Appendix A

Bibliography by Subject

Distribution and Transmission

Hydrogen Fuel for Surface Transportation

Economic and Related Issues

Hydrogen Fuel for Surface Transportation

44. Lin, F.N., Moore, W.I. and Walker, S.W., "Economics of Liquid Hydrogen from Water Electrolysis," in Hydrogen Energy Progress V, Edited by T.N. Veziro-

Engines

15. Cecil, W., "On the application of hydrogen gas to produce a moving power in machinery; with a description of an engine which is moved by the pressure of the atmosphere, upon a vacuum caused by explosions of hydrogen and atmospheric air," *Trans. Cambridge Philos. Soc.*, 1, p. 217, 1822.

Fuel Cells

Hydrogen Fuel for Surface Transportation

69. Kusunoki, A., Matsubara, H., Kakuoka, Y., Yanagi, C., Kugimiya, K., Yoshino, M., Tokura, M.,

Hydrogen Fuel for Surface Transportation

Production

Hydrogen Fuel for Surface Transportation

nomical and Technical Evaluation of UT-3 Thermo-

10. Arashi, H., Naito, H. and Miura, H., “Hydrogen Pro-
duction from High-Temperature Steam Electrolysis

11. Arnason, B., Sigfusson, T.I. and Jonsson, V.K.,
“New Concepts in Hydrogen Production in Iceland,”

12. Baichtok, Y.K., Mordkovich, V.Z., Korostyshevsky,
Separator,” in Hydrogen Energy Progress VIII,
Edited by T.N. Veziroglu and P.K. Takahashi, Perga-

13. Balajka, J., “The Analysis of Integrated Energy Sys-
tems,” in Hydrogen Energy Progress VIII, Edited by
T.N. Veziroglu and P.K. Takahashi, Pergamon Press,

ment of Hydrogen Production by Solar Thermol-

15. Beenackers, A.A.C.M. and Van Swaaij, W.P.M.,
“Gasification, Synthesis Gas Production and Direct
Liquefaction of Biomass,” in Energy from Biomass I,

straton Plant in Neunburg vorn Wald,” in Hydro-
gen Energy Progress IX, Edited by T.N. Veziroglu
and C. Derive-J. Pottier, International Association

17. Blazek, C.F., Donakowski, T.D., Novil, M. and
Rupinskas, R.L., “Users Guide for On-Site Electro-
lytic Hydrogen Production for Turbine Generator
Cooling Applications,” in Hydrogen Energy Progress VI, Edited by T.N. Veziroglu, N. Getoff,

Goals for Photoenhanced Hydrogen Production Pro-
cesses,” in Hydrogen Energy Progress VIII, Edited
by T.N. Veziroglu and P.K. Takahashi, Pergamon

Zealand Book Company, Sydney, Australia, 1980.

duction of Hydrogen,” in Hydrogen Energy Progress
VIII, Edited by T.N. Veziroglu and P.K. Takahashi,

of Light and Water to Hydrogen and Electric Power,”
in Hydrogen Energy Progress VI, Edited by T.N. Veziroglu, N. Getoff, and P. Weinzierl, Pergamon

Vehicles: Methodology for the Assessment of Pro-
duction, Transportation and Distribution Processes,”
in Hydrogen Energy Progress IX, Edited by T.N.
Veziroglu and C. Derive-J. Pottier, International
Association for Hydrogen Energy, Coral Gables, FL,

23. Bothe, H. and Kentemich, T., “Potentialities of H2-
Production by Cyanobacteria for Solar Energy Con-
version Programs,” in Hydrogen Energy Progress
VIII, Edited by T.N. Veziroglu and P.K. Takahashi,

Splitting Carbon Dioxide or Water,” in Hydrogen
Energy Progress VIII, Edited by T.N. Veziroglu and
615, 1990.

25. Bradke, M.V. and Schnurnberger, W., “Surface Ana-
lysis of Electrodes for Alkaline Water Electrolysis,”
Appendix A

Hydrogen Fuel for Surface Transportation

Hydrogen Fuel for Surface Transportation

Safety

Appendix A

Storage

Hydrogen Fuel for Surface Transportation

Hydrogen Fuel for Surface Transportation

Hydrogen Fuel for Surface Transportation

Vehicles

26. Feucht, K., Hörlzel, G. and Hurich, W., “Perspectives of Mobile Hydrogen Application,” in *Hydrogen Energy Progress VII*, Edited by T.N. Veziroglu and
Hydrogen Fuel for Surface Transportation

532

Hydrogen Fuel for Surface Transportation

104. Wurster, R., Bracha, M., Braedt, J., Knorr, H. and Strobl, W., “Application of LH2 cars and Urban
Hydrogen Fuel for Surface Transportation

Appendix B

Unit Conversion Factors

The following tables provide conversion factors between units in the U.S. Customary system, the metric system, and the International System (SI). To convert a quantity expressed in a unit in the left-hand column to the equivalent in a unit in the top row of a table, multiply the quantity by the factor listed as common to both units. Numbers followed by an asterisk are definitions of the relation between the two units.

