p. 25 Eq. 1.4.5 should read:

\[F_{tdc} + G_{tdc} = \sqrt{(L_{cr} + L_{ct})^2 - D^2} \]

Eq. 1.4.6 should read:

\[\theta_{tdc} = \tan^{-1}\left(\frac{D}{F_{tdc} + G_{tdc}}\right) \]

Eq. 1.4.8 should read:

\[F_{tdc} = -L_{ct} \cos \theta_{tdc} + \sqrt{(L_{cr} + L_{ct})^2 - D^2} \]

Eq. 1.4.9 should read:

\[F_{bdc} = \sqrt{(L_{cr} - L_{ct})^2 - D^2} \]

p. 26 Eq. 1.4.18 should read:

\[H_i = \sqrt{(L_{cr} + L_{ct})^2 - D^2} - \sqrt{L_{cr}^2 - (L_{ct} \sin \theta - D)^2} - L_{ct} \cos \theta \]

p. 412 Paragraph 4, last line, “enging” should read “engine.”

pp. 568 and 569 In the captions of Figs. 5.36(b) through 5.40, “Ducati 995” should read “Ducati 955.”

pp. 294 and 296 Figures 2.58(a) and 2.58(b), referred to on these pages, are missing from the text. These two figures are reproduced below:

![Friction causing wave reflections from compression and expansion waves.](image)

Fig. 2.58 Friction causing wave reflections from compression and expansion waves.
Postscript

I can think of no better postscript for this book than to continue the unimaginative pattern of applying the doggerel verse that originally appeared on the flyleaf of the previous book. The fact is that the sentiments expressed then are even more apt in this book than they were in that dedicated to the design of two-stroke engines, particularly as the four-stroke engine is highlighted in a winning context, Jack Williams and Joe Craig and their 7R AJS and Manx Norton racers are rightly lauded in the text, and the last line became prophetic.

THE SECOND MULLED TOAST

When as a student a long time ago
my books gave no theory glimmers,
why two-strokes ended in second place slow,
and four-strokes were always the winners.

Williams and Craig were heroes enough
whose singles thumped to Tornagrough,
such as black 7R or silver Manx,
on open megas they enthused the cranks.

Wallace and Bannister gave me the start
into an unsteady gas dynamic art,
where lambdas and betas meshed in toil
for thirty years consumed midnight oil.

With the parrot on Bush a mental penny
into slot in brain fell quite uncanny.
Lubrication of grey cells finally gave
an alternative way to follow a wave.

That student curiosity is sated today
and many would describe that as winning.
Is this then the end of the way?
No, learning is aye a beginning.

Gordon Blair, July 1994

…and finally, to answer those many queries…

Tornagrough (pronounced as “tawernagruff”) is a bend on the Dundrod circuit where the Ulster Grand Prix is held and at which spot I watched Juan Manuel Fangio flip a BRM backward and was a flag marshal forty years ago when John Surtees won on the MV Agusta…and Bush is the local colloquialism for the amber nectar produced at the world’s oldest licensed whiskey distillery at Bushmills, Co. Antrim, a modicum of which has been known to ease the pain caused by reading a book containing excessive quantities of thermodynamics and unsteady gas dynamics…
Appendix

Computer Software and Engine Simulation Model

1. Computer Software for Education and Design

The following software is available from SAE as a single executable file for installation on either IBM® PC (or compatible) or Macintosh® computers. This software has been written by the author of this book and contains a series of programs based on the theory within the various chapters of the book. These can be easily accessed in a user-friendly format.

Each program contains an information page detailing precisely the theory being employed and its location within the book. Included are tips and hints on how to use the program most effectively.

Each program also contains a set of input data straight from the relevant section of the book. By clicking the 'calculate' button, the program produces the same numbers and graphics that appear on the printed page. The ensuing variation of, and computation of, input data greatly enhances the discussion presented in the book.

Many of the programs allow input and output data to be inserted into other graphics packages, retrieved for further design activity, or transmitted to others for, say, manufacturing purposes.

The following is a complete listing of the programs in this software package:

1. Engine and Crank Geometry (based on theory in Chapter 1)
2. Basic Engine Performance (based on theory in Chapter 1)
3. Four-Valve Head Layout (based on theory in Chapter 1)
4. Two-Valve Head Layout (based on theory in Chapter 1)
5. Exhaust Valve Design (based on theory in Chapters 1 and 6)
6. Intake Valve Design (based on theory in Chapters 1 and 6)
7. Air Standard Otto Cycle (based on theory in Chapter 1)
8. Air Standard Diesel Cycle (based on theory in Chapter 1)
9. Otto Cycle (Phased Burn) (based on theory in Chapters 1 and 4)
10. Diesel Cycle (Phased Burn) (based on theory in Chapters 1 and 4)
11. Simple Wave Flow (based on theory in Chapter 2)
12. Wave Superposition (based on theory in Chapter 2)
13. Friction and Heat Transfer (based on theory in Chapter 2)
Design and Simulation of Four-Stroke Engines

14. Temperature Discontinuity (based on theory in Chapter 2)
15. Restricted Pipe (based on theory in Chapter 2)
16. Three-Way Branched Duct (based on theory in Chapter 2)
17. Cylinder-Pipe Boundary (based on theory in Chapter 2)
18. Valve Discharge Coefficient (based on theory in Chapter 3)
19. Intake Ramming (based on theory in Chapter 6)
20. Exhaust Tuning (based on theory in Chapter 6)
21. Diffusing Silencer (based on theory in Chapter 7)
22. Side-Resonant Silencer (based on theory in Chapter 7)

For more information on this or other SAE products, contact SAE Customer Sales and Support at 724-776-4970; fax 724-776-0790; e-mail: publications@sae.org; web: www.sae.org/BOOKSTORE.

2. Engine Simulation Model

An engine simulation model, similar to the GPB simulation model described in this book, is available for installation on IBM® PC (or compatible) computers. This model is based on the theory within the various chapters of the book. The application of the model is discussed in Chapters 5–7.

The GPB simulation model described within this book was written by the author exclusively for the Macintosh® Power PC computer, whereas that written for the IBM® PC platform has been produced through the joint efforts of the author and the personnel of OPTIMUM Power Technology of Bridgeville, Pa.

The engine simulation model for the IBM® PC platform will simulate a single-cylinder naturally-aspirated four-stroke engine with the following attributes:

- Almost any two-valve or four-valve cylinder head
- Almost any intake ducting geometry and simple silencer
- Almost any exhaust ducting geometry and simple silencers

In addition, the model allows the following:

- Selection from a menu of Diesel and Otto cycle combustion processes
- Varying of Otto and Diesel fueling over a sufficiently wide range
- Selection from a limited menu of discharge coefficient maps for valves, etc.
- Selection from a limited menu of diesel and gasoline fuels

The input data for the simulation have been prepared in a user-friendly format, and are supplied in a separate program with the simulation. This program contains information and help pages to assist the user.

The simulation model and the input preparer package permit the user to insert input and output data into other graphics packages and retrieve the input data for further design activity. The output data appears as a prediction of the engine performance characteristics, including power, torque, fuel consumption, airflow, emissions and noise characteristics, etc., and the associated time-varying data of pressures, temperatures, etc., much as presented within
Appendix

Chapters 5–7 of the book. Users must have Microsoft® Excel available on the computer to observe the graphic output data from the simulation.

For more information on this or other SAE products, contact SAE Customer Sales and Support at 724-776-4970; fax 724-776-0790; e-mail: publications@sae.org; web: www.sae.org/BOOKSTORE.
Index

Ackroyd-Stuart, 16-17
Adiabatic processes
 compression (diesel), 112-113
 compression (Otto), 86-87
 expansion (diesel), 114-115
 expansion (Otto), 88
 gas property relationships (closed cycle), 142-144
 work (closed cycle, no heat transfer), 138-139
 work (closed cycle, with heat transfer), 139-140
Agostini, Giacomo, 548
Air, properties of
 and QUB SP experimental apparatus, 309-310
Air flow, expressions for
 air density, 54, 55
 air reference mass, 54, 55
 charge purity, 57-59
 charging efficiency, 59
 cylinder trapping conditions, 62
 delivery ratio, 54-55
 dimensionless criteria, commentary on, 55-56
 mass of, total, 623
 scavenge ratio, 55
 scavenging efficiency, 57-58
 trapping efficiency, 57
 volumetric efficiency, 54
 See also Delivery ratio
Air-fuel ratio (AFR)
 air-fuel mixture limits (for flammability), 410
 and CO formation (two-zone SI model), 511-512, 516, 518
 and CO₂ formation (two-zone SI model), 516, 518
 and cylinder peak temperatures (two-zone SI model), 513
 in diesel engines, 61
 equivalence ratio, 105-106, 423-424
 in gasoline SI engines, 59-60
 and mean effective pressure, 106-107
 vs. measured torque output (Ryobi engine), 538-539, 540
 octane, combustion of, 59-60
 overall vs. trapped, 73-74
 vs. specific fuel consumption, 106, 108
Air-fuel ratio (AFR) (continued)
 stoichiometric AFR, diesel vs. SI, 61
 and thermal efficiencies, 106-107
 and two-zone SI combustion modeling, 509-512
Ajakaiye, B.A., 491
AJS 7R motorcycle engine
 cutaway view, 549
 development of, 548
 See also Seeley G50 motorcycle engine
Allison, J.L., 478
“American” V-8 engine (Camaro)
 cutaway view, 529
 double-plane crankshaft of, 529-530
Amsden, A.A., 472
Anwand, W.J.D, 432-435, 699, 721
Asymmetrical firing, effects of
 delivery ratio, 583
 on exhaust pressures (Nissan IRL engine), 581, 582
 inter-cylinder airflow variations (Nissan IRL engine), 580-581
 inter-cylinder fueling control difficulties with, 584
 inter-cylinder torque variations (Nissan IRL engine), 580-581
 power and torque (single vs. double-plane crankshafts), 583-584
 tuning, comments on, 584-585
 See also Crankshafts, double-plane
Aurora V-8 engine (Oldsmobile)
 cutaway view, 532
 firing sequence, 529-530
 installation in IRL (Indy) car, 533

