INDEX

Advanced LP Systems, Inc., 300
After-market vehicle conversions, 36
 CARB certification of kit for, 194
 engine efficiency in mechanical conversions, 44-50
Air flowrate, formula for, 82
Air pollution, in optimized compressed natural gas conversion system, 110
Air pollution, and need for alternative fuels, 3-7, 10-11
Alcohol fuels
 burning, in compression ignition engines, 140-141
 in conversion of spark ignition engines, 114-115
 effect of, on volumetric efficiency, 20
Algas Carburetion, 299, 300
Algas Industries, 300
Alternative fuel(s)
 advantages over gasoline and diesel fuel, 9-11
 air/fuel ratios of, 31-32
 air pollution and need for, 3-7, 10-11
 air quality improvement by, 37
 cetane rating of, 35
 clean, 185
 cost effectiveness of, 38-40
 definition of, 188
 energy content of, relative to gasoline and diesel fuel, 32-33
 fuels considered as, 8-9, 29-30
 heat of vaporization of, 34
 loss in volumetric efficiency from, 33-34
 lower heating value of, 32
 octane rating of, 35, 36
 outlook for, 6-8
 public support for, 30
 vehicle range of, 32
Alternative fuel conversion hardware, effect of, on volumetric efficiency, 20-21
Alternative fuel conversion systems, use of, 75
Alternative fuel fleet evaluation program, performance of conversion vehicles, 45-50
Alternative fuel system cost analysis, 212-213
 annual operating costs, 229-230
 annual savings, 231
 initial costs
compressors, 219-220
facility design, 214-219
facility instrumentation and controls, 222-223
facility site preparation, building, and utilities, 225
fuel dispensing equipment, 224
fuel tanks, 220-222
land, 213-214
maintenance, 228
moisture control equipment, 223-224
training and documentation, 225
vehicle conversions, 225-227, 228, 229

Alternative fuel vehicle (AFV)
definition of, 188
estimated emissions from, 7
purchase requirements
electric vehicle provisions, 192
incentives, 192-193
private and municipal fleet, 190, 191
related requirements and exemptions, 190, 192
state fleet, 190, 191

Annual payment or receipt, calculating present worth of, 206-207
ANSI Standard (NGV-1), requirements of, 84
Antiknock rating, 35
ASME storage tanks, versus DOT cascades storage tanks, 155
Automobile emission standards, 37-38
Automotive Natural Gas, Inc. (ANGI), 299, 300
Auto/Oil Air Quality Improvement Research Program, 4, 32

Beacon Power Systems, 299
Beam Products Manufacturing Co., 299, 300
Bluebird, 50
Bobtail, 160
Boost recirculation system, 103-104, 105
Borg Warner Corp., Marvel Schieber/Tillotson Division, 301
Brake horsepower (bhp), 14
Brake mean effective pressure (BMEP), calculation of, 15
Brake specific fuel consumption (BSFC), 15
map for compression ignition engine, 19
map for spark ignition engine, 18
as result of turbocharging on, 23-24
Bulkhead, 160
Bus fleet. See School bus fleet
Bus project, to promote commercial use of alternative fuels, 192-193
Bush, George, 164