Units of Pressure

<table>
<thead>
<tr>
<th>Units</th>
<th>Pa (N • m⁻²)</th>
<th>dyn • cm⁻²</th>
<th>bar</th>
<th>atm</th>
<th>mmHg (torr)</th>
<th>in. Hg</th>
<th>lbf • in⁻²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Pa (N • m⁻²)</td>
<td>= 1</td>
<td>10</td>
<td>10⁻⁵</td>
<td>9.869 x 10⁻³</td>
<td>2.953 x 10⁻⁴</td>
<td>1.450 x 10⁻⁴</td>
<td></td>
</tr>
<tr>
<td>1 dyn • cm⁻²</td>
<td>= 0.1</td>
<td>1</td>
<td>10⁻⁶</td>
<td>9.869 x 10⁻⁷</td>
<td>2.953 x 10⁻⁵</td>
<td>1.450 x 10⁻⁵</td>
<td></td>
</tr>
<tr>
<td>1 bar</td>
<td>= 10⁵*</td>
<td>10⁶</td>
<td>1</td>
<td>0.9869</td>
<td>750.0617</td>
<td>29.530</td>
<td>14.504</td>
</tr>
<tr>
<td>1 atm</td>
<td>= 101325.0*</td>
<td>1013250</td>
<td>1.013250</td>
<td>1</td>
<td>760</td>
<td>29.9213</td>
<td>14.6959</td>
</tr>
<tr>
<td>1 mmHg (torr)</td>
<td>= 133.3224</td>
<td>1333.224</td>
<td>1.333 x 10⁻³</td>
<td>1.316 x 10⁻³</td>
<td>1</td>
<td>0.0394</td>
<td>0.0193</td>
</tr>
<tr>
<td>1 in. Hg</td>
<td>= 33.86388</td>
<td>33863.88</td>
<td>0.03386388</td>
<td>0.03342105</td>
<td>25.4</td>
<td>1</td>
<td>0.4911541</td>
</tr>
<tr>
<td>1 lbf • in⁻²</td>
<td>= 6894.757</td>
<td>68947.57</td>
<td>0.06894757</td>
<td>0.06804596</td>
<td>51.71493</td>
<td>2.036021</td>
<td>1</td>
</tr>
</tbody>
</table>

Units of Length

<table>
<thead>
<tr>
<th>Units</th>
<th>μm (micron)</th>
<th>cm</th>
<th>m</th>
<th>mil</th>
<th>in.</th>
<th>mile</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 μm (micron)</td>
<td>= 1</td>
<td>10⁴</td>
<td>10⁻⁶</td>
<td>0.03937</td>
<td>3.937 x 10⁻⁶</td>
<td>6.2137 x 10⁻¹⁰</td>
</tr>
<tr>
<td>1 cm</td>
<td>= 10⁴</td>
<td>1</td>
<td>0.01*</td>
<td>3.937 x 10⁻²</td>
<td>0.3937</td>
<td>6.2137 x 10⁻⁶</td>
</tr>
<tr>
<td>1 m</td>
<td>= 10⁶</td>
<td>100</td>
<td>1</td>
<td>3.937 x 10⁴</td>
<td>39.3701</td>
<td>6.2137 x 10⁴</td>
</tr>
<tr>
<td>1 mil</td>
<td>= 25.4</td>
<td>2.54 x 10⁻³</td>
<td>2.54 x 10⁻⁵</td>
<td>1</td>
<td>0.001</td>
<td>1.5783 x 10⁻⁸</td>
</tr>
<tr>
<td>1 in.</td>
<td>= 2.54 x 10⁴</td>
<td>2.54*</td>
<td>0.0254</td>
<td>1000</td>
<td>1</td>
<td>1.5783 x 10⁻⁵</td>
</tr>
<tr>
<td>1 mile</td>
<td>= 1.6093 x 10⁹</td>
<td>1.6093 x 10⁵</td>
<td>1.6093 x 10³</td>
<td>6.336 x 10⁷</td>
<td>6.336 x 10⁴</td>
<td>1</td>
</tr>
</tbody>
</table>

Units of Area

<table>
<thead>
<tr>
<th>Units</th>
<th>μm²</th>
<th>cm²</th>
<th>m²</th>
<th>mil²</th>
<th>in.²</th>
<th>mile²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 μm²</td>
<td>= 1</td>
<td>10⁸</td>
<td>10⁻¹²</td>
<td>1.550 x 10⁻³</td>
<td>1.550 x 10⁻⁹</td>
<td>3.861 x 10⁻¹⁹</td>
</tr>
<tr>
<td>1 cm²</td>
<td>= 10⁸</td>
<td>1</td>
<td>10⁻⁴</td>
<td>1.550 x 10⁵</td>
<td>0.1550</td>
<td>3.861 x 10⁻¹¹</td>
</tr>
<tr>
<td>1 m²</td>
<td>= 10¹²</td>
<td>10⁴</td>
<td>1</td>
<td>1.550 x 10⁹</td>
<td>1550</td>
<td>3.861 x 10⁷</td>
</tr>
<tr>
<td>1 mil²</td>
<td>= 645.16</td>
<td>6.452 x 10⁻⁶</td>
<td>6.452 x 10⁻¹⁰</td>
<td>1</td>
<td>10⁶</td>
<td>2.491 x 10⁻¹⁶</td>
</tr>
<tr>
<td>1 in.²</td>
<td>= 6.452 x 10⁸</td>
<td>6.452*</td>
<td>6.452 x 10⁻⁴</td>
<td>10⁶</td>
<td>1</td>
<td>2.491 x 10⁻¹⁰</td>
</tr>
<tr>
<td>1 mile²</td>
<td>= 2.590 x 10¹⁸</td>
<td>2.590 x 10¹⁰</td>
<td>2.590 x 10⁶</td>
<td>4.014 x 10¹⁵</td>
<td>4.014 x 10⁸</td>
<td>1</td>
</tr>
</tbody>
</table>
Units of Volume