Bannister, F.K., 256, 769
Bearings, antifriction
 finep, defined, 535
 plain, for (diesel engines), 536
 plain, for (SI engines), 536
 rolling element, (SI engines), 536
Benson, R.S. See Pressure wave reflection, Benson constant-pressure solutions to
Beranek, L.L., 701
Bingham, J.F., 228-230
Blizard, N.C., 470
Blowdown, exhaust See Exhaust blowdown
Blower air pressure
 vs. fueling level (DI diesel engine), 456, 458
Bore-stroke ratio
 diesel vs. SI engines, 80, 81
 square vs. oversquare engines, 80, 81
Boretti, A.A., 567
Bosch smoke number
 vs. fueling level (DI diesel engine), 458, 459
Bottom dead center, defined, 3, 25

Brake mean effective pressure
 vs. AFR (two-zone SI model), 510
 bmep/imep, Ryobi engine, 539, 542
 bmep/imep, Seeley G50 engine, 556, 557
 from dynamometer testing (Otto), 72
 vs. equivalence ratio (turbo DI Diesel), 126, 128
 and friction/pumping losses, 107, 108-109
 mean effective pressure, discussion of, 68, 69
 of Nissan Infiniti 4.0L IRL engine, 577-578
 and potential power output (by engine type), 77-79, 80-81
 single- vs. double-plane crankshafts (Nissan IRL engine), 583, 584
 See also Manifold-to-port area ratio; Time-area relationships; Valve lift

Brake power output (Otto, dynamometer), 71-72

Brake thermal efficiency
 from dynamometer testing (Otto), 72
 effect of AFR on, 106-107
 vs. equivalence ratio (diesel phased burn), 125, 127, 128
 See also Thermal efficiency

Brunt, M.J., 419

BSA 500 engine, pressure transducers on, 551-552, 553

Butted joints
 intake throttle geometry as “butted joint” elements, 392-399
 pressure wave reflections at, 219-225

Camshaft speed vs. crankshaft speed, 10

Carbon dioxide
 dissociation, effects of, 428-429
 effect of AFR/crank angle on (two-zone SI model), 516, 518
 in lean-mixture combustion, 427
 and QUB SP experimental apparatus, 309-310
 in rich-mixture combustion, 425-426, 429
 See also Exhaust emissions, basics of

Carbon monoxide
 vs. AFR/crank angle (two-zone SI model), 511-512, 516, 518
 brake specific CO emission (bsCO), 75
 bsCO rate, expression for, 503
 CO emission (Ryobi engine), 539, 541
 dissociation, effects of, 428-429, 514-515
 effect of oxygen on (two-zone SI model), 515-516
 in rich-mixture combustion, 426, 429
 See also Exhaust emissions, basics of

Charge purity
 2000 cm³ sports car engine, 597
 of Ducati 995 V-twin engine, 569, 571, 572
 gas purity through closed cycle, 469
 precise definition (for engine simulation), 537
Design and Simulation of Four-Stroke Engines

Charge purity (continued)
of Ryobi engine, 539, 540, 546-547
and scavenging efficiency, 57-59
of Seeley G50 engine, 560, 561
trapped (sports car engine), 596-597
of turbocharged 2000 cm³ diesel, 609, 610, 612-614

Charging efficiency
vs. AFR (two-zone SI model), 510
defined, 59
and delivery ratio/trapping efficiency, 59
of Ducati V-twin engine, 568
of Seeley G50 engine, 554, 555, 557
stub, straight pipe and collector systems compared (ITC “single” engine), 672, 673

Chen, C., 256

Closed cycle, thermodynamics of
adiabatic work process (no heat transfer), 138-139
adiabatic work process (with heat transfer), 139-140
equations of state, 132-133
first law of thermodynamics for, 133-137
gas property relationships, polytropic, 142-144
heat transfer (constant volume), 140-141
heat transfer (polytropic process), 141-142
heat transfer/work (constant pressure), 146-147
heat/energy transfer in, 135-137
p-V changes for, 133, 134
single-cylinder, four-stroke example, 134
specific heats (constant volume, pressure), 137
thermodynamic cycle, definition of, 135
See also Combustion model, two-zone; Heat transfer, closed-cycle

Closed cycle modeling (theoretical)
simple model: heat release/mass fraction burned, 466
complex model: heat release/mass fraction burned, 466-470
gas purity through closed cycle, 469
one-dimensional flame-propagation model (SI engine), 470-471
three-dimensional combustion model (SI and diesel engines), 471-473
two-zone combustion model See Combustion model, two-zone

Coates, S.W., 153, 705-712, 716-718, 719-720

Combustion, compression-ignition
basic processes in, 413-414
combustion analysis (turbo DI truck engine), 454, 456
constant pressure combustion, 114
constant volume combustion, 113
heat loss from fuel vaporization, 436
phased combustion, mass fraction burned, 119-121
trapped equivalence ratio, effect of, 432
See also Combustion chemistry; Heat release data (compression-ignition engines)

Combustion, spark-ignition
active radical combustion, 411
Combustion, spark-ignition (continued)
air-fuel mixture limits (for flammability), 410
auto-ignition temperature, defined, 408
basic ignition process, 408-409
combustion chemistry See Combustion chemistry
Combustion efficiency/equivalence ratio (lambda), 106
computational difficulties of, 82-84
flame front vs. explosive process, 409
fuel characteristics See Fuels, characteristics of
heat release during, 62, 420-421
homogeneous vs. stratified combustion, 412
scavenging efficiency, effect of, 410-411
See also Combustion, compression-ignition; Combustion model, two-zone; Heat release
data (spark-ignition engines); Phased burn (Otto cycle)

Combustion chambers, diesel engine
basic geometry of, 414-415, 452, 453, 454
Comet chamber (IDI diesel engines), 21
Mexican hat chamber, 18, 453
See also Squish

Combustion chambers, SI engine
basic geometry of, 414-415

Combustion chemistry, fuel
air-fuel ratio, molecular, 423
air-fuel ratio, stoichiometric, 423-424
carbon dioxide formation See Carbon dioxide
carbon monoxide formation See Carbon monoxide
combustion efficiency, factors for, 431-432
combustion process, hydrocarbon fuel, 502
dissociation, effects of, 427-429, 506, 514-515, 518
equivalence ratio, defined, 105, 424
equivalence ratio, rich mixture, 425-426
exhaust emissions See Exhaust emissions, basics of
gasoline, combustion of, 445-448, 473
hydrocarbon emissions See Hydrocarbon emissions
lean-mixture combustion, 426-427
methanol, combustion of, 448-451
NO formation in See Nitric oxide
octane, stoichiometric combustion of, 422-423
rich-mixture combustion, 424-426
“water gas” reaction, 422, 506, 514
See also Combustion (various); Heat release data (various)

Combustion model, two-zone
AFR and two-zone modeling, 509-512
bmep vs. AFR, 510
bsCO vs. AFR, 511-512
bsfc vs. AFR, 510
bsNO vs. AFR, 511-512
charging efficiency vs. AFR, 510
Combustion model, two-zone (continued)
CO, effect of crank angle on, 516, 518
CO, effect of oxygen on, 515-516
CO₂ formation vs. AFR, 516, 518
combustion process, simple model for, 507-509
computer simulation (4v NA SI engine), 509-512
cylinder temperature vs. AFR, 513
cylinder temperature vs. crank angle, 512
scavenging efficiency vs. AFR, 510
Comet chamber (IDI diesel engines), 21
Compression ratio, basic
defined, 3, 145
geometric, expression for, 23
Otto vs. Diesel cycle, 128
Compression ratio (Diesel cycle)
and engine compression work, 116
vs. Otto cycle, 128
Compression ratio (Otto cycle)
cumulative work cycle (phased burn), 99, 100
cylinder pressure, temperature, 97-98
cylinder pressure, volume, 97, 99
vs. diesel cycle, 128
 imep (ideal, phased burn), 99, 100
indicated thermal efficiency, 95-97
peak cylinder pressure, position of, 99, 101
rate of pressure rise, 99, 101
Compression-ignition engines See Diesel engines (various)
Computational fluid dynamics (CFD)
 mesh structure, 2v DI diesel engine, 363
 mesh structure, 2v SI engine, 361
 mesh structure, 4v SI engine, 362
 outflow process visualization (reservoir to pipe), 330-331
 particle velocities within a pipe, 331, 332
 poppet-valve inflow/outflow, prediction/visualization of, 360-365
 squish flow in DI diesel engine, 471-472
Computer modeling, basics of
 introduction to, 521-523
 computer model, structure of, 523-524
 cylinder head geometry, 523-524
 cylinder numbering/firing sequences, 528
 firing order, DIN standard for, 528, 529
 firing order, double-plane crankshaft, 528-530
 firing order, in-line engine, 528, 534
 firing order, simplistic (limitations of), 526-527
 firing order, single-plane crankshaft, 532-534
 friction losses, mechanical, 534-536
 intake and exhaust ducting, 525-526
Computer modeling, basics of (continued)
inter-bank angle, importance of, 531-532
781 thermodynamic/gas dynamic simulation, introduction to, 537
See also GPB Finite System Method (for engine modeling); specific engines
Computer simulation software programs, 771-772
Conn, Ronnie, 554
Connecting-rods See Crankshaft-connecting rod geometry
Constant-pressure criterion, Benson See Pressure wave reflection, Benson constant-pressure solutions to
Craig, Joe, 769
Crankshaft angle vs.
angle of obliquity, 24, 26
charge purity (Ryobi engine), 546, 547
charge purity (turbo diesel), 609, 610, 612-614
CO/CO₂ mass ratios, 516, 518
cumulative heat/work transfer (Otto engine), 102, 103
cylinder pressure ratio (Ryobi engine), 541, 543, 544, 545
cylinder temperature (Ryobi engine), 541, 543, 544, 545
cylinder temperature (two-zone SI model), 512
cylinder/exhaust pressures (Nissan IRL engine), 577, 579, 581-582
cylinder/exhaust/intake pressures (turbo diesel), 606-608, 611
cylinder/exhaust/intake temperatures (turbo diesel), 608, 611-612
heat/work/internal energy (diesel engine), 116-117
heat/work/internal energy (Otto engine), 92-93, 94
hydrogen mass ratio, 517, 518-519
in-cylinder temperatures (turbo diesel sports car), 606
intake plenum/pipe pressures (ITC motorcycle engine), 752-753
mass flow rate (ITC motorcycle engine), 753-754
mass fraction burned (Otto engine), 82, 83
nitric oxide (two-zone SI model), 514
particle velocities (Ryobi 26 cm³ engine), 544, 546, 547
particle velocities (turbo diesel), 608-609, 612-613
piston position, 27
steam mass ratio, 517, 520
throat velocity, swirl ratio (IDI diesel engine), 491-492
valve lift, 36
Crankshaft-connecting rod geometry
angle of obliquity, 24, 26
crank tdc vs. piston tdc, analysis of, 24-26
crank throw (crank length), defined, 2
gudgeon pin offset, geometry of, 24
gudgeon pin offset, numerical effects of, 28, 30
illustration of, 24
vs. piston position, 27
piston position, numerical data for, 28
sinusoidal vs. actual motion, error in, 28, 29-30
See also Crankshafts, double-plane; Crankshafts, single-plane
Crankshafts, double-plane
 in “American” V-8 engine (Camaro), 529-530
 firing order in (basic), 528-529
 firing order (Nissan/“American” engine), 529-531
 interbank angle, effect of, 531-532
 inter-cylinder airflow variations from, 580-581
 inter-cylinder torque variations from, 580-581
 V-engine tuning, comment on, 584-585
 See also Asymmetrical firing, effects of