California Air Resources Board (CARB), 57
 certification of after-market alternative fuel conversion kits, 194
 certification of dual-fuel conversion systems by, 139
 certification of liquid petroleum gas systems by, 57
 clean fuel vehicle pilot program in, 187
 designations for transitional low vehicle, 37, 194
 designations for ultra-low emission vehicle, 37, 194
 low emission vehicle standards developed by, 4, 37
 vendors with approved conversion kits, 88, 299-301
CARB Phase II RFG requirements, 71
Carbon monoxide, national ambient levels of, 6
Carbon monoxide emissions, for natural gas engines, 44
Carburetion Labs, 299, 300
Carburetted systems, versus electronic injection, 85-86
Cash flow, and cost analysis, 204-206
Caterpillar, 50
 conversion of engine to dual-fuel operation, 135-137, 138, 139
Century Products, 299
Cetane number of fuel, 22, 35
Cetane ratings, comparison of octane ratings and, 21
Chassis dynamometer testing, 46-47, 97-102
Cherco Compressors, Incorporated, 283
Chevrolet
 chassis dynamometer testing of Caprice model, 46-47, 98-99
 development of alternative fuel engines by, 37, 54
 FTP testing of liquid petroleum gas conversions for Lumina model, 99-102
 optimized methanol conversion of Corsica model, 115-121
Chrysler Canada, development of alternative fuel engines by, 29, 54
Chrysler Corporation
 alternative fuel vehicles developed by, 37
 work on battery technology by, 66
Clean Air Act (CAA) (1970), 163, 164
Clean Air Act Amendments (CAAA) (1990), 3, 70, 164, 165-187
 time line for implementation dates, 180
 Title I—provisions for attainment and maintenance of national ambient air quality standards
 general planning requirements, 166
 non-attainment areas, 167-175, 176
 state implementation plans, 166
 Title II—provisions relating to mobile sources, 185-187
 clean fuels and clean-fuel vehicles, 185-187
 fuel specifications and requirements, 177, 179-184
vehicle emission standards, 175, 177, 178
Clean alternative fuels, 185
Clean diesel fuel, 9, 126, 185, 188
Clean fuel, purchase implementation dates, 186
Clean vehicles
 credits for purchasing, 186-187
 exhaust emissions criteria for, 185
Clinton, Bill, 193
CO non-attainment areas
 classification of, 175, 176
 control periods for, 182
Colt Industries Operating Corp., Holley Replacement Parts Div., 300
Compressed natural gas (CNG), 4, 40
 advantage of, over liquefied natural gas, 51
 refueling facilities for, 52-53
 costs of, 214-217
 refueling receptacles for, 84
 storage tanks for, 51-52
Compressed natural gas (CNG) compressors, equipment suppliers for, 303
Compressed natural gas (CNG) conversion
 of Chevrolet Caprice, 98-99
 cost analysis for school bus fleet, 231-238
 of Ford cid engine, 93-97
 of GMC 350 cid engine, 89-93
 optimized, for 1991 GMC pickup, 102-114, 115, 116
Compressed natural gas (CNG) conversion kits, vendors with California Air
 Resources Board approval, 299-301
Compressed natural gas (CNG) conversion systems
 chassis dynamometer testing of, 97-102
 emission standards for, 88
 engine dynamometer testing of, 88-97
Compressed natural gas (CNG) conversion vehicles, cost of, 226
Compressed natural gas (CNG) fuel dispensers, cost of, 224
Compressed natural gas (CNG) fuel storage tanks, cost of, 220
Compressed natural gas (CNG) moisture control equipment, costs for, 223-224
Compressed natural gas (CNG) refueling equipment
 ASME versus DOT cascade assemblies, 155
 compressors, 149-152
 crack growth in, 155-156
 dispensers, 157
 fuel storage tanks, 153-156
 moisture removal equipment, 147-149
 priority valve system, 152-153
requirements for, 145, 146
schematic layout of refueling station, 146
sequential and dome loading valve panels, 156-157
typical facilities for, 147
Compressed natural gas (CNG) refueling facilities
background on, 277-278
cost analysis of, 287-291
cost of instrumentation and control equipment, 222
description of, 278-282
fast-fill computer program for, 295-297
final configuration, 292, 293
fluid system components
compressor, 282-283
dome load valve system, 285
excess flow check valve, 286-287
fast fill storage, 283-284
fill posts, 284-285
priority valve system, 285-286
sequential valve system, 286
recommendations, 292, 294-295
Compressed natural gas (CNG) storage tanks, compressibility factor in, 153-154
Compressibility factor, for compressed natural gas, 153-154
Compression ignition (CI) engine, 13, 14
brake specific fuel consumption map for, 19
burning of alternative fuels in, 22-23
control systems on, 25-26
conversion of, 49-50, 123-141
 burning alcohol fuels in, 140-141
 burning gaseous fuels in, 127-128
 dedicated fuel operation, 128-133
 dual-fuel operation: fumigation in, 133
 engine exhaust emissions, 125-127
 factors affecting alternative fuel use in compression ignition engines, 123-125
volumetric efficiency for, 34
Compression ratio of engine, and engine efficiency, 21-22
Compressors
 in compressed natural gas refueling system, 149-152, 282-283
cost analysis for, 219-220
 suppliers of compressed natural gas, 303
Computer data acquisition systems, 26
Computer program, development of fast-fill program, 295-297
Consolidated metropolitan statistical area (CMSA), 166
Consumer Price Index (CPI), 210, 211
Coors Brewing Co., 63
Corporate Average Fuel Economy (CAFE), 164, 165
Cost analysis, 197-198
 for alternative fuel systems, 212-213
 cash flow, 204-206
 of compressed natural gas refueling facility design, 287-291
 cost categories, 192-201
 depreciation and taxes, 209
 equivalency and time value of money, 203-204
 inflation and deflation, 210-211
 interest, 202-203
 internal rate of return analysis, 207-208
 life-cycle, 211-212
 payback period, 208-209
 present worth analysis, 206-207
Cost categories
 direct, 200, 201
 first, 198
 fixed, 199-200
 incremental or marginal, 200-201
 indirect, 200, 201
 operations and maintenance, 198-199
 recurring and non-recurring, 201
 sunk, 201
 variable, 200
Costs, future, in alternative fuel system cost analysis, 229-230
Covered fleet, vehicles exempt from, 189
Crack growth, in compressed natural gas storage tanks, 155-156
Crane Carrier, 50
Crude oil, nation’s dependence on, and alternative fuels, 9-10
Cummins, 50