<table>
<thead>
<tr>
<th>Units</th>
<th>m³</th>
<th>cm³</th>
<th>liter</th>
<th>ln.³</th>
<th>ft³</th>
<th>qt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m³</td>
<td>= 1</td>
<td>10⁶</td>
<td>10³</td>
<td>6.103 x 10⁴</td>
<td>35.3147</td>
<td>1.0567 x 10³</td>
</tr>
<tr>
<td>1 cm³</td>
<td>= 10⁻⁶</td>
<td>1</td>
<td>10⁻³</td>
<td>0.06103</td>
<td>3.532 x 10⁻⁵</td>
<td>1.0567 x 10⁻³</td>
</tr>
<tr>
<td>1 liter</td>
<td>= 10⁻³</td>
<td>1000*</td>
<td>1</td>
<td>61.0237</td>
<td>0.0353</td>
<td>1.0567</td>
</tr>
<tr>
<td>1 in.³</td>
<td>= 1.639 x 10⁻⁵</td>
<td>16.3871*</td>
<td>0.0164</td>
<td>1</td>
<td>5.787 x 10⁻⁴</td>
<td>0.0173</td>
</tr>
<tr>
<td>1 ft³</td>
<td>= 2.832 x 10⁻²</td>
<td>28316.85</td>
<td>28.31685</td>
<td>1728*</td>
<td>1</td>
<td>2.9922</td>
</tr>
<tr>
<td>1 qt</td>
<td>= 9.464 x 10⁻⁴</td>
<td>946.353</td>
<td>0.9464</td>
<td>57.75</td>
<td>0.0342</td>
<td>1</td>
</tr>
</tbody>
</table>

Units of Mass

<table>
<thead>
<tr>
<th>Units</th>
<th>g</th>
<th>kg</th>
<th>oz</th>
<th>lb</th>
<th>metric ton</th>
<th>ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 g</td>
<td>= 1</td>
<td>10⁻³</td>
<td>0.0353</td>
<td>2.2046 x 10⁻³</td>
<td>10⁻⁶</td>
<td>1.1023 x 10⁻⁶</td>
</tr>
<tr>
<td>1 kg</td>
<td>= 1000</td>
<td>1</td>
<td>35.2740</td>
<td>2.2046</td>
<td>10⁻³</td>
<td>1.1023 x 10⁻³</td>
</tr>
<tr>
<td>1 oz</td>
<td>= 28.3495</td>
<td>0.0283</td>
<td>1</td>
<td>0.0625</td>
<td>2.8350 x 10⁻⁵</td>
<td>3.125 x 10⁻⁵</td>
</tr>
<tr>
<td>1 lb</td>
<td>= 453.5924</td>
<td>0.4536</td>
<td>16*</td>
<td>1</td>
<td>4.5359 x 10⁻⁴</td>
<td>0.0005</td>
</tr>
<tr>
<td>1 metric ton</td>
<td>= 10⁶</td>
<td>1000*</td>
<td>35273.96</td>
<td>2204.623</td>
<td>1</td>
<td>1.1023</td>
</tr>
<tr>
<td>1 ton</td>
<td>= 907184.7</td>
<td>907.1847</td>
<td>32000</td>
<td>2000*</td>
<td>0.9072</td>
<td>1</td>
</tr>
</tbody>
</table>

Units of Density

<table>
<thead>
<tr>
<th>Units</th>
<th>g cm⁻³</th>
<th>g L⁻¹ (kg m⁻³)</th>
<th>oz in⁻³</th>
<th>lb ln⁻³</th>
<th>lb ft⁻³</th>
<th>lb gal⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>g cm⁻³</td>
<td>= 1</td>
<td>1000</td>
<td>0.5780</td>
<td>0.0361</td>
<td>62.4280</td>
<td>8.3454</td>
</tr>
<tr>
<td>g L⁻¹ (kg m⁻³)</td>
<td>= 10⁻³</td>
<td>1</td>
<td>5.7804 x 10⁻⁴</td>
<td>3.6127 x 10⁻⁵</td>
<td>0.0624</td>
<td>8.3454 x 10⁻³</td>
</tr>
<tr>
<td>oz in⁻³</td>
<td>= 1.7300</td>
<td>1729.994</td>
<td>1</td>
<td>0.0625</td>
<td>108</td>
<td>14.4375</td>
</tr>
<tr>
<td>lb in⁻³</td>
<td>= 27.6799</td>
<td>27679.91</td>
<td>16</td>
<td>1</td>
<td>1728</td>
<td>231</td>
</tr>
<tr>
<td>lb ft⁻³</td>
<td>= 0.0160</td>
<td>16.0185</td>
<td>9.2592 x 10⁻³</td>
<td>5.7870 x 10⁻⁴</td>
<td>1</td>
<td>0.1337</td>
</tr>
<tr>
<td>lb gal⁻¹</td>
<td>= 0.1198</td>
<td>119.8264</td>
<td>4.7495 x 10⁻³</td>
<td>4.3290 x 10⁻³</td>
<td>7.4805</td>
<td>1</td>
</tr>
</tbody>
</table>

538
Reprint Acknowledgments

CE-CERT wishes to thank the following publishers for their permission to reprint the following articles in *Hydrogen as a Fuel for Surface Transportation*:

<table>
<thead>
<tr>
<th>International Association for Hydrogen Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.O. Box 248266</td>
</tr>
<tr>
<td>Coral Gables, FL 33124</td>
</tr>
</tbody>
</table>

Hydrogen Fuel for Surface Transportation

The Society of Automotive Engineers
400 Commonwealth Dr.
Warrendale, PA 15096-0001

SAE of Japan
10-2 Goban-cho
Chiyoda-ku
Tokyo 102
Japan

American Chemical Society
1155 Sixteenth Street, N.W.
Washington, D.C. 20036

Institute of Gas Technology
Headquarters
1700 S. Mt. Prospect Road
Des Plaines, IL 60018

