-48
 DVL/Hirth turbochargers, 16-21
 gas turbine compressor, 148
 He S 011 jet engine, 54, 57-61
 He S 8 A engine, 49
 Junkers Jumo 004B, 45-46
Vidal & Sohn, Tempo Werk, 106
Volvo Company, 159, 225
Volvo passenger car, Kronogard Turbine Transmission, 225
von Bach, Carl, 257
von Buz, Heinrich, 181
von der Nüll, Werner, 14, 16, 19, 21, 82
von Eyth, Max, 262
von Heydekampf, Gerd Stieler, 152-154, 158, 181, 205, 209
von Kàrmànc, Theodore, Tacoma Narrows bridge collapse, 22-23
von Laue, Max, 84
von Ohain, Hans,
 He S 8 A engine, 48
 He S 3 B engine, first jet propelled flight, 35-41
 Heinkel Sonderentwicklung (Special Development) Department, 36-37
 turbojet back-to-back radial compressor-turbine rotor, 35
von Opel, Fritz, 33
 rocket-assisted glider, 33
 rocket-propelled automobile, 33
Index

Voysey, Reginald, 81, 91
VTOL. See Vertical takeoff and landing aircraft
Vulcan delta-wing bomber, AVRO, 118

WAD (Wright Aeronautical Division), 123, 138, 147-148, 153, 158, 163, 165, 174-177, 179, 191
 aviation and aerospace design studies, 177
 astronaut “cap pistol”, 177
 “diluent stator”, 177
 VTOL, 177-178
flexible compressor blades/friction dampers, 175
J65 rig engine, transpiration-cooled variable area turbine, 174
jet engine development, 171
 lightweight lift-cruise jet engines and turbofans, 171
 lightweight lift-cruise turbojet TJ60, 171
lightweight gas turbine engines, 171-175
liquid metal regenerated turboprop, 175-176
Liquid Metal Regenerator (LMR), 175-176
production aircraft engines and jet engines, 158
propeller train, 158
rotating combustion engine development, 163-164
supersonic transport engine, 172-174
 TJ70, 172-174
TJ60 rig compressor, 174
toroidal traction drive, 177
transpiration-cooled turbine blades, 175
transpiration cooling, 175
U.S. Air Force, 172
verticle takeoff and landing aircraft (VTOL), 176-177

Wagner, Herbert, 41
Wagner-Müller-Heinkel, He S 30 engine, 41-44
Wankel, 153-154, 158-161, 205, 209-210, 241
 DKM-54 engine, 153-154
 reciprocating engine flat-disk valve, 8
Wankel aircraft engines,
 air-cooling, 211
 liquid-cooling, 211
Wankel diesel application,
 airflow pattern, 166
 stratified charge with coordinated fuel injection and ignition, 166
Wankel engine, 151-168, 181, 187, 195, 197, 205, 209, 212, 242
 compression ratio, 165-166
 Curtiss-Wright vertical takeoff and landing airplanes (VTOL), 159
development, Curtiss-Wright, 151
General Motors, 220
Mazda, 211

295
Engine Revolutions

Wankelwalze sealing element, 8
Wankel, Felix, 8, 151-152, 161, 166, 168, 181, 212-214
von Heydekampf, G. Steiler, NSU, 181
Wankel II engine, 212-213
Wankel Institute, 8, 168
Wankel rotary engine, 144, 211
 apex gas seal problem, 209
development, 151-152, 164-165
 combustion problem, 151, 153
 cooling problem, 151, 157
 heavy fuels, 210
 ignition problem, 151
 main bearing problem, 157
 oil and gas sealing problem, 151, 156-157
diesel applications, 165
difficulties,
 combustion, 166
 combustion chamber shape and gas seals, 166
 gas sealing, 166
 mechanical, 166
 starting and low speeds, 166
Wankelwalze sealing element, Wankel engine, 8
Ward’s Engine Update (WEU), 226
Ward’s Wankel Report (WWR), 217
WAS, 172
Water-cooling of gas turbines, 100
 external cooling, 100
 internal cooling, 100
Weinrich, Helmut, 47
Weise, Arthur, 122
West German Federal Ministry for Research and Technology (BMFT), 223
Westinghouse, 222, 225
 ceramic turbine, 222
Weyl, A.R., 118
Whittle, Frank, 28, 65-68, 118, 181
 jet engine, 28
 reverse-flow combustor, 68
Whittle-type combustion chambers, tank gas turbine, 89
Wilke, Wilhelm, 29
 BASF Otto-Diesel aircraft engine, 29
Williams, Calvin, 218
Williams, Charles, 218
Williams Corporation, 223
Witzky, Julius E., 31
WMF. See Württembergische Metallwarenfabrik
WMF Topfschaufel (tubular or bootstrap blade), Braig, Hans, 24
Turbine cooling folded blade, 24
WMF Topfschaufel air-cooled turbine blades, 57-61
Wolff, Harald, Heinkel-Hirth jet engine development, 48
Wright Aeronautical Division (WAD), Curtiiss-Wright Corporation (CW), 81, 123, 137
Product Improvement Program (PIP), 137
Wright, Cyclone aircraft engine, 123
piston engines, 137
turbojet, 137
Württembergische Metallwarenfabrik (WMF), 24
WWR, 211-212, 214

XAMAG, 206

Yamamoto, Kenichi, 209-211
Mazda Motor Corp, 210-211
rotary engine technology, 210-211
Yanmar Diesel Co., 166

Zadnik, Otto, 88, 96
ZTL DB 007 experimental engine, Daimler-Benz, 63
ZTL Zweikreis-TL turbofan, aircraft propulsion, 61