Dedicated gaseous fuel operation, modifying compression ignition engines for,
 128-133
Dedicated natural gas engine
 combustion chamber configuration for, 130
 emissions from, 130
Deflation, and cost analysis, 210-211
Depreciation, in cost analysis, 209
Detroit Diesel Corporation, 50
 Series 50G dedicated natural gas engine, 129
 transit bus engine of, 140
Dew point of gas, 53
Diaphragm regulator, 83
Diesel engine. See Compression ignition (CI) engine
Diesel fuel
 characteristics of concern, 1
 energy content of, 33
 fuel prices for, 40
Direct costs, 201
Documentation, cost of, 225
Dome load valve
 in compressed natural gas refueling facility design, 285
 in compressed natural gas refueling system, 156-157
Dual Fuel Systems, Inc., 299
Dual-fuel conversion systems, certified by CARB, 139
Dual-fuel operation, conversion of compression ignition engine to, 133-140
Dual-fuel vehicles, as clean fuel vehicles, 185

Eagle Propane, 300
Electric Power Research Institute (EPRI), 66
Electric powered vehicles, 30
 batteries for use in, 65-66
 conversions for, 76
 emissions from, 66
 funding and proliferation of, 192
Electricity, 9
 fuel prices for, 39
 sources for, 9
Electronic controls, for use with mechanical conversion systems, 84
Electronic conversion systems
 cost of kits, 226
 injection versus carburetion, 85-86
 schematic diagram of, 87
Electronic injection versus carburetion, 85-86
Emission results, in optimized methanol conversion, 118, 120
Emission standards
 for heavy duty engines, 126-127
 for natural gas and liquefied petroleum gas, 88
Emissions
 from compression ignition engines, 125-127
 from dedicated natural gas engines, 130
 of methanol engine, 141
Emissions control, in optimized compressed natural gas conversion, 110
Energy, U.S. Department of (DOE), 66-67
Energy crisis, interest in solving, 2-3
Engine(s). See also specific types of
 compression ratio of, 21
 power boost accessories on, 23-25
types of, 13-14
Engine computer control, in optimized compressed natural gas convention, 104, 105-108
Engine control systems, 25-26
Engine design, and unleaded gasoline, 2
Engine design point, 15
Engine dynamometer testing
 of Ford 250 cid engine, 93-97
 of GMC 350 cid engine, 89-93
Engine efficiency
 and compression ratio, 21-22
 volumetric, 19-21
Engine modifications, in optimized compressed natural gas conversion, 103
Engine performance
 in optimized methanol conversion, 118, 119
 relation of, to vehicle performance, 14-19
Engine power, 14
 direct relation between engine power and, 16
 effect of turbocharging on, 23
Engine speed, and engine power and torque, 15
Engine torque, 14
 direct relation between engine power and, 16
Environmental Protection Agency (EPA), 38
Equipment suppliers
 for compressed natural gas compressors, 303
 for dispensing equipment, 304
 for moisture removal and filtration equipment, 305
 for pressure vessels, 304
Equivalence, in cost analysis, 203-204
Equivalence ratio, 131
 reciprocal of, 132
Essex Cryogenics, 299
Ethanol, 8, 29
 in compression ignition engines, 65
 cost effectiveness of, 65
 emission problem associated with, 64
 energy content of, 33
 equipment and procedures for distribution of, 64
 fuel prices for, 39
 heat of vaporization of, 64
 lower heating value of, 65
 programs for evaluating, 63
 refueling facilities for, costs of, 218-219
 sources for, 9
vehicle range for, 32
Ethanol fuel storage tanks, cost of, 221
Ethanol refueling systems, 160
availability of, 161-162
materials compatibility problems in, 161
and wear on metal parts, 161
Ethyl tertiary butyl ether (ETBE), 2, 63
Excess flow check valve, in compressed natural gas refueling facility design,
286-287
Executive Order 12844, 193
Exhaust catalysts, in optimized compressed natural gas conversion system, 110
Exhaust gas recirculation, in optimized compressed natural gas conversion system,
110
Exhaust system, in optimized compressed natural gas conversion, 110-111