Elsevier Science S.A.
P.O. Box 564
1001 Lausanne
Switzerland

540
Index

A
Activated carbon storage for on-board storage systems, 20
Active Torque Control System (ATCS), 405
Advanced concept liquid hydrogen-fueled vehicles, 70-72
Advanced separator, 225
Advanced water electrolysis (AWE), 165
Air-fuel ratio, 27
Airproducts of the Netherlands, 403
Aldehyde emission, 16
Alkaline matrix concept of fuel cells, 79, 95-101
for electric hydrogen trucks, 100
KOH impregnation of electrodes and matrix, 96-97
modified terminal blocks for testing, 97-98
parameter studies of single cell performance, 98-99
pressure strategy of matrix cell operation, 99-100
structure and fabrication of electrodes, 96
Alkaline water electrolysis (AWE), 165, 221
Allied-Signal Corporation, 90, 91
Allison Engine Co., 90
Anaerobic digestion, 170-171
Ansaldo Richerche of Italy, 403, 404
Argonne National Laboratory (ANL), 90
Asahi Chemical Company, 398
Asphyxiation, 284
Australia, hydrogen vehicle projects in, 402
Automotive test vehicles, liquid hydrogen fuel in, 69-70
AWE Technology, 224
Azienda Energetica Municipale, 90

B
Backfire, 8, 29
Bacon, Francis T., 75
Ballard Power Systems, Inc., 90, 91, 402
solid polymer fuel cell developments at, 437-444
fuel cell bus demonstration program, 441-443
fuel cell stack developments, 437-440
hydrogen/air power system, 440-441
methanol/air system, 441
Baseline emission testing, 431
Bechtel Corporation, 90
Becker, A. C., 75
Belgium
hydrogen vehicle projects in, 2, 91, 282, 360, 402
Benzene, pipeline transport of, 359-360
Berlin fleet test program, 19
Billings, Roger, 397-398
Billings Energy Corporation, 397, 398
Biomass
hydrogen production from, 353
methods of recovery, 170-172
sources of, 170
Blower, 14
BMW, hydrogen safety research by, 292-295, 397
Brazil, hydrogen vehicle projects in, 402
Buoyant velocity in N.T.P. air, 318
Burning velocity of hydrogen, 321, 344
By-product gas, 160

C
California, University of
at Los Angeles (UCLA), 401
at Riverside, hydrogen powered truck at, 425-435
Canada
hydrogen vehicle projects in, 2, 90, 91, 402-403, 403, 437-444
Carbon dioxide (CO₂) emissions, 12
Carbon monoxide (CO) emissions, 12
Carbon-based fuels, hydrogens as alternative to, 1
Carburetion, 8-9, 28, 29-30
Catalytic steam reforming
hydrogen by, 178-181
Cavendish, Henry, 1
Cecil, W., 5
Center for Electrochemical Systems and Hydrogen Research, 91
Center for Environmental Research and Technology (CE-CERT), 400
Ceramatec, 90
Challenger disaster, 281
Chassis dynamometer testing, 432
Chemical reaction series, criteria in choosing, 166-167
Chrysler Corporation, 91
Clean Air Now (CAN), 398
Clean Fuels Institute (CFI), 400
CNR Institute for Transformation and Storage of Energy, 82
Coal, HYDROCARB thermal conversion of, 207, 210-211
Coal gasification system, 161, 185, 204-206
Combustion chamber and coolant system designs, 11
Combustion characteristics in hydrogen fueled rotary engine, 479-488
Commission of the European Communities (CEC), funding of EQHHPP by, 282, 290
Compressed gas for on-board storage systems, 19-20
Compression energy recovery, 382
Compression ignition engine, 33-35
Compression ratio, 12
Constant Volume Injection (CVI) technology, 398
Control valve-injector system (CVI), 35
Core technology R&D for proton exchange membrane (PEM) fuel cells, 141-147
Cryohydrogen in space program, 58-59
Cryogenic fuel-conditioning system, 61-62
Cryogenic liquid fuel, 355-356

541
Economic issues, 363-368
ECE City Cycle,
Co.,
Dual-fuel
configuration engines,
432
Driveability,
Diffusion
velocity
Dieges,
Paul
Erren
Deutsche
Dow
Chemical
velocity
Detonation
Detonation induction
behavior of hydrogen,
283, 346-348
Density,
8
Depleted gas well storage,
387
cost of,
393-394
Desert Research Institute,
398
Detonation induction distance in N.T.P. air,
319
Detonation velocity and overpressure of hydrogen,
345
Deutsche Erren Studien Gesellschaft,
397
Dieges,
Paul B.,
401
Diesel configuration engines,
11
Diffusion velocity in N.T.P. air,
318
Diffusivity,
8
Direct cylinder injection,
10, 28, 29, 32
Direct water photolysis,
239-240
Dow Chemical Co.,
90
Driveability,
432
Dual-fuel engine applications,
15-16
DuPont Co.,
90

E
ECE City Cycle test,
406
Economic issues,
363-368
costs of depleted gas well storage,
393-394
costs of electrolyte hydrogen,
386, 395-396
costs of fuel cell electric vehicle,
86-87
costs of hydrogen,
57, 351, 366-368
costs of liquid hydrogen,
388-389
costs of mined cavern storage,
392-393
costs of pressure vessel storage,
387-388
in production
biomass,
353
costs of renewable hydrogen transportation fuels,
369-378
in storage
gaseous,
354-355
intermediate liquids (open-loop cycle),
356
for large quantities,
379-396
liquid,
355-356
reversible intermediates (closed-loop cycle),
356-357
solid,
357