Crankshafts, single-plane
 basics of, 531, 532, 534
 delivery ratio (Nissan IRL engine), 581, 583
 firing order in (basic), 531-532
 power and torque (Nissan IRL engine), 581, 583, 584
 See also Crankshafts, double-plane

Cross, R.C., 14-15

Cylinder head design, empiricism in
 introduction to, 621-622
 manifold-to-port area ratios, 635-638
 time-area relationships See Time-area relationships
 valve-lift measurements, 633-635
 See also Intake overlap; Intake pumping; Intake ramming; ITC engines (various)

Cylinder heads (diesel)
 turbocharged 2000 cm³ diesel engine, 599

Cylinder heads (SI)
 basic geometry of, 523-524
 Ducati 955 cm³ V-twin engine, 565
 Nissan Infiniti IRL engine, 533, 576
 Ryobi 26 cm³ engine, 524-525
 Seeley G50 motorcycle engine, 550
 sports car engine (2000 cm³), 586
 squish geometries, basic, 477
 4-valve pent-roof, 12, 477
 Yamaha FZR 600 motorcycle engine, 372, 373

Cylinder pressure, combustion analysis from (SI engine)
 50% mass fraction burned (NA and turbocharged engines), 446-447
 imep, turbocharged engine, 445-447
 NA automobile engine, 439-442, 446-447
 NA moped engine, 438-439
 turbocharged engine, 442-445, 446-447

Cylinder pressure (diesel engines)
 vs. fueling level (DI engine), 456-457
 vs. fueling level (phased burn), 124-125
 vs. injection timing, 124-125
 measured vs. calculated (diesel phased burn), 122-124
turbocharged 2000 cm³ diesel, 606-608, 611
Index

Cylinder pressure (SI engines)
calculated pressure ratio (Ryobi engine), 541, 543, 544, 545
Ducati V-twin engine, 568-571, 572, 573, 574
imep, basics of, 68
imep/bmep (Ryobi engine), 539, 542
mean effective pressure, discussion of, 68, 69
Nissan Infiniti IRL engine, 577, 579-580, 581-582
peak pressure, position of, 99, 101
p-T curves, effect of compression ratio on, 97-98
pumping mean effective pressure, 67-68
p-V curves, effect of compression ratio on, 97, 99
p-V curves (ideal, measured), 64-66, 67
p-V curves (Otto vs. diesel), 109-110
rate of pressure rise vs. compression ratio, 99, 101
Seeley G50 engine (standard configuration), 552-553, 556, 557
sports car engine, full load (2000 cm³ SI), 590-591
sports car engine, part load (2000 cm³ SI), 593-595
See also Compression ratio (Otto); ITC car engine simulation, empiricism in; ITC “single” engine exhaust tuning

Cylinder pressures (diesel engines)
turbocharged 2000 cm³ diesel, 606-608

Cylinder temperature
2000 cm³ sports car engine, 593-595, 606
AFR, effect on (two-zone SI model), 513
auto-ignition temperature, defined, 408
compression ratio effect on (Otto), 97-98
vs. crank angle (two-zone SI model), 512
Ryobi power tool engine, 541, 543, 544, 545
turbocharged 2000 cm³ diesel engine, 608, 611-612

Daniels, C.F., 420
Delivery ratio
and air flow rate, 73
and charging efficiency, 59
vs. dimensionless ramming factor (ITC “single” engine), 655-657
Ducati V-twin engine, 568
vs. exhaust pipe length (ITC “single” engine), 674-676
expression for, 54-55, 624
initial values for (Diesel power cycle analysis), 112
initial values for (Otto power cycle analysis), 86
vs. intake tract length/rpm (ITC “single” engine), 654-655, 657, 658-659
inter-cylinder variations in (from asymmetrical firing), 580-581
vs. narrower intake valve timings (ITC “single” engine), 659, 660
Nissan Infiniti IRL engine, 577, 579, 583
Ryobi power tool engine, 539, 540, 544, 546, 547
SAE standard J604 for, 56, 59

783
Delivery ratio (continued)

Seeley G50 engine, 555, 557
single- vs. double-plane crankshafts (Nissan IRL engine), 583
sports car engine (2000 cm³ SI), 588, 589
turbocharged 2000 cm³ diesel engine, 602, 603
Dent, J.C., 491

Detonation (knocking)

basic factors in (SI engines), 411-412
turbocharging, effect of, 446

Diesel, Rudolf, 16-17

Diesel engine power cycle analysis

air mass/DR, initial values for, 111-112
bmep vs. equivalence ratio (phased burn), 125, 126, 128
brake thermal efficiency vs. equivalence ratio (phased burn), 125, 127, 128
combustion, constant pressure, 114
combustion, constant volume, 113
compression, adiabatic/isentropic, 112-113
crank angle vs. heat/work/internal energy, 116-117
cumulative heat/work/internal energy (phased burn), 122-123
cylinder pressure, measured vs. calculated (phased burn), 122, 123
expansion, adiabatic/isentropic, 114-115
fuel consumption, isfc, 116
fuel consumption vs. fueling level (phased burn), 125, 127, 128
fuel ignition in, 116-117
fuel type used, 111
heat rejection, constant volume, 115
heat release rate curves, 120-121
imep, calculation of, 115
imep vs. equivalence ratio (phased burn), 125, 126, 128
imep with 0.1 kₐ burn rate, 117-119
imep with constant-volume burn only, 117-119
indicated thermal efficiency vs. equivalence ratio (phased burn), 125, 127, 128
mass fraction burned (phased combustion), 119-121
phased combustion (varying fuel injection quantity), 124-127
power output, 115
test engine parameters, 111
thermal efficiency, 115, 147-151
Vibe coefficients (ideal cycle), 119-121
working fluid for (air), 111

See also Diesel engines, basics of

Diesel engines, basics of

bore-stroke ratio, diesel vs. SI engines, 80, 81
Diesel-Otto cycles, compared, 109-110, 119-121, 122
gasoline vs. diesel fuel in, 17
ideal Diesel cycle, 110
ignition processes in, 17
inventor of: Diesel vs. Ackroyd-Stuart, 16-17
Mexican hat combustion chamber, 18, 453
Diesel engines, basics of (continued)
 potential power output (by engine type), 77-79, 80-81
 p-V curves, ideal, 109-110
 rate of pressure rise curve, 95, 96
 squish lip in DI diesel piston, 19, 20
 thermal efficiency, ideal, 147-151
 turbocharged 6-cylinder DI truck engine, 19
 4-valve DI engine, 17-19
 valve ramp/lift coefficients, 45
See also Diesel engine power cycle analysis

Diesel engines, DI
 50% mass fraction burned vs. fueling level, 463
 Bosch smoke number, 458
 bsfc, exhaust smoke vs. fueling level, 458-459
 combustion analysis (turbo truck engine), 454, 456
 combustion analysis vs. load level, 459-462
 combustion chamber geometries, typical, 453, 454
 combustion chamber geometry, definitions for, 414-415
 cylinder pressure vs. fueling level, 456-457
 equivalence ratio vs. fueling level, 456-457
 fuel sprays in 4-valve DI engine, 17
 imep, blower air pressure vs. fueling level, 456, 458
 load variation, effect on combustion, 456-463
 squish lip in DI diesel piston, 19, 20, 453
 turbocharged 6-cylinder DI truck engine, 19
 4-valve DI engine, 17-19
See also Diesel engines, basics of