Fast-fill storage, in compressed natural gas refueling facility design, 283-284
Fast-Fill computer program, 295-297
Federal fleet, alternative fuel vehicle purchase requirements, 189-190
Federal fleet conversion task force, recommendations of, 193
Federal Implementation Plan (FIP), 164
Federal legislation on alternative fuels, 193. See also Alternative Motor Fuels Act
(1988); Clean Air Act (CAA) (1970); Clean Air Act Amendments
(CAAA) (1990); National Energy Security Act (1992)
Federal tailpipe emissions standards, 3
Fill posts, in compressed natural gas refueling facility design, 284-285
Filtration equipment, suppliers of, 305
First costs, 198
Fixed costs, 199-200
Fleet vehicles
alternative fuel vehicle (AFV) purchase requirement for, 189-191
and clean fuels, 185-187
converting, to alternative fuels, 188
credits for purchasing alternative fuel vehicles, 192
definition of, 188-189
exemption from alternative fuel vehicle requirements, 192
operating costs for, and alternative fuels, 11
Flex-fuel vehicles, 114-115
Flexible-fuel vehicles, as clean fuel vehicles, 185
Flexible Corporation, 50
Ford Motor Company, 66
alternative fuel vehicles developed by, 37, 54
dynamometer testing of compressed natural gas conversion of 250 cid engine,
93-97
methanol vehicles by, 76
work on battery technology by, 66
Fuel(s). See also Alternative fuel(s)
cetane number of, 22
molecular structure of, 10
octane rating of, 21
Fuel/air mixer, in mechanical conversion system, 80, 82
Fuel control valve, in mechanical conversion system, 82-83
Fuel dispensing equipment
 in compressed natural gas refueling system, 157
costs for, 224
 suppliers of, 304
Fuel economy, in optimized methanol conversion, 120
Fuel injection system, in optimized compressed natural gas conversion, 106, 107
Fuel prices, 39-40, 41
Fuel regulators, in optimized compressed natural gas conversion system, 108
Fuel storage, in optimized compressed natural gas conversion system, 108, 109
Fuel storage tanks, cost analysis of, 220-222
Fumigation systems, 49-50
 for compression ignition (CI) engine conversion to natural gas, 49
 in dual-fuel operation, 133
Gas Engine Management (GEM) system, 104, 106
Gaseous fuel
 effect of, on volumetric efficiency, 20
 methods of burning, in compression ignition engines
 conversion to dedicated fuel operation, 128-133
 conversion to dual-fuel fumigation operation, 133-140
Gaseous fuel shut-off valve, in mechanical conversion system, 82
Gasohol, 8, 115
Gasohol refueling, 160
Gasoline
 average fuel costs for, 41
 energy content of, 33
Gasoline engine. See also Spark ignition (SI) engine
 mechanically converted to burn natural gas, 44-50
Gasoline refining
 CAAA requirements for, 177, 179
 time line for implementing, 180
Gemini Engine Company, 282
General Motors
 alternative fuel vehicles developed by, 37
 chassis dynamometer tests on Sierra model, 45-46, 98
 dynamometer testing of compressed natural gas conversion of 350 cid engine, 89-93
evaluation of optimized compressed natural gas conversion of, 102-114, 115, 116
Impact model of, 66
methanol vehicles by, 76
work on battery technology by, 66
Greater Peoria Mass Transit District, 63
Greenway Environmental Research, 300