F
Fault tree analysis in safety analysis,
295
Federal Test Procedure (FTP),
398
Ferrotitanium,
18
Fiju Electric,
89
Fire and explosion,
282-283
Fire extinguishment methods,
324
Fire fighting techniques,
285-286
Fireball
damage from,
322
safety research on development of,
299-302
Flame engulfment,
322
Flame speed, 7-8
Flame temperature, 345
Flammability of hydrogen, 6, 11, 342-343
Flare stacks in venting hydrogen leaks, 284
Flash point, 321
Florida Solar Energy Center, 16
Ford Motor Co., 91
Former Soviet Union, hydrogen vehicle projects in, 406
Fossil fuels, hydrogen production from, 177, 351
 coal gasification, 161
 partial oxidation, 161
 purification, 160
 steam reforming, 160
 steam-iron process, 161-162
Frostbite, 284
Fuel Cell Electric Vehicle (FCEV), 398
cost of, 86-87
Fuel cells
 alkaline matrix concept of, 79, 95-101
 for electric hydrogen trucks, 100
 KOH impregnation of electrodes and matrix, 96-97
 modified terminal blocks for testing, 97-98
 parameter studies of single cell performance, 98-99
 pressure strategy of matrix cell operation, 99-100
 structure and fabrication of electrodes, 96
definition of, 76-77
design and operation of generic, 76-77
developing, for vehicular applications, 85-87
high temperature, 83
 Molten Carbonate Fuel Cell (MCFC), 84-85
 Phosphoric Acid Fuel Cell (PAFC), 83-84
 Solid Oxide Fuel Cell (SOFC), 85
historical background, 75
in mobile systems, 117-122
potential benefits of, 75-76
principles of low temperature alkaline, 79
proton exchange membrane (PEM)
core technology R&D for, 141-147
recent progress in, at Texas A&M University, 147-154
transportation applications of, 133-140
recent developments with
 manufacturing and systems, 89-90
 transport applications, 90-91
Solid Polymer Fuel Cell (SPFC)
description of, 80
 polymer electrolyte of, 80-82
in space technology, 75
systems engineering aspects, 87-88
 air compressor, 89
 bottoming cycles, 89
 cooling, 89
 electrical storage system, 88
 power conditioning, 89
 reformers, 88-89
 water removal, 89
theoretical background for
efficiency, 77
 operational characteristics of, 77-78
types of, 78-79
Fuel delivery systems, 8-10
Fuel economy, 431
Fuel induction techniques for hydrogen operated engine, 27
 achievements and gaps, 29-33
 compression ignition, 33-35
 undesirable combustion problems, 27-28
Fuel-to-air ratio, 11
Furuhama, S., 10
Future transportation power plants, 134

G
Gas chromatography, 285
Gas storage underground, 380-381
Gas transportation by truck, 360
Gasified coal, electroconductive membrane process for production of hydrogen from, 198, 204
General Motors (GM), 90
 work of, on proton exchange membrane (PEM) fuel cell, 133-140
German Aerospace Research Establishment (DFVLR), 399
Germany
 contribution to demonstrated technical feasibility of liquid-hydrogen fueled passenger automobile in, 57-72
 hydrogen vehicle projects in, 57-62, 403-404, 445-449
Glass microspheres for on-board storage systems, 22
Graf Zeppelin, 5
Green Car, 398, 411-424
design of, 412
 battery system, 413
 electric motor and motor controller system, 412-413
 fuel cell power system, 413
 fuel cell stacks, 413-414
 fuel cell voltage regulator system, 415
 fuel storage and management subsystem, 414
 instrumentation, 416
 microprocessor-based programmable controller, 415-416
 oxidant management subsystem, 414-415
 transmission system, 413
 vehicle body, 412
 water management subsystem, 415
factors affecting performance, 418
 air compressor, 419
 drive motor/controller, 418
 fuel cell stacks, 419
 microprocessor-based programmable controller, 419-420
future improvements, 420
performance of
 emissions, 418
 fuel consumption and range, 417
 noise, 418
 responsivity, 417-418
 safety and reliability, 418
 vehicle speed and acceleration, 416-417
Greenhouse effect, 260
Greenhouse gas CO₂, 1
Grove, William R., 75
Hydrogen Fuel for Surface Transportation