Diesel engines, DI turbocharged
 combustion analysis (truck engine), 454, 456
 6-cylinder truck engine (cutaway view), 19
 heat release rate (typical engine), 454, 455
 mass fraction burned (measured vs. theoretical), 454, 455
 mass fraction burned vs. fueling level, 459, 463
 mass fraction burned vs. load level, 459-462
 Perkins 4-cylinder engine, 600, 602
 Volvo Penta marine engine, 600, 601
See also Turbocharged 2000 cm³ diesel engine; Turbocharged SI engines

Diesel engines, IDI
 combustion chamber geometry, 452
 combustion chamber geometry, definitions for, 414-415
 Comet chamber in, 21
 glow plug, need for, 22
 losses in, 22
 three-valve, basic layout of, 21
 three-valve, cylinder head configurations for, 22
See also Diesel engines, basics of

785
Diesel engines, marine
 for offshore racing, 615-616
 Seatek 10.3L, 630 bhp navy engine, 617, 619
 Seatek 10.3L, 1100 bhp racing engine, 617, 618
 UIM constraints on, 615
 Volvo Penta engine, turbocharger on, 600, 601
Diesel engines, turbocharged See Diesel engines, DI turbocharged; Turbocharged 2000 cm³
diesel engine

Diffusers (tapered ducts)
 pressure wave reflection in, 214, 236-239

Direct-injection diesel engines See Diesel engines, DI

Discharge coefficients, basic analysis of
 introduction to, 327-328
 actual Cd (plain end outflow), 334
 air flow methods (ASME, BS), 38
 alternative plain-end analyses, accuracy of, 334-335
 for bellmouth entry to pipes (measured), 337-339
 Cd vs. pressure (plain end outflow), 335-336
 CFD analysis/visualization (poppet-valve inflow/outflow), 360-365
 conclusions regarding, 404-405, 695
 3D vs. 1D analyses compared, 336-337
 geometry of, 351
 geometry of (orifice/bellmouth/plain end), 329
 ideal discharge coefficient (plain end outflow), 333
 inflow coefficients, apparatus for measuring, 355-356
 isentropic discharge coefficient (plain end outflow), 332-333
 local port area, inadequacy of for plotting Cd, 353-354
 mapping Cd's, advantages of, 341-342
 outflow coefficients, apparatus for measuring, 355
 outflow process schematic (reservoir to pipe), 330
 outflow process visualization (CFD, reservoir to pipe), 330-331
 plotting Cd's on xyz contour chart, 342, 343
 restriction at pipe end facing cylinder, 350-353
 reverse flow Cd maps, 363
 traditional measurement methods, 328-331
 See also Discharge coefficients (various)

Discharge coefficients, digitized Cd maps for
 digitizing maps for the simulation process, 399-402
 GPB method for using, 402-403
 simple method for using, 402
 simulation process, 399-402

Discharge coefficients, Honda 2v moped engine
 ideal vs. actual Cd, 366-369
 inflow (intake/exhaust), 356-359
 outflow (intake/exhaust), 356-358, 359-360

Discharge coefficients, Honda 4v moped engine
 engine parameters, 382
Discharge coefficients, Honda 4v moped engine (continued)
 exhaust inflow/outflow Cd, 382-383
 intake inflow/outflow Cd, 382, 384
 masking, effect of, 382
 mass flow rate/tract shape, effects of, 385
Discharge coefficients, Leyland 2.0L 2v engine
 engine parameters, 369-370
 intake valve inflow/outflow Cd maps, 370-371
 Leyland engine vs. Honda moped engine, 371-372
Discharge coefficients, throttled end to a pipe
 introduction: pipe end facing large plenum, 339-340
 Cd values for fundamental restrictions, 342-343, 344
 mapping Cd inflow values, 342-343, 344
 mapping Cd outflow values, 340-342, 343
 orifices tested at pipe end, 340
 throttle geometries, intake valve, 392-395
Discharge coefficients, two-stroke engines
 apparatus for measuring, 346-347
 duct declination and profile, effects of, 348-350
 inflow coefficients, 347, 349
 outflow coefficients, 347-348
 pipe-end restrictions, geometry and discussion of, 343-345
 port area ratios, 345-346
Discharge coefficients, Yamaha FZR 600 motorcycle engine
 engine parameters, 372
 exhaust valve inflow/outflow Cd maps, 373-374
 ideal intake/exhaust coefficients, 376-377
 intake valve inflow/outflow Cd maps, 373, 374-375
Double-plane crankshaft See Crankshafts, double-plane
Douglas, R., 470
Ducati 955 cm³ V-twin engine
 Carl Fogarty on, 563-564
 Cd at maximum valve lift, 634
 charge purity/intake temperature, 569, 571, 572
 cylinder head/valve geometry, 527, 565
 cylinder/intake/exhaust pressures, 568-571, 572, 573, 574
 delivery ratio/charging efficiency, 568
 desmodromic valve operation in, 564-565
 dimensionless ramming factor, use of, 658
 exhaust tuning of, 569, 573-574
 firing sequence in, 526-527, 529-530
 intake and exhaust ducting, 566, 567-568
 manifold-to-port area ratio, 636
 particle velocity, 569, 571, 572
 power/torque curves (measured/calculated), 567
 time-areas for, 627, 628
 timing gears vs. timing belts in, 566
 trapping/scavenging characteristics, 568-569
Empiricism See Cylinder head design, empiricism in; Intake overlap; Intake pumping; Intake ramming; ITC car engine simulation, empiricism in; ITC “single” engine exhaust tuning; ITC “single” engine intake tuning

Engine tests (Otto cycle)
introduction to, 70-71
air/fuel ratio, overall, 73-74
brake mean effective pressure, 72
brake power output (dynamometer), 71-72
brake specific fuel consumption, 72
brake thermal efficiency, 72
brake torque, 71
delivery ratio, 73
discussion of, 73
dynamometer test stand, 70-71
friction/pumping losses, 72
fuel flow rate, 73-74
mechanical efficiency, 72
See also Exhaust emissions

Equivalence ratio
and combustion efficiency, 106
defined, 105, 424
and diesel engine phased combustion, 124-127
vs. fueling level (DI diesel), 456-457
rich mixture, 425-426
stoichiometric, 423-424
trapped (combustion-ignition engines), 432

Exhaust blowdown
time-area relationships for, 624-625
time-area vs. bmep, 629, 630

Exhaust emissions, basics of
brake specific pollutant gas flow rate, 75
CO emissions See Carbon monoxide
CO₂ emissions See Carbon dioxide
exhaust gas mass flow rate, 74
hydrocarbons in See Hydrocarbon emissions
NO emissions See Nitric oxide
pollutant gas flow rate, 75
reference gas equivalence of, 75-76
SAE J1088 (exhaust emission measurements), 73
smog/acid rain, 74
trapping efficiency from exhaust gas analysis, 76-77
See also Exhaust emissions, diesel; Exhaust gases

Exhaust emissions, diesel
introduction to, 22
Bosch smoke number vs. fueling level (DI engine), 458, 459

Exhaust gases
exhaust pulse propagation, 153-155, 156
properties of, 172-174
Exhaust overlap
 time-area vs. bmep, 630, 632
Exhaust pressure
 Asymmetrical firing, effects of (Nissan IRL engine), 581, 582
 compression waves in exhaust pipe (QUB apparatus), 292-294
 Ducati 955 V-twin engine, 568-571, 572, 573, 574
 exhaust gas pulse propagation, 153-155, 156
 Nissan Infiniti IRL engine, 577, 579-580, 581-582
 Ryobi power tool engine, 544-545
 Seeley G50 motorcycle engine, 552-553, 558-559
Exhaust pumping
 time-area vs. bmep, 630
Exhaust systems, water-cooled (marine), 685-686, 730
Exhaust tuning
 branch angle, effect of, 693
 of Ducati 955 V-twin engine, 569, 573
 of high-performance V-twin engine, 573-574
 left/right waves after collector (4-cylinder engine), 688
 left/right waves before collector (4-cylinder engine), 687-688
 of marine engines, 684-686
 mass flow rate (4-cylinder engine), 688-689
 multi-branch collector system design, comment on, 694
 in multi-cylinder engines (Ducati example), 526-527
 with single-plane crankshaft, 532-534
 superposition pressures, before/after collector (4-cylinder engine), 686-687
 tailpipe diameter, effect on collector system, 691-693
 tailpipe length, effect on collector system, 689-691
 See also ITC “single” engine exhaust tuning

Fangio, Juan Manuel, 769
Fansler, T.D., 478
Fitzgeorge, D., 478
Flammability, fuel
 active radical combustion, 411
 air-fuel mixture limits for, 410
 scavenging efficiency effect on, 410-411
 See also Combustion, spark-ignition; Fuels, characteristics of
Fogarty, Carl, 563, 564
Fogarty, George, 564
Four-stroke engines, basics of
 basic four strokes, functional description, 4-5
 basic four strokes, illustrated, 2
 BSA Gold Star motorcycle engine, 8
 camshaft speed vs. crankshaft speed, 10
 clearance volume, defined, 3
 compression ratio, 3, 23
 crank throw, defined, 2
Design and Simulation of Four-Stroke Engines

Fangio, Juan Manuel, 769 (continued)
- four-valve dohc pent-roof engine, 12-13
- gudgeon pin vs. wrist pin, 2
- human body analogy to, 5
- Manx Norton motorcycle engine, 6
- noise sources in, 703-704
- OHV engine, functional cross-section, 3
- OHV pushrod actuation, basic operation, 7-8
- OHV valve lift, profile/dynamics of, 9-10
- potential power output (by engine type), 77-79, 80-81
- rotary valves, 14-15
- side-valve engine, 10-12
- swept volume, 2, 23
- thermodynamic cycle for See Otto cycle thermodynamic analysis
- top/bottom dead center, defined, 3, 25
- two-valve SI engine, sectional view (typical), 4
- valve overlap, some caveats regarding, 10