Hercules GTA 5.6-liter engine, 50
Hybrid Electric Vehicle Challenge, 64, 66-67
Hybrid electric vehicles (HEVs), 66-67
 funding and proliferation of, 192
Hydrocarbon (HC) emissions, 43
Hydrogen, 9, 30
 engine efficiency of, versus gasoline, 31-32
 sources for, 9-10
Hydrogen fueled vehicles
 cost of, 68
 emissions from, 67-68
 LHV of hydrogen, 68
 storage and safety of, 69
 use of fuel cell in, 69

Ignition control, in optimizer compressed natural gas conversion, 106, 108
Impco Carburetion, Inc., 299, 300
Implicit Price Index for the Gross National Product (IPI-GNP), 210
Incremental costs, 200, 201
Indirect costs, 201
Inflation, and cost analysis, 210-211
Inherently Low Emission Vehicles (ILEVs), 187
Interest, and cost analysis, 202-203
Internal rate of return analysis, in cost analysis, 207-208
Iowa Corn Promotion Board, 63

Knock, 35

Land, cost of, for alternative fuel operation use, 213-214
Landi-Hartog, U.S., Inc., 300
Legislation on alternative fuels
 federal, 163-193
 state, 194-195
Life-cycle cost analysis (LCCA), 197, 211-212
Liquefied natural gas (LNG), 40
 advantage of, over compressed natural gas, 51
 problems with, as fuel, 51
storage tanks for, 51

Liquefied petroleum gas (LPG)
 for heating and cooking use, 75
 typical composition of, 55

Liquefied petroleum gas (LPG) conversion systems, for spark ignition engines
 electronic, 80, 85-87
 fuel safety, 77-79
 mechanical, 79-84
 on-board fuel storage, 77

Liquefied petroleum gas (LPG) engines, development of, 54

Liquefied petroleum gas (LPG) fueled vehicles, 54
 conversions, 56, 99-102
 emissions from, 56
 fuel economy of, 56-57
 octane rating of, 54
 range with, 54-56
 safety of, 57
 supply and demand for, 57-58
 typical composition of, 55
 use in compression ignition engine, 57

Liquid fuels, effect of, on volumetric efficiency, 20

Liquid natural gas (LNG)
 cost of instrumentation and control equipment for, 223
 density and LHV for, 33
 energy content of, 33
 refueling facilities for, costs of, 217-218

Liquid natural gas (LNG) conversion vehicles, cost of, 226

Liquid natural gas (LNG) fuel dispensers, cost of, 224

Liquid natural gas (LNG) fuel storage tanks, cost of, 220-221

Liquid natural gas (LNG) vehicle tanks, cost of, 222

Liquid petroleum gas (LPG), 8-9
 cost of, versus gasoline, 39
 cost of instrumentation and control equipment for, 223
 development of engine using, 29
 energy content of, 33
 engine efficiency of, versus gasoline, 31-32
 loss in volumetric efficiency from, 33
 lower heating value of, 31, 32
 refueling facilities for, costs of, 218
 sources for, 9
 vehicle range for, 32

Liquid petroleum gas (LPG) conversion kits
 cost of, 226
 vendors with California Air Resources Board (CARB) approval, 300-301
Liquid petroleum gas (LPG) fuel dispensers, cost of, 224
Liquid petroleum gas (LPG) fuel storage tanks, cost of, 221
Liquid petroleum gas (LPG) refueling systems
 delivery of, 160
 layout for, 159
 requirements for, 157
 storage tanks, 158
 transfer operations, 158, 160
Liquid petroleum gas (LPG) vehicle tanks, cost of, 222
Low emission vehicle (LEV), 37
 California Air Resources Board (CARB)
 designations for, 194
 pollutant criteria standards for, 195
LPF Carburetion, Inc., 300