H
Haldane, John Burdon Sanderson, 5
Hall effect sensors, 412-413
Hawthorne Research and Testing, Inc., 401-402
Heavy oil, hydrogen from partial oxidation of, 181, 183-185
HERMES project, 95
High energy radiation process, 212
High temperature electrolysis (HTE), 166, 221, 225
combined coal gasification with, 204-206
of steam, 197-198
High temperature fuel cells, 83
molten carbonate, 84-85, 103-108
bipolar plate corrosion, 107-108
electrode deformation, 108
NiO cathode dissolution, 106-107
sulfur contamination, 108
technology, 103
phosphoric acid, 83-84
solid oxide cell, 85, 109-115
flat plate design, 114-115
monolithic design, 114
seal-less tubular design, 112-113
segmented cell-in-series design, 113-114
stack components, 109-111
stacking cells, 111-115
High-pressure electrolysis, 224-225
High-pressure tube storage, 386
Hindenburg incident, 2, 5, 281-282, 315
Hitachi, 90
Hot air-jet ignition temperature, 318
Hot potassium carbonate, 179
H-Power Corporation, 20, 90, 398
HR-X2, 405-406
HTE Technology, 224
Hybrid conceptual vehicle, 135
Hybrid fuel cell/battery powered electric vehicle, development of, 411-424
Hybrid water splitting systems, 245-247
HYDROCARB thermal conversion of coal, 207, 210-211
Hydro-Electric Commissions of Tasmania, Australia, 402
Hydroelectric power, 353
Hydrogen
as alternative to carbon-based fuels, 1
by catalytic steam reforming of natural gas, 178-181
cost of, 57, 351, 363-368, 366-368
early interest in, 5
as explosive hazard, 325-328
fire hazards of, 320-325
future applications for, 329-330
gen general physical and chemical properties of, 6, 315-319
 cleanness of, 1, 366
density, 8
diffusivity, 8
flame speed, 7-8
limits of flammability, 6
minimum ignition energy, 6-7
quenching gap or distance, 7
self-ignition temperature, 7
specific gravity of, 336
thermal efficiency, 366
from methanol, 117-122
rationale for using, as chemical fuel, 57
safety record of, 2-3
storage of large quantities of, 379
available technologies, 379-380
definition of procedure and scenarios, 382-385
economic assessments, 385-386
energy recovery, 382
observations, 386-387
state-of-the-art, 380-382
technologies for producing, from renewable sources, 2
vehicular onboard containment of, 60-62
Hydrogen automotive engine development, 62-64
Hydrogen bomb, 281
Hydrogen combustion, safety aspects of, in hydrogen energy systems, 341
 basic characteristics, 342-345
 burning velocity, 344
detonation velocity and overpressure, 345
explosion energy, 345
flame temperature, 345
limits of flammability and ignition mechanism, 342-343
deflagration and detonation behavior, 346-348
goals, 341-342
Hydrogen Consultants, Inc. (HCI), 16, 398
Hydrogen energy systems, safety aspects of hydrogen combustion in, 341
 basic characteristics, 342-345
 burning velocity, 344
detonation velocity and overpressure, 345
explosion energy, 345
flame temperature, 345
limits of flammability and ignition mechanism, 342-343
deflagration and detonation behavior, 346-348
goals, 341-342
Hydrogen Induction Technique (HIT), 9, 30
Hydrogen leakage, techniques for detection of, 321
Hydrogen production, 159
from biomass
 methods of recovery, 170-172
 sources of, 170
 by cyanobacteria, 251
 manipulation of, 252-253
economical and technical evaluation of UT-3 thermochemical, 229-232
conceptual design of, 229, 232
description of, 232-234
economics of, 234, 237
feature of, 229
thermal efficiency of, 233-234
from fossil fuels, 159, 177
 by catalytic steam reforming of natural gas, 178-181
cos coal gasification, 161, 185
combined goal gasification with high temperature electrolysis, 204-206
comparative assessment, 213-217
electroconductive membrane process for production of
Index

Hydrogen from gasified coal, 198-204
HYDROCARB thermal conversion of coal, 207, 210-211
partial oxidation, 161, 181, 183-185
plasma, solar and radiation processes, 212
purification, 160
solar photovoltaic water electrolysis process, 212-213
steam reformation, 160
steam-iron process, 161-162, 191-194
thermal cracking of natural gas, 206-207
thermochemical water-splitting processes, 211-212
water electrolysis, 194-197
photo conversion in, 167-169
photoelectrochemical and photocatalytic methods of, 239
direct water photolysis, 239-240
hybrid water splitting systems, 245-247
liquid-function transducers, 240-243
photocatalytic, 244-245
photogalvanic cells, 243-244
solar radiation, 239
pine and willow as carbon sources in reaction between carbon
and steam to, 259-276
technology assessment of advanced electrolytic, 221-224
advanced separator, 225
electrocatalysis, 225-226
high-pressure electrolysis, 224-225
high-temperature electrolysis, 225
thermochemical water decomposition, 166-167
water electrolysis in, 162-166
Hydrogen storage tanks, 447
Hydrogen supply system, 447-448
Hydrogen vehicle projects
in Australia, 402
in Belgium, 2, 90, 91, 282, 360, 402, 437-441
in Brazil, 402
in Canada, 2, 91, 402-403, 403
in former Soviet Union, 406
in Germany, 57-62, 403-404, 445-449
in Italy, 404
in Japan, 44-45, 404-405, 404-406, 469-477
in Romania, 406
in United States, 397-402, 425-435
Hydrogen-air mixtures, flammability of, 343
Hydrogen-fueled automobiles
current development and outlook for, 455-466
social requirements and technological development of, 37-45
as clean energy for automobile use, 37-38
external mixing system and backfire, 39
fuel tank for, 38-39
internal mixing system, 39-40
LH2 pump high-pressure injection method, 40-43
Musashi-8, 44-45
Hydrogen-fueled engine
combustion characteristics in rotary, 479-488
development of, 5
fuel induction techniques for, 27
achievements and gaps, 29-33
compression ignition, 33-35
undesirable combustion problems, 27-28
internal combustion, 2
safety aspects of, 335
curative and preventive maintenance, 337-338
design considerations, 335-337
engine specific system, 338-340
special characteristics of
combustion chamber and coolant system designs, 11
diesel configuration, 11
dual-fuel applications, 15-16
emissions, 12, 13
fuel delivery systems, 8-10
IC engines for hybrid vehicles, 16
power output, 12, 14-15
preignition problems, 8
quality control, 11
thermal dilution to eliminate premature ignition problems,
10-11
thermal efficiency, 12
HYPASSE (hydrogen powered automobiles using seasonal and
weekly surplus of electricity), at Daimler-Benz, 2, 403-404,
445-449
HY-TEST, 16
Hytane, 16, 47-56
in lean burn engines, 48, 49-52
stoichiometric with three-way catalysis engines, 48, 52-56
I
IC engines for hybrid vehicles, 16
IEM (Ion Exchange Membrane), 82
Ignition
safety research on, 304
Ignition energy, 6, 27
Ignition mechanism of hydrogen, 342-343
IME Technology, 224
Impulse and shrapnel damage, 322
Infinite supply potential, 27
Injector only system (IOS), 35
Inlet manifold injection, 9, 28
Inlet port injection, 9, 28
Inorganic membrane alkaline electrolyser (IME), 221
In-solution metal complexes, 168-169
Intake port injection, 30
International Association for Hydrogen Energy (IAHE), 58
International Fuel Cells Corporation (IFC), 89
Iron oxidation-reduction, 211-212
Ishika-Wajima-Harima Heavy Industries (IHI), 90
Italy, hydrogen vehicle projects in, 404
J
Jacques, W. W., 75
Japan
fuel cell development in, 89
hydrogen vehicle projects in, 44-45, 404-406, 469-477
Jet Propulsion Laboratory (JPL) of California Institute of
Technology, 15
Jordan, Ben, 398-399