Four-valve engines
- 500 cm³ Rudge Ulster motorcycle engine, 12, 14
- dohc pent-roof engine, 12-13
- 2.4L in-line GMC automobile engine, 12, 15

Friction losses (mechanical)
- introduction to, 534-535
- fmep, defined, 535
- plain bearings (diesel engines), 536
- plain bearings (SI engines), 536
- rolling element bearings (SI engines), 536

Friction losses (superposed pressure waves)
- friction factor, Reynolds number in, 189
- friction factor (straight pipe), 188-190
- friction loss (bent pipe), 191
- friction loss/heating (straight pipe), 184-188

Friction/pumping losses
- and bmep, 107, 108-109
- and dynamometer test, 72

Fuel consumption, diesel engines
- turbocharged 2000 cm³ diesel vs. sports car, 604, 605

Fuel consumption (diesel engines)
- diesel vs. SI engines, compared, 614-615
- vs. fueling level (phased burn), 125, 127, 128
- isfc (test engine), 116

Fuel consumption (SI engines)
- air/fuel flow rate, 73-74
- bsfc, Nissan Infiniti IRL engine, 577, 579
- bsfc, Ryobi 26 cm³ engine, 539, 541
- bsfc, sports car engine (2000 cm³ SI), 590, 591
- bsfc (in laboratory tests), 72
- bsfc vs. AFR (two-zone model), 510
Fuel consumption (SI engines) (continued)
isfc, defined, 70
isfc vs. AFR, 106, 108
of Seeley G50 engine, 557, 563
SI vs. diesel engines, compared, 614-615
Fuel enrichment
consequences of, 106, 108
See also Air-fuel ratio (AFR)
Fuel ignition See Combustion, compression-ignition; Combustion, spark-ignition;
Combustion chemistry, fuel
Fuel sprays
in 4-valve DI engine, 17
Fueling control
inter-cylinder, effects of asymmetrical firing on, 584
Fuels, characteristics of
introduction to, 421
alcohols, 421-422
diesel fuels, 422
dodecane, combustion/properties of, 61, 422
effect on squish turbulence, 496
gasoline fuels, 421, 445-448
methanol vs. gasoline, 448-451
octane, combustion of, 59-60
paraffin family fuels, 422
See also Combustion chemistry; Heat release, combustion
Fukada, M., 716, 718
Gas flow, introduction to
exhaust pulse propagation, 153-155, 156
See also Pressure wave reflection (various)
Gases, properties of
introduction to, 169
air, temperature variation of, 172-173
exhaust gases, 173-174
mixtures of gases, 170-172
single gases, 170
Gibson, Hubert, 554
Glow plugs
need for in IDI diesel engines, 21
GPB Finite System Method (for engine modeling)
introduction to, 255-257
air flow into an engine, 284-286
basis of (pressure values, meshing, goals), 257-259
correlation of simulation with experiments, 288
cylinder/plenum/atmosphere, wave reflection at, 240, 249, 270-271
friction/heat transfer, changes due to, 265-266
interpolation procedure (wave through a mesh), 261-264
Design and Simulation of Four-Stroke Engines

GPB Finite System Method (for engine modeling) (continued)
interpolation procedure, singularities during, 264-265
literature references to, 288
mass/energy transport during time stop, 271-279
parallel ducting, wave reflection at, 266-268
pipe ends, reflection at (discussion), 269-270
restricted pipe, wave reflection at, 267, 270
tapered pipes, wave reflection at, 267, 268
time increment, selecting, 259-260
wave propagation during time increment dt, 260-261
work during an engine cycle, 286-288
See also QUB SP unsteady gas flow experimental apparatus

Gudgeon pins
Gudgeon pin/wrist pin, 2
offset, numerical effect of, 28, 30
pin/cylinder axis offset, geometry of, 24
Guerrero, Roberto, 574

Hailwood, Mike, 698
Harris, C.M., 701
Hayes, T.K., 420
Heat loss See Heat transfer, closed-cycle
Heat release, basics of
 closed system thermodynamics, 416-417, 418
 combustion chamber, geometry of, 414-415, 452, 453
 heat loss, thermodynamic expression for, 418
 heat release rate, 420
 heat release rate and ionization signal (Daniels), 420
 heat released, analytic expressions for, 418, 419
 heat released, thermodynamic expression for, 416
 polytropic index, 418, 419
 from SI engine, 420-421
 work done on piston (average), 417
See also Combustion chemistry, fuel; Heat release data (various); Heat transfer, closed-cycle
Heat release data (compression-ignition engines)
 combustion chamber geometry, IDI engine, 452
 Fuel spray/swirl, DI engine, 451-452
 heat release rate (turbocharged DI engine), 454, 455
 mass fraction burned (turbocharged DI engine), 454, 455
Heat release data (spark-ignition engines)
 50% mass fraction burned (NA and turbocharged engines), 437, 446-447
 analysis of (Honda moped engine), 438-439
 combustion analysis, NA engine, 439-442
 combustion analysis, turbocharged engine, 442-445
detonation (knocking), 411-412, 446
gasoline combustion, 445-448
Heat release data (spark-ignition engines) (continued)
and mass fraction burned (analytical expression for), 120, 420
methanol combustion, 448-451
Vibe analysis of, 437-438
Heat transfer, closed-cycle
adiabatic work processes in, 138-140
air-cooled engines, Mackerle work on, 432
Annand theory of, 432-435
constant pressure heat transfer/work, 146-147
constant volume heat transfer, 140-141
diesel engines, Woschni work on, 432
heat loss from fuel vaporization (compression-ignition engine), 436
heat loss from fuel vaporization (SI engine), 435-436
heat transfer coefficients (Annand model), 435
Nusselt number in, 432, 433
polytropic process in, 141-142
polytropic processes in, 141-142
Reynolds number in, 432-433
See also Closed cycle, thermodynamics of
Hermann, Hans, 574
Honda engines
heat release analysis (50 cm³ moped engine), 438-439
Honda 2v moped engine vs. Leyland engine, 371-372
4v moped engine, discharge coefficients for, 382-385
2v moped engine, ideal vs. actual discharge coefficients, 366-369
2v moped engine, inflow/outflow discharge coefficients, 356-360
Hydrocarbon emissions
bsHC, expression for, 504
combustion-derived, 503
scavenge-derived, 503-504
total hydrocarbon emissions, 504
Hydrogen
mass ratio vs. crank angle, 517, 518-519

Ignition, fuel See Combustion, compression-ignition; Combustion, spark-ignition;
Combustion chemistry, fuel
Indicated mean effective pressure (Otto cycle), 68
Indirect-injection diesel engines See Diesel engines, IDI
Intake overlap
time-area vs. bmep, 630, 632
Intake pumping
time-area vs. bmep, 630, 631
Intake ramming
concluding remark on, 694
dimensionless ramming factor, use in empirical design, 657-658
dimensionless ramming factor vs. DR (ITC “single” engine), 655-657
and intake length determination (ITC “single” engine), 669-670
Intake ramming (continued)
intake ramming design, crossover point in, 670-671
of Seeley G50 engine, 670
time-area, effect of changing (ITC car engine simulation), 647-648
time-area relationships for, 624
time-area vs. bmep, 630, 631
See also ITC car engine simulation, empiricism in; ITC “single” engine intake tuning

Intake tuning See Intake overlap; Intake pumping; Intake ramming; ITC car engine simulation, empiricism in; ITC “single” engine intake tuning

Ishikawa, R., 719
ITC car engine simulation, empiricism in
introduction to, 639
bsfc/pumping loss (basic engine), 641, 642
charging/trapping characteristics (basic engine), 641, 642
collector tailpipe diameter, effect of, 691-693
collector tailpipe length, effect of, 689-691
cylinder head geometry, 639
cylinder/exhaust/intake pressures (basic engine), 643-644
engine optimization, concluding remarks on, 693-694
exhaust blowdown time-area, 644-645
exhaust manifold-to-port area ratio, 649-651
exhaust pumping time-area, 646-647
intake manifold-to-port area ratio, 649, 650
intake pumping time-area, 646-647
intake ramming time-area, 647-648
intake/exhaust ducting, 640
particle velocities/purity/DR (basic engine), 643-644
performance characteristics, basic engine, 640-644
power output/torque (basic engine), 641
under-optimization, 651-652
valve overlap time-area, 648-649
See also Cylinder head design, empiricism in; Exhaust tuning; Intake ramming

ITC motorcycle engine See Silencers, exhaust (ITC motorcycle engine design example);
Silencers, intake (ITC motorcycle engine design example)

ITC “single” engine exhaust tuning
charging efficiencies: stub, straight pipe and collector systems, 672, 673
DR (6500 rpm, 700/900 mm pipes), 678-679
DR: stub, straight pipe and collector systems, 672
DR vs. exhaust pipe length, 674-676
exhaust ducting geometry, 671-672
exhaust pipe length, determining (empirical vs. simulation), 680-684
particle velocities (6500 rpm, 700/900 mm pipes), 678-679
pressure diagrams (6500 rpm, 700/900 mm pipes), 676-678
torque: stub, straight pipe and collector systems compared, 672-674
torque (bmep) vs. exhaust pipe length, 674-676
See also Intake ramming; ITC car engine simulation, empiricism in; ITC “single” engine intake tuning