Mack Truck, 50
Maintenance costs, for alternative fuel systems, 228
Marginal costs, 200-201
Marvel Schieber/Tillotson Division, 301
Mauro, Gary, 193
Mean effective pressure (MEP), 15
Mechanical conversion systems
 cost of kit for, 226
 electronic controls on, 84
 fuel control valve, 82-83
 fuel/air mixer, 80, 81
 gaseous fuel shut-off valve, 82
 pressure regulation system, 83-84
 refueling receptacle, 84
 schematic diagram of, 81
Mechanics, cost of training and certification of, 225
Mesa Environmental, 300
Metering valve, electronic conversion installation using, 86-87
Methane. See Natural gas (methane)
Methanol, 9, 29-30
 and CI engines, 22
 in compressed natural gas systems, 149
 cost of, versus gasoline, 39
 energy content of, 33
 fuel prices for, 39, 40
 refueling facilities for, costs of, 218-219
 sources for, 9
 vehicle range for, 32
Methanol conversion, optimized, of 1988 Chevrolet Corsica, 115-121
Methanol engine, emissions performance for, 141
Methanol fuel storage tanks, cost of, 221
Methanol fueled vehicles
 availability of, 62-63
 in compression ignition engines, 62
 emission problem associated with, 59-60
 and engine efficiency, 58-59
 equipment and distribution procedures for, 59
 fuel economy of, 62
 heat of vaporization for, 60-61
 lower heating value of, 61
 octane rating of, 61
 possibility of generating from biomass and urban refuse, 59
 producing, from coal, 58
 producing, from natural gas, 58
Methanol injection systems, costs for, 224
Methanol refueling system, 160
 availability of, 161-162
 materials compatibility problems in, 161
 and wear on metal parts, 161
Methyl tertiary butyl ether (MTBE), 2, 4, 63
Metropolitan statistical area (MSA), 166
Mobile compressed natural gas refueling equipment, 152
Modified Accelerated Cost Recovery System (MACRS), 209
Moisture control equipment, cost of, 223-224
Moisture removal equipment
 for compressed natural gas refueling, 147-149
 suppliers of, 305
Motor octane number (MON), 35
Municipal fleet, alternative fuel vehicle (AFV) purchase requirements, 190, 191

National Ambient Air Quality Standards (NAAQS), 164, 166
National Energy Security Act (1992), 164, 187-188
 Alternative Fuel Vehicle (AFV) purchase requirements, 189-193
 definition of alternative fuels and covered fleets, 188-189
National Fire Protection Association, NFPA 52, 145, 147
National Renewable Energy Laboratory (NREL), 63
Natural gas (methane), 9, 30. See also Compressed natural gas (CNG)
 availability of refueling facilities for, 52-53
 average fuel costs for, 41
 and CI engines, 22
 cost of, versus gasoline, 39
 emissions for, 43
 engine efficiency of, versus gasoline, 31-32
excessive water content in, 53
fuel prices for, 39, 40
loss in engine power from using, 34
loss in volumetric efficiency from, 33
lower heating value of, 31, 32
safety of, 52
sources for, 9
typical composition of, 42
variations in constituent of, 53
Natural gas conversion systems, for spark ignition engines
electronic, 80, 85-87
fuel safety, 77-79
mechanical, 79-84
on-board fuel storage, 77
Natural gas engine
emissions from, 42-43
and Wobbe Number, 45
Natural gas fueled vehicles
advantages over alcohol fueled vehicles, 50
cost of, 40, 42
disadvantages of, 51
efficiency of optimized engines, 44-50
emissions from, 43-44
as heavy-duty vehicles, 50
Navistar International, 50
NFPA 58, 157
NGV Development, 300
Non-attainment areas
attainment dates for, 167
CAAAA classifications for, 168
carbon monoxide, 175, 176, 182
ozone, 167, 169-174
particulate matter, 175
sanctions on, 167
Non-recurring costs, 201
Northwest Butane Gas Co. of Dallas, Texas, 57
Norwalk Company, Incorporated, 285
NO_x analyzer, portable, 88
NO_x emissions, 36
for natural gas engines, 430