545
Hydrogen Fuel for Surface Transportation

K
Karlsruhe Nuclear Research Center, 95
King, R. O., 9
Knocking, efforts to eliminate, 15-16
Kombi-VW van, 402
Koppers-Toztek process, 161, 185, 190-191

L
Laminar burning velocities of stoichiometric mixtures, 346
Late Injection, Rapid Ignition and Mixing (LIRIAM) technique, 32-33
Lawrence Livermore, 16
Leak rate, 10
Leakage points, keeping number of potential small, 292-293
Leaks, undetected, as cause of hydrogen accidents, 284-285
Lean burn engines, 48, 49-52
LH₂ refrigerator van Musashi-9, some performance of engine and cooling system on, 469-477
LH₂ tank systems, aspects of safety and acceptance of, in passenger cars, 289-314
Lightning rods, 285
Liquefied natural gas, properties of, 315-319
Liquid hydrogen
- automotive test vehicles using, 69-70
 - cost of, 388-389
 - for on-board storage systems, 16-17
 - storage of, 386
 - in passenger car, 291-292
Liquid hydrogen fueled vehicles
- advanced concept, 70-72
- Germany's contribution to demonstrated technical feasibility of, 57-72
- safety aspects of, 70
Liquid pools
- without burning, vaporization rates of, 319
- burning rates of spilled, 319
Liquid transportation
- by rail, 360
- by truck, 360
Liquid-function transducers, 240-243
LIRIAM (Late Injection, Rapid Ignition and Mixing) technique, 32-33
Los Alamos National Laboratory (LANL), 16, 90, 91, 399
Low pressure direct cylinder injection, 30
Lynch, Frank, 398

properties of, 315-319
- steam reforming of, 177
- Methanol, hydrogen from, 117-122
- Methylcyclohexane-toluene-hydrogen system, 360
- Miami, University of, 401-402
- Microprocessor control, 34-35
- Microsphere, 355
- Middle Tennessee State University, 399-400
- Mined cavern storage, cost of, 392-393
- Minimum ignition energy, 6-7
- Minnesota hybrid willow (Salix viminalis), as carbon sources in reaction between carbon and steam in hydrogen production, 259-276
- Minnich, Dwight B., 401
- Mitsubishi Electric Corporation (MELCO), 90
- Molten Carbonate Fuel Cell (MCFC), 84-85
- Monoethanolamine (MEA), 179
- Musashi-1, 404
- Musashi-2, 404-405
- Musashi-8, 10, 44-45, 405
- Musashi-9, 405, 469-477
- Musashi Institute of Technology (MIT), 404

N
Nafion 117, 82
Nafion Proton Exchange Membrane (PEM), 398
Nardecchia, Frederick F., 401
National Aeronautics and Space Administration (NASA), use of liquid hydrogen by, 281
National Rural Electric Cooperative, 90
Natural gas
- hydrogen by catalytic steam reforming, 178-181
- thermal cracking of, 206-207
- Nickel oxide, use of, for molten carbonate fuel cells (MCFCs) cathodes, 105
- Nitrogen oxides (NOₓ) emission, 12
- Nitrogenase, 169
- NOₓ emission, efforts to reduce, 16
- N.T.P. air
 - buoyant velocity in, 318
 - detonation induction distance in, 319
 - diffusion velocity in, 318
 - maximum experimental safe gap in, 318
 - quenching gap in, 319

M
Marine transportation, 360
Maximum experimental safe gap (MESG) in N.T.P. air, 318, 321
Mazda Corporation, 405-406
M-C Power Corporation, 90
Membrane-bound uptake hydrogenase, 169
Mercedes-Benz, dual-fuel engines in, 15
Metal hydrides, 357
- for on-board storage systems, 17-19
- Metering valve-injector system (MVIS), 35
Methane

On-board storage systems
- activated carbon storage, 20
- compressed gas, 19-20
- glass microspheres, 22
- liquid hydrogen, 16-17
- metal hydrides, 17-19
- steam-oxidation of iron, 20
- ONSI Corporation, 89
- Optical sensors, 324
- Oxides of sulfur (SO₂) emission, 12
- Oxygen index, limiting, 319

546
Index

P
Parabolic dish systems, 352
Parabolic troughs, 352
Parallel induction, 30
Partial oxidation (POX), 161
of heavy oil, 181, 183-185
Passenger cars, aspects of safety and acceptance of LH2 tank systems in, 289-314
PEM (Proton Exchange Membrane), 80, 82
Penner Committee, 148
Perris Smogless Automobile Association, 401
Phosphoric acid fuel cell (PAFC), 83-84, 89
development of bus, 129-131
Photo conversion, 167-168
cyanobacteria, 169
eukaryotic algae, 169
in-solution metal complexes, 168-169
photobiological processes, 169
photochemical processes, 168
photosynthetic bacteria, 169
semiconductor systems, 168
Photobiological processes, 169
Photocatalytic methods, 244-245
Photochemical processes, 168
Photoelectrochemical methods, 240-244
Photogalvanic cells, 243-244
Photolytic process, 212
Photosynthetic bacteria, 169
Pipeline distribution of hydrogen, 357-360
Planck's law of radiation, 301
Plasma, solar and radiation processes, 212
Plasma-arc process, 212
Ponderosa pine (Pinus ponderosa), as carbon sources in reaction between carbon and steam in hydrogen production, 259-276
Power output, 12, 14-15
Preignition, 8
Pressure relief devices, 285
Pressure swing adsorption (PSA), 179
Pressure vessels, 380
cost of storage, 387-388
Pressure waves, safety research on, 302-306
Proton exchange membrane (PEM) fuel cell
core technology R&D for, 141-147
recent progress in, at Texas A&M University, 147-154
transportation applications of, 133-140
Purging, 285
Purification, 160