794
ITC "single" engine intake tuning
introduction to, 652-653
DR vs. intake tract length/rpm, 654-655, 657, 658-659
DR vs. narrower intake valve timings, 659, 660
intake length/intake ramming (empirical vs. analytical), 669-670
particle velocity (400 mm intake tract), 667, 668
particle velocity (310 mm intake tract, narrower valve timings), 663, 666
pressure diagrams (400 mm intake tract), 666-667, 667-668
pressure diagrams (310 mm intake tract, narrower valve timings), 663, 665
pressure diagrams (7500 rpm, 310/400 mm intake tracts), 659-660, 661
right/left pressure waves (7500 rpm, 310/400 mm intake tracts), 662-663
right/left waves (310 mm intake tract, narrower valve timings), 663, 665
test engine intake/exhaust ducting, 653-654
See also Intake ramming; ITC car engine simulation, empiricism in; ITC "single" engine exhaust tuning
Izumi, H., 716

Jones, A.D., 256

Kato, E., 719
Keck, J.C., 470
Kirkpatrick, S.J., 256, 313, 707
Knock See Detonation (knocking)

Lancaster, D.R., 420
Lavoie, G.A., 504
Lax, P.D., 256
Lewis, Ron, 550
Leyland 2.0L 2v engine
discharge coefficients, 370-371
engine parameters, 369-370
vs. Honda moped engine, 371-372
Lubrication, breakdown of, 79
Lyn, W.T., 420

Mach number
in inflow to a cylinder, 253
in outflow from a cylinder, 245
supersonic, in superposed pressure waves, 182-184
in unsteady flow at pipe contractions, 218
in unsteady flow at pipe expansions, 215
in unsteady flow at pipe restrictions, 223
Mackerle, J., 432
Mackey, D.O., 705, 707
Design and Simulation of Four-Stroke Engines

Manifold-to-port area ratios
- vs. bmep (exhaust system), 637-638
- vs. bmep (intake system), 637-638
- of Chapter 5 engines, 636-637
- concluding remark on, 694
- exhaust, effect of changing, 649-651
- intake, effect of changing, 649, 650
- of various high-performance engines, 636-637

Marine engines
- 8.2L V8, Cd at maximum valve lift, 633
- 8.2L V8, manifold-to-port area ratio, 636
- 8.2L V8, time-areas for, 627, 628
- for offshore racing, 615-616
- Seatek 10.3L, 630 bhp navy engine, 617, 619
- Seatek 10.3L, 1100 bhp racing engine, 617, 618
- UIM constraints on, 615
- Volvo Penta engine, turbocharger on, 600, 601
- water-cooled exhaust systems for, 685-686, 730

Martorano, L., 420
Masking, valve
- effect on Cd, 377-382

Mass fraction burned
- 50% curves for (NA/turbocharged SI engines), 446-447
- in actual vs. ideal Diesel cycle, 119
- vs. crank angle (Otto cycle), 82, 83
- vs. fueling level (turbo DI diesel engine), 459, 463
- and heat release (analytical expression for), 120, 420
- vs. load level (turbo DI diesel engine), 459-462
- in measured Otto cycle, 119
- measured vs. theoretical (NA SI engine), 437
- measured vs. theoretical (turbo DI engine), 454, 455

Matchless engines See Seeley G50 motorcycle engine

Mawhinney, Graeme, 369, 707
Mayhem, thermodynamic, 598
McGinnity, F.A., 229
Mean effective pressure (diesel engine)
- vs. fueling level (phased burn), 125, 126, 128
- imep with 0.1 \(k_{cv} \) burn rate, 117-119
- imep with constant-volume burn only, 117-119

Mean effective pressure (Otto cycle)
- concept of (discussion), 68, 69
- effect of air-fuel ratio on, 106-107
- pumping (pmep), 67-68, 107, 108-109
- See also Brake mean effective pressure

Mechanical efficiency
- in engine tests (Otto cycle), 72
- of Ryobi engine, 541, 542

Methanol, combustion of, 448-451
Mexican hat combustion chamber, 18, 453
Modeling, engine See Closed cycle modeling (theoretical); GPB Finite System method (for engine modeling)
Mooney, Mick, 554
Moped engines
heat release analysis (Honda 50 cm³ engine), 438-439
Honda 4v engine, discharge coefficients for, 382-385
Leyland engine and Honda moped engine compared, 370-371
2v Honda engine, ideal vs. actual Cd’s, 366-369
2v Honda engine, inflow/outflow Cd’s, 356-360
Motorcycle engines
350 cm³ Barr and Stroud sleeve-valve, 13-14, 16
500 cm³ Gold Star BSA, 8
500 cm³ Manx Norton, 6
500 cm³ Rudge Ulster, 12, 14
noise characteristics See Silencers, exhaust (ITC motorcycle engine design example);
 Silencers, intake (ITC motorcycle engine design example)
noise legislation, meeting, 756-758
silencer, simple design example, 730-732
silencers, space available for, 730
Yamaha FRZ 600 discharge coefficients, 372-377
Yamaha FRZ 600 valve masking, effect on Cd, 380-383
See also Seeley G50 motorcycle engine; Silencers, exhaust (ITC motorcycle engine design example);
 Silencers, intake (ITC motorcycle engine design example)
Mufflers See Silencers (various)
Nassif, M.H., 256
Nissan Infiniti 4.0L IRL engine
 introduction to, 574, 575
 asymmetrical firing, effects of See Asymmetrical firing
 bsfc, 577, 579
 Cd at maximum valve lift, 634
crank and cylinder components for, 533
cylinder head components, 533
cylinder head/valve geometry, 576
cylinder/exhaust/intake pressure, 577, 579-580
delivery ratio, 577, 579, 583
dimensionless ramming factor, use of, 658
double-plane crankshaft in See Crankshafts, double-plane
 firing order of, 530-531
 input data for simulation of, 576-577
 installed in IRL (Indy) car, 575
 intake and exhaust ducting for, 577
 manifold-to-port area ratio, 636
 photograph of, 575
 power output (measured/calculated), 577-578
 single-plane crankshaft in See Crankshafts, single-plane
Nissan Infiniti 4.0L IRL engine (continued)
time-areas for, 627, 628
torque as bmep (measured/calculated), 577-578
Nitric oxide emissions
vs. crank angle (SI cylinder burn zone), 514
effect of air-fuel ratio on (two-zone SI model), 511-512
formation of, 504-506
in laboratory engine tests, 76
Ryobi engine, 542
vs. temperature/time (two-zone SI model), 513-514
turbocharged 2000 cm³ diesel engine, 605-606
Noise, engine
introduction to, 697-698
FIM racing, noise constraints on, 563
Formula 1 racing, noise of, 563
four-stroke engines, advantages/disadvantages of, 704-705
noise attenuation, silencer See Silencers (various)
noise sources, simple four-stroke engine, 703-704
noise spectra, silenced ITC motorcycle engine, 758
noisemeters, 702
one-third octave noise spectra, experimental (Coates), 709-712
Ryobi power tool engine, 547, 548
SAE standards for, 765
of Seeley G50 motorcycle engine, 561-563
two-stroke engines, advantages/disadvantages of, 704-705
See also Motorcycle engines; Sound, physics of
Nusselt number
in closed-cycle heat transfer, 432, 433
in pressure wave heat transfer, 192

Offshore racing, 615-617
Otto cycle thermodynamic analysis
constant-volume process, assumption of, 65
ideal vs. experimental cycle, 63
indicated power output, 69-70
Otto, diesel cycles compared, 109-110, 119-121, 122
pressure-volume plot, 64-65, 66, 67
pumping losses and AFR, 107, 108-109
pumping mean effective pressure (pmep), 67-68
thermal efficiency of, 64, 70, 144-146
work produced (by ideal cycle), 65-66
See also Otto engine power cycle analysis
Otto engine power cycle analysis
air mass/DR, initial values for, 85-86
combustion, constant volume, 87
combustion processes, time-dependency of, 81-84
compression, adiabatic/isentropic, 86-87
Otto engine power cycle analysis (continued)
 compression ratio, effects of, 95-101
 computer simulation, comments on, 90-91
 crank angle vs. cumulative heat/work transfer, 102, 103
 crank angle vs. heat/work/internal energy, 92-93, 94
 crank angle vs. mass fraction burned, 82, 83
 cumulative heat/work transfer (vs. compression index), 102, 103
 expansion, adiabatic/isentropic, 88
 fresh air, use of, 85
 friction/pumping losses, including, 108-109
 fuel consumption, 89-90
 fuel type used, 85
 heat available (in fuel), 86
 heat rejection, constant volume, 88, 89
 heat release rate curves, 120-121
 imep vs. compression ratio, 99, 100
 net work output, 89
 numerical verification of, 90
 P-Θ characteristics, ideal vs. measured, 82-83, 92-93
 polytropic compression, effect of, 101-102, 103, 141-142
 polytropic expansion, effect of, 102, 104-105, 142
 power output, 89
 rate of pressure rise curve, 95, 96
 T-Θ curves, practical vs. ideal, 93, 95
 test engine parameters, 84-85
 thermal efficiency, 89
 thermodynamic cycle, four processes in, 85
 T-V characteristics, ideal vs. measured, 82, 84, 92-93, 144
 Vibe coefficients (phased burn), 82, 83, 119-121
 See also Otto cycle thermodynamic analysis

Overhead valves, basics of
 OHV engine, functional cross-section, 3
 pushrod actuation, basics of, 7-8
 valve lift, dynamics of, 9-10
 valve lift profiles, basic, 9
 valve overlap, some caveats regarding, 10
 valve overlap and scavenging efficiency, 58

Particle flow (isentropic), 211

Particle velocities
 air in QUB apparatus with gas discontinuity attachment, 310
 bidirectional, superposed pressure waves in a pipe, 181-184
 CO₂ in QUB apparatus with gas discontinuity attachment, 310
 in Ducati 955 cm³ V-twin engine, 569, 571, 572
 gas particle velocity, expression for, 159
 ITC car engine simulation (basic engine), 643-644
 ITC “single” engine exhaust tuning (700/900 mm pipes), 678-679