Octane rating
for alternative fuels, 35, 36
comparison of cetane ratings and, 21
Index

of fuel, 21
OHG, Inc., 301
Oil consumption rate, in optimized methanol conversion, 121
Oil embargo (1970), 210
On-board fuel storage, of gaseous fuel for compression ignition engines, 127
On-board vapor recovery standards, 183
Operation and maintenance costs, for alternative fuel system, 229-230
Operations and maintenance costs, 198-199
Optimized compressed natural gas conversion of GMC pickup
 competition results, 114, 115, 116
 compressed natural gas system, 108-109
 emissions control system, 110
 engine control, 104, 106
 ignition control, 106, 108
 injection system, 106, 107
 engine modification, 103-104, 105
 exhaust system, 110-111
 test program
 emission testing, 113, 114
 engine testing, 111-113
 fuel economy testing, 113
 vehicle modification, 102
Optimized methanol conversion of Chevrolet Corsica
 emissions and fuel economy, 118, 120
 engine performance, 118, 119
 oil consumption testing, 121
 vehicle modifications, 117-118
Optimized propane engine, 54
OxyFuel
 areas requiring, 181
 CAAA standards for, 179
Oxygenated gasoline. See OxyFuel
Ozone, national ambient levels of, 6
Ozone non-attainment areas, 167, 174
 extreme, severe, and serious, 169
 marginal, 172, 173
 moderate, 170, 171

Pacific Lighting Corp., Dual Fuel Systems, Inc., 299
Parking in enclosed buildings
 and safety of compressed natural gas, 79
 and safety of liquefied natural gas, 79
 and safety of liquefied petroleum gas, 79
Particulate matter (PM-10) non-attainment areas, 175
Particulate matter standards, 177
PAS, Inc., 300
Payback period
 and cost analysis, 208-209
 for vehicle conversions, 226-227, 228, 229
Phase II reformulated gasoline (RFG), 71
 cost of, 71
Piston regulator, 83
Power boost accessories. See Superchargers; Turbochargers
Premium unleaded gasoline, fuel prices for, 39
Present worth analysis, in cost analysis, 206-207
Pressure regulation system, in mechanical conversion system, 83-84
Pressure vessels, suppliers of, 304
Price index, 210
Priority valve system, in compressed natural gas refueling systems, 152-153, 285-286
Private fleet alternative fuel vehicle, 190, 191
Producer Price Index (PPI), 210, 211
Programmable Electronic Engine Control (PEEC) system, conversion of engine
 with, to dual-fuel operation, 135-137, 138, 139
Propane
 average fuel costs for, 41
 and CI engines, 22
 energy content of, 33
 fuel prices for, 39, 40
 loss in engine power from using, 34
 lower heating value of, 31, 32
Rate of return, 207
Rate of return analysis, internal, 207-208
Recurring costs, 201
Reformulated gasoline, 9, 185, 188
 CAAA standards for, 179
 cost of, 71
 and emission reduction requirements, 69-71
Refueling, calculating rate of, 144-145
Refueling facilities, 143-144
 CNG equipment, 144-157
 cost of
 for compressed natural gas, 214-217
 fuel storage tanks, 220-221
 instrumentation and control equipment, 222-223
 for liquid natural gas, 217-218
 for liquid petroleum gas, 218
 for methanol and ethanol, 218-219
Index

LPG refueling systems, 157-160
methanol and ethanol refueling systems, 160-162
site preparation building and utilities, 225
Refueling receptacle, in mechanical conversion system, 84
Reid vapor pressure (RVP), 4
 EPA requirements for, 177
Relative air/fuel ratio, 132
Research octane number (RON), 35