Q
Quality control, 11
Quenching gap or distance, 7, 27, 321
in N.T.P. air, 319

R
Railroad
liquid hydrogen transportation by, 360
Regenerative braking, 412

Renewable hydrogen transportation fuels, 369-378
Residual exhaust gas recirculation (EGR), 8
Rickets, Cliff, 399
Rock cavern storage, 387
Rokka Island Test Center for Advanced Energy Systems, 90
Romania, hydrogen vehicle projects in, 406
Rupture discs, 285

S
Safety issues
accidents in, 281-282
evaluations in, 282
hazards in
asphyxiation and frostbite, 284
fire and explosion, 282-283
overpressure, 283-284
physical properties, 282
in hydrogen-fuelled engine system development, 335
curative and preventive maintenance, 337-338
design considerations, 335-337
engine specific system, 338-340
of hydrogen-powered vehicles, 447
involving hydrogen combustion in hydrogen energy systems, 341
basic characteristics, 342-345
burning velocity, 344
detonation velocity and overpressure, 345
explosion energy, 345
flame temperature, 345
limits of flammability and ignition mechanism, 342-343
deflagration and detonation behavior, 346-348
goals, 341-342
for LH2 tank systems in passenger cars, 289-314
preventive and safety measures
embrittlement, 286-287
fire fighting techniques, 285-286
leaks and spills, 284-285
pressure relief devices, 285
preventing explosions, 286
purging, 285
shrapnel protection, 286
Saft of France, 403
Salt cavern storage, 386-387
dry mode, 390-391
wet storage, 391-392
Sandia Livermore, 16
Self-ignition temperature, 7
Shrapnel protection, 286
Sikorski, I. I., 5
Smoke inhalation, 323-324
Solar cells, unit prices for, 352
Solar hydrogen energy system
materials and energy requirement of, 364-366
process analysis of, 363-364
Solar photovoltaic water electrolysis process, 212-213, 351-352
Solar radiation, 239
Solar thermal techniques, 352
central-receiver systems, 352-353
parabolic dish, 352
parabolic troughs, 352
Solar Wasserstoff Bayern AG research center, 90
Solid oxide fuel cell (SOFC), 85, 109-115
flat plate design, 114-115
monolithic design, 114
seal-less tubular design, 112-113
segmented cell-in-series design, 113-114
stack components, 109-111
stacking cells, 111-115
Solid polymer electrolysis (SPE), 147-154, 165, 221
Solid polymer fuel cell, 80-83
description of, 80
developments at Ballard Power Systems, Inc., 437-444
fuel cell bus demonstration program, 441-443
fuel cell stack developments, 437-440
hydrogen/air power system, 440-441
methanol/air system, 441
parameters for vehicles, 86
polymer electrolyte of, 80-82
Space program
cryohydrogen in, 58-59
fuel cells in, 75
liquid hydrogen in, 6, 341
SPE Technology, 224
Spring-loaded safety valves, 285
Steam, high temperature electrolysis of, 197-198
Steam reforming, 160
of methane, 177
Steam-iron process, 161-162, 191-194
Steam-oxidation of iron for on-board storage systems, 20
Stewart & Stevenson, 90
Stirred-tank reactors, 171
Stoichiometric with three-way catalysis engines, 48, 52-56
Sulfinol, 179
Surface ignition, 27
Surface transportation, hydrogen as fuel for, 366-368

T
Tank bursting, safety research on, 296, 298-299
Tank storage of hydrogen, 354-355
Technology Management, Inc., 90
Temperature, self-ignition, 7
Texaco gasification process, 161, 190, 191
Thermal cracking of natural gas, 206-207
Thermal efficiency, 12, 16
Thermal radiation, 322
Thermal sensors, 324
Thermochemical conversions, 171
Thermochemical water decomposition
basic concepts, 166
criteria in choosing chemical reaction series, 166-167
current status, 167
Thermochemical water-splitting processes, 211-212
Timed manifold injection, 9-10, 30, 31
Timed port injection, 30
Tokyo Electric Power Company, 89
Truck
liquid hydrogen transportation by, 360
Turbo boost bypass valve, 432-433
Turbocharger, 14

U
Underground storage of hydrogen, 355
Underwood, Patrick Lee, 401
UNICAMP laboratory, 402
Unique Mobility, Inc., 412
Unit conversion factors, 537-538
United States
hydrogen projects in, 425-435
abnormalities, 432-433
instrumentation, 430-431
preliminary vehicle evaluation, 431-432
recommendations for further research, 434
vehicle and engine modifications, 428-430
hydrogen vehicle projects in, 397-402, 425-435
United Technologies Corporation (UTC), 84
UT-3 thermochemical hydrogen production process, economical and technical evaluation of, 229-232
cost evaluation of, 229, 232
design of, 232-234
economics of, 234, 237
feature of, 229
thermal efficiency of, 233-234

V
Vehicle and mission analysis, 135
Vehicular applications, developing fuel cells for, 85-87

W
Water electrolysis, 194-197, 351-353
advanced water, 165
basic concepts and components, 162-163
basic design, 163
current designs, 165
high temperature, 166
solar photovoltaic, 212-213
solid polymer, 165
theoretical principles, 163-165
Water injection, 8, 10-11
Weil, Kurt, 10, 397
Westinghouse Electric Corporation, 90
Wet scrubbing process, 160, 179
Wind power, 353

Z
Ztec, 90
Zweig, Robert, 400