799
Design and Simulation of Four-Stroke Engines

Particle velocities (continued)
 ITC “single” engine intake tuning (400 mm intake tract), 667, 668
 ITC “single” engine intake tuning (w/narrower valve timings), 633, 636
 particle flow (isentropic), 211
 pressure wave reflection at abrupt pipe contraction, 218
 pressure wave reflection at abrupt pipe expansion, 215
 pressure wave reflection at pipe restricted area change (butted joint), 223
 pressure wave reflection in cylinder/plenum outflow to pipe, 245-246
 pressure wave reflection in inflow from pipe to cylinder/plenum, 253-254
 Seeley G50 motorcycle engine, 560
 sports car engine (2000 cm³ SI), 595-596
 turbocharged 2000 cm³ diesel, 608-609, 612-613
 in unsteady gas flow (derivation of), 318-322
Phased burn (diesel cycle)
 Vibe coefficients (mass-fraction burned), 119-121
Phased burn (Otto cycle)
 compression ratio and cumulative work cycle, 99, 100
 compression ratio vs. imep, 99, 100
 numerical example of, 92-93, 94
 P-V/T-V curves for, 82-84, 91-92
 Vibe coefficients (mass-fraction burned), 82, 83, 119
Piston position
 geometry of See Crankshaft-connecting rod geometry
 vs. peak cylinder pressure, CR (Otto), 99, 101
Piston speed
 effect on brake power output, 79-80
 effect on rotation rate, 79
Polytropic processes
 closed cycles, heat transfer in, 141-142
 compression, efficiency/heat transfer/work in, 101-102, 103
 compression, heat transfer direction in, 141-142
 expansion, efficiency/work in, 102, 104-105
 expansion, heat transfer direction in, 141-142
 gas property relationships in, 142-144
 polytropic index (n), 418, 419
Poppet valves See Discharge coefficients (various); Valve lift
Pounder, C.C., 18
Power output
 2000 cm³ diesel engine (NA vs. turbocharged), 602, 604, 605
 brake (dynamometer test, Otto), 71-72
 defined, 69
 diesel engine power cycle analysis, 115
 of Ducati 955 cm³ V-twin engine, 567
 effect of piston speed on, 79-80
 indicated (Otto cycle), 69-70
 of Nissan Infiniti 4.0L IRL engine, 577-578
 potential (by engine type), 78-79, 80-81
 of Ryobi power tool engine, 539

800
of Seeley G50 engine, 551, 552, 554, 561
single vs. double-plane crankshafts (Nissan IRL engine), 583-584
of sports car engine (2000 cm³ SI), 588, 590-591
See also Work
Pressure waves, basics of
gas constant, specific heat, 160-161
gas particle velocity, expression for, 159
pressure ratio, reference pressure, 158-159
propagation velocity, 161-163
velocity in air, 158-159
Pressure waves in a pipe (unidirectional)
compression wave, analysis of, 164-165
expansion wave, analysis of, 165-167
nomenclature for, 155-156, 157, 158
reference parameters for, 163-164
shock wave, formation of, 167-169
superposition of, 156, 158
wave profile, steep-fronting of, 167
See also Gases, properties of
Pressure waves in a pipe (bidirectional, superposed)
friction factor (straight pipe), 188-190
friction pressure loss (bent pipe), 191
friction pressure loss/heating (straight pipe), 184-188
heat transfer, analysis of, 192-193
heat transfer, Nusselt number in, 192
heat transfer (convection vs. radiation), 191
mass flow rate, 180-181
measured pressures, interpreting, 178
pressure-time history of, 177-178
superposition, basics of, 175-178
supersonic particle velocity, 181-184
wave propagation, 178-180
Pressure wave reflection, basics of (in pipes)
at bellmouth open end (expansion wave), 199, 201-203
in engine manifolds, 196-198
notation for, 198
at open end (compression wave), 199-201
at plain open end (expansion wave), 199, 204-205
"ramming" in (at bellmouth), 203
simple solutions, inadequacy of, 205-206
Pressure wave reflection, Benson constant-pressure solutions to
basic application of, 206-208
Benson criteria, importance of, 214, 218
contraction (incident compression wave), 209
contraction (incident expansion wave), 209-210
enlargement (incident compression wave), 208
enlargement (incident expansion wave), 208-209
numerical examples (branched pipes), 234-236
Design and Simulation of Four-Stroke Engines

Pressure wave reflection, Benson constant-pressure solutions to (continued)
numerical examples (simple pipes), 224-225
single compression wave down one branched pipe, 227-228
two compression waves down two branched pipes, 228
Pressure wave reflection at abrupt contraction (isentropic)
introduction to, 215
Benson criteria, importance of, 218
continuity equations for, 216, 217
flow equations for (basic), 216
flow solution with sonic particle velocity, 218
gallery of, 210
numerical examples of (simple pipes), 224-225
particle flow (isentropic), 211
reference state equations for, 217
temperature/entropy characteristics, 211
Pressure wave reflection at abrupt expansion (non-isentropic)
Benson criteria, importance of, 214
flow equations for (basic), 212
flow solution with sonic particle velocity, 215
gallery of, 210
momentum equation for, 212, 214
numerical examples of (simple pipes), 224-225
particle flow, 211
reference state/continuity equations for, 213
temperature/entropy characteristics, 211
Pressure wave reflection at butted joint
continuity equations for, 220, 222
flow equations for, 220-221
flow solution with sonic particle velocity, 223
gallery of, 219
momentum equations for, 221, 223
numerical examples of (simple pipes), 224-225
reference state conditions, 220
temperature-entropy characteristics, 219
Pressure wave reflection at gradual expansion
diffusing flow, isentropic analysis of, 214
See also Pressure wave reflection in tapered pipes
Pressure wave reflection at inflow from pipe to cylinder/plenum
temperature/entropy characteristics for, 249-250
Pressure wave reflection at temperature discontinuity
basics of, 193-194
with common gas composition, 194-195
with variable gas composition, 195-196
Pressure wave reflection in branched pipes
accuracy of simple vs. complex solutions, 234-236
basic definitions/equations, 226-227
Bingham/McGinnity solutions to, 228-230
geometry of, 226
Pressure wave reflection in branched pipes (continued)
 numerical examples of, 235
 one supplier pipe, three-way branch (complete solution), 230, 231-232, 233
 single compression wave down one pipe (Benson’s solution), 227-228
 two compression waves down two pipes (Benson’s solution), 228
 two supplier pipes, three-way branch (complete solution), 230-231, 232-233, 234
Pressure wave reflection in cylinder/plenum outflow to pipe
 introduction to, 239-241
 final polynomial functions for, 244-245
 flow equations for, 242-244
 geometry of, 240
 numerical examples/discussion of, 246-248
 outflow with sonic particle velocity, 245-246
 reference state conditions for, 241-242
 solution techniques for (Newton-Raphson/Gaussian Elimination), 245
 temperature/entropy characteristics for, 241, 242
Pressure wave reflection in inflow from pipe to cylinder/plenum
 introduction to, 248-249
 final polynomial functions for, 252-253
 flow equations for, 251
 gas properties/state equations for, 250-251
 geometry of, 249
 inflow with sonic particle velocity, 253-254
 numerical examples/discussion of, 254-255
 reflected pressure wave, velocity, expressions for, 252
 turbulence, dissipation of (subsonic inflow), 249
Pressure wave reflection in tapered pipes
 introduction to, 236
 conical section volumes, mean diameters for, 237
 diffusing flow, isentropic analysis of, 214
 flow separation from diffuser walls, 238-239
 geometry of, 237, 238
Pumping See Exhaust pumping; Intake pumping; Pumping loss; Time-area relationships
Pumping loss
 friction/pumping losses (diesel simulation), 128
 friction/pumping losses (dynamometer), 72
 pmep/pumping losses (Otto cycle), 67-68, 107, 108-109
 pumping losses, Seeley G50 motorcycle engine, 556, 557
 pumping work (intake/exhaust strokes), 67-68
 in sports car engine (2000 cm³ SI), 595

QUB SP unsteady gas flow experimental apparatus
 introduction to, 288-289
 air, properties of, 309-310
 carbon dioxide, properties of, 309-310
 coefficients of discharge (inflow/outflow), 290-291
 computational speed of, 313
Design and Simulation of Four-Stroke Engines

QUB SP unsteady gas flow experimental apparatus (continued)
configuration/construction of, 289-290
divergent tapered pipe attachment/analysis, 303-305
design criteria for, 289
divergent tapered pipe, long (megaphone), 306-308
divergent tapered pipe (short), 301-303
gas discontinuity attachment/analysis, 308-312
inflow: compression waves in intake pipe, 294-296
“nozzle” terminology, caveat about, 306
outflow: compression waves in exhaust pipe, 292-294
sudden contraction attachment/analysis, 298-301
sudden expansion attachment/analysis, 296-298
concluding remarks, 313
See also GPB Finite System Method (for engine modeling)