SAE, 66-67
 Methanol Marathon/Challenge sponsored by, 115-121
 Natural Gas Vehicle Challenge sponsored by, 102, 114, 115, 116
Savings, for alternative fuel system use, 231
School bus fleet
 conversion of, 125
 cost analysis for conversion of
 annual operating costs, 236
 annual savings, 234, 235, 236
 capitalized costs for, 233, 234
 effectiveness of, 237-238
 initial costs, 231, 232
 payback period, 235, 237
 present worth analysis, 232, 233
 proposed conversion, 231
 residual or salvage values, 233, 234
 incentive program for use of alternative fuel, 193
Sequential valve panel, in compressed natural gas refueling system, 156-157
Sequential valve system, in compressed natural gas refueling facility design, 286
Simple interest, calculating, 202
Single future payment, calculating present worth of, 206
Single payment compound interest, calculating, 203
South Coast Air Quality Management District (SCAQMD), 194
South Plains Electric Cooperative (SPEC), 278
Southwest Research Institute, 50
Spark ignition (SI) engine, 13-14
 brake specific fuel consumption map for, 18
 compression ratio and efficiency of, 21-22
 connecting compression ignition engines to, 128-133
 control systems on, 25
 conversion of, 75-121
 alcohol systems, 114-115
 evaluation of compressed natural gas conversion systems, 88
 chassis dynamometer testing, 97-102
 engine dynamometer testing, 88-97
evaluation of liquefied petroleum gas conversion systems, 88
 chassis dynamometer testing, 97-102
 engine dynamometer testing, 88-97
evaluation of optimized compressed natural gas conversion of GMC pickup
 engine modifications, 103-104, 105
 vehicle modifications, 102
evaluation of optimized methanol conversion, 115-117
 emissions and fuel economy, 118, 120
 engine performance, 118, 119
 oil consumption testing, 121
 vehicle modifications, 117-118
natural gas and liquefied petroleum gas systems for, 76
 alternative fuels safety, 77-79
 electronic conversion systems, 80, 85-87
 engine dynamometer testing, 88-97
 mechanical conversion systems, 79-84
 on-board fuel storage, 77
in optimized compressed natural gas conversion
 competition results, 114, 115, 116
 emissions control systems, 110
 engine control, 104, 105-108
 exhaust system, 110-111
 system, 108-109
 test program, 111-114
fuel considerations for, 1
fuels for, 14
 volumetric efficiency for, 34
Specific fuel consumption, 15
Stage II vapor recovery system, 184
Stage II vapor recovery vehicle refueling, 179, 183
 facility schedule for, 183
 removal of requirements for, 185
State fleet alternative fuel vehicle requirements, 190, 191
State implementation plans (SIPs), 164
 inclusions for, 166
State legislation on alternative fuels, 194-195
Stewart & Stevenson, 300
Storage tanks
 for compressed natural gas, 78-79
 for liquefied natural gas, 78-79
 for liquefied petroleum gas, 78-79
Sunk costs, 201
Superchargers
 advantages/disadvantages of, 25
effect of, on volumetric efficiency and BSFC, 23, 24
Supercharging, effect of, on volumetric efficiency, 20

Tax credit, for purchase of electric vehicles, 193
Tax deduction, for clean fuel, 193
Taxes, in cost analysis, 209

Tetraethyl lead (TEL)
 addition of, to gasoline, 2
 elimination of, from gasoline, 2
Texas, legislation on alternative fuel in, 194-195
Texas Tech University, optimized compressed natural gas conversion experiments at, 102-121

Thomas Built, 50
Time value of money in cost analysis, 204
Top dead center (TDC), 14, 35
Toyo Red Cab LPG Conversion, 301
Transit bus engine, methanol fueled, 140-141

Transitional low emission vehicle (TLEV), California Air Resources Board (CARB) designations for, 37, 194
Transportation, U.S. Department of (DOT), cascade storage tanks, versus ASME storage tanks, 155

Turbochargers
 advantages and disadvantages of, 23-24
 effect of, on volumetric efficiency and BSFC, 23, 24
Turbocharging, effect of, on volumetric efficiency, 20

Ultra-low emission vehicle (ULEV), California Air Resources Board (CARB) designations for, 37, 194
U.S. Air Pollutant Emissions Inventory, 5

Unleaded gasoline, 177
 and engine design, 2
 fuel prices for, 39, 40

Variable costs, 200
Vari-fuel vehicles, 114-115
Vehicle conversion
 after-market, 36
 cost of, 225-227, 228, 229
 payback period for, 76, 226-227, 228, 229
Vehicle conversion kits, vendors with California Air Resources Board (CARB) approval, 299-301
Vehicle emission standards, Title II, 175, 177, 178
Vehicle fuel tanks, cost of, 221-222
Vehicle gearing, 18-19
Vehicle performance, relation of, to engine performance, 14-19
Vialle Autogas Systemen, 299, 300, 301
Vialle U.S.A., Inc., 300, 301
Vinaryard Engine Systems, 50
Volumetric efficiency, factors affecting, 19-21

Wobbe Number, 45

Zero emission vehicle (ZEV), 37