Raghunathan, Barry, 361
Ramming, intake See Intake ramming; Time-area relationships
Rassweiler, G.M., 419, 469
Reference mass (air), 54, 55
Reflection, pressure wave See Pressure wave reflection (various); Pressure wave reflection,
 Benson constant-pressure solutions to
Reid, M.G.O., 470
Reynolds number
 in closed-cycle heat transfer, 432-433
 in pressure wave friction factor, 189
 in pressure wave friction loss (bent pipe), 191
Robb, Tommy, 563
Roe, G.E., 566, 699, 721
Rotary valves, basics of, 14-15
Rotation rate, engine
 and brake power output, 79-80
 effect of piston speed on, 79
Rotors, compressor/turbine, 600, 601
Ryobi 26 cm³ power tool engine
 AFR effect on torque output, 538-539, 540
 bsfc, 539, 541
 bsNO emissions, 542
 calculated cylinder pressure ratio, 541, 543, 544, 545
 Cd at maximum valve lift, 634
 CO emission, 539, 541
 cutaway view, 537-538
 cylinder head/valve geometry, 524-525
 cylinder temperature, 541, 543, 544, 545
 delivery ratio, 539, 540, 544, 546, 547
 gas charge purity, 539, 540, 546-547
 imep/bmep (measured/calculated), 539, 542
 intake and exhaust ducting, 525-526
Ryobi 26 cm³ power tool engine (continued)
manifold-to-port area ratio, 636
mechanical efficiency, 541, 542
noise characteristics, 547, 548
particle velocities, 544, 546, 548
power output (measured/calculated), 539
simulation, input data for, 538
time-areas for, 627, 628
torque (measured/calculated), 538, 540

SAE See Standards, SAE
Scavenge ratio, defined, 55
Scavenge-derived hydrocarbon emissions, 503-504
Scavenging efficiency
and active radical combustion, 411
vs. AFR (two-zone SI model), 510
and charge purity, 57-58
defined, 57
Ducati 955 cm³ V-twin engine, 568-569
effect on flammability, 410-411
Seeley G50 engine, 555, 557
and valve overlap, 58
Schefer, R.W., 504
Seatek marine diesel engines
10.3L, 630 bhp navy engine, 617, 619
10.3L, 1100 bhp racing engine, 617, 618
Seeley, Colin, 548
Seeley G50 motorcycle engine
bmepr/imepr (long vs. short pipes), 556, 557
Brian Steenson on, 548, 549
Cd at maximum valve lift, 634
charge purity/intake temperature (long vs. short pipes), 560, 561
charging efficiency, 554, 555, 557
cylinder head/valve geometry of, 550
cylinder/intake/exhaust pressures (std. engine, 7000 rpm), 552-553
delivery ratio, 555, 557
fuel consumption, bsfc (long vs. short pipes), 557
input data for simulation of, 550
intake and exhaust ducting for, 551
intake ramming of, 670
manifold-to-port area ratio, 636
noise characteristics (long pipe), 561-563
particle velocity (long vs. short pipes), 560
power/torque output (long vs. short pipes), 554
power/torque output (production engine), 551, 552, 561
pressure transducers, typical placement of, 551-552, 553
pumping losses (long vs. short pipes), 556, 557
Seeley G50 motorcycle engine (continued)
 racing experience with, 561-563
 time-areas for, 627, 628
 trapping/scavenging efficiencies, 555, 557
Shock waves
 moving, in unsteady gas flow, 323-326
 in unidirectional pressure waves in a pipe, 167-169
Side-valve engines
 basics of, 10-11
 limitations of, 11-12
Silencers, absorption-type
 absorption silencer segment positioning, 722-723
 attenuation vs. frequency, typical, 722
 cutaway view and assembly of, 726-727
 perforated vs. stabbed holes in, 722, 723
 significant dimensions of, 715, 721
See also Silencers, exhaust (ITC motorcycle engine design example); Silencers, intake
 (ITC motorcycle engine design example)
Silencers, design of
 design approach: acoustic vs. finite-amplitude, 705
 experimental measurements, Coates/Blair work in, 707-712
 predictive design, Coates’s work in, 706-707
 predictive design, future work in, 712-713
 primary design objectives, 763-764
See also Silencers (various)
Silencers, diffusing type
 attenuation characteristics (Coates’s SYSTEM 2, 3), 716-718
 cutaway view and assembly of, 726, 727
 diffusing silencer with reentrant pipes, 733
 “pass bands” in, 716
 significant dimensions of, 713-714
 transmission loss, factors determining, 714-716
 transmission loss (in dB), 716
See also Silencers, exhaust (ITC motorcycle engine design example)
Silencers, exhaust (ITC motorcycle engine design example)
 introduction to, 730-732
 absorption, branches/interconnected plenums in, 734-735
 absorption, design details, 732, 733-734
 absorption, mass flow rate, 746
 absorption, noise attenuation, 741-742
 absorption, noise characteristics, 736-737, 745
 absorption, noise spectrum, 745
 absorption, torque characteristics, 735, 736, 744
 absorption, unsteady gas dynamic simulation of, 734
 diffusing, reentrant (design details), 731, 733
 diffusing, reentrant (noise attenuation), 740-741
 diffusing, reentrant (noise characteristics), 737, 738
 diffusing, reentrant (torque characteristics), 737, 738
Silencers, exhaust (ITC motorcycle engine design example) (continued)
diffusing, simple, design details, 731, 732-733
diffusing, simple (design details), 731, 732-733
diffusing, simple (mass flow rate), 746
diffusing, simple (noise characteristics), 736-737, 745
diffusing, simple (noise spectrum), 745
diffusing, simple (torque characteristics), 735, 736, 744
noise characteristics, silenced/unsilenced compared, 755-756
noise spectra, silenced engine, 758
performance characteristics, silenced/unsilenced compared, 754-755
plenum, introduction to, 732
plenum, noise attenuation, 739
plenum, noise characteristics, 736, 737
plenum, torque characteristics, 736
side-resonant, design details, 732, 733
side-resonant, noise attenuation, 739, 741, 742
side-resonant, noise characteristics, 736, 737
side-resonant, torque characteristics, 735, 736
two-box, design details, 743-744
two-box, exhaust mass flow rate, 746
two-box, noise characteristics, 744, 745
two-box, noise spectrum, 744, 745
two-box, torque characteristics, 744
See also Silencers, intake (ITC motorcycle engine design example)

Silencers, inboard marine, 685-686, 730
Silencers, intake (ITC motorcycle engine design example)
analysis of, 747-748
box volume, effect on intake noise/bmep, 749, 750
gallery/dimensions of, 747
intake pipe diameter, effect on intake noise/bmep, 749, 751
intake volume, effect on intake noise/bmep, 749, 750
mass flow rates, 753-754
noise characteristics, silenced/unsilenced, 755-756
noise spectra, silenced engine, 758
performance characteristics, silenced/unsilenced, 754-755
pressure, intake plenum/intake pipe, 752-753	
tube length, effect on intake noise/bmep, 748-749, 751-752
See also Silencers, exhaust (ITC motorcycle engine design example)

Silencers, intake-system (low-pass)
delivery ratio, design caveats regarding, 728
gallery of, 715, 727
natural (resonant) frequency vs. engine speed, 728
Silencers, laminar-flow type
analysis of, 724-725
effectiveness of, 725
gallery of, 723
Silencers, manufacture of
basics of (cutaway views), 725-727
Silencers, manufacture of (continued)
 inboard marine systems, 685-686, 730
 materials for, 725-727, 763
Silencers, multi-cylinder
 sports car engine, intake silencing of, 759-762
 See also Exhaust tuning
Silencers, plenum (box) type
 limitations of, 732
 noise attenuation, 739
 noise characteristics, 736, 737
 pressure-wave reflections (cylinder/plenum to pipe), 239-248
 torque characteristics, 736
 two-box design, cutaway example of, 726-727
 See also Silencers, exhaust (ITC motorcycle engine design example)
Silencers, side-resonant type
 attenuation characteristics, Coates's SYSTEM 4, 719-720
 significant dimensions (with round holes), 714, 718
 significant dimensions (with side slits), 714, 721
 theoretical solution for (with side slits), 721
 transmission loss, dB (with round holes), 719
 typical, with simulation layout, 719
 See also Silencers, exhaust (ITC motorcycle engine design example)
Silencers, space available for
 automobiles, 730
 hand-held power tools, 729, 762
 inboard marine engines, 685-686, 730
 motorcycles, 730
 outboard motors, 729-730
Silencers, two-box type
 design details, 743-744
 exhaust mass flow rate, 746
 noise characteristics, 744, 745
 noise spectrum, 744, 745
 torque characteristics, 744
 See also Silencers, exhaust (ITC motorcycle engine design example)
Simulation, computer
 software program listing, 771-773
 See also GPB Finite System Method (for engine modeling); Simulation, Otto cycle
Simulation, Otto cycle
 introduction to, 81-82, 128-129
 combustion, time-dependency of, 81-84
 See also Otto engine power cycle analysis
Single-plane crankshaft See Crankshafts, single-plane
Sleeve-valve engines
 Barr and Stroud motorcycle engine, 13, 16
 discussion of, 12-13, 15
Somerville, B.J., 491
Sound, physics of
 decibels/bels, mathematical basis of, 699-700
 hearing, frequency range of, 699
 hearing, intensity range of, 699
 intensity, defined, 699
 loudness, additive, 700-701
 noise-frequency spectrum, 702
 noisemeters, 702
 sound transmission (in air), 698
See also Noise
Spark-ignition engines See Otto cycle (various); Simulation, Otto cycle
Spechko, J.A., 705
Speed, maximum vehicle
 vs. power ratio, 615
 sports car vs. turbo diesel, 604, 615
Sports car engine (2000 cm³ SI)
 bsfc, 590, 591
 Cd at maximum valve lift, 634
 combustion efficiency, trapped charge implications for, 597
 cylinder head/valve geometry, 586
 cylinder/exhaust/intake pressures (full load), 590-591
 cylinder/exhaust/intake pressures (part load), 593-595
 cylinder/exhaust/intake temperatures (part load), 593-595, 606
 delivery ratio, 588, 589
 exhaust ducting, 587, 588
 input data for simulation of, 586
 intake ducting, 586, 587
 intake silencing of, 759-762
 manifold-to-port area ratio, 636
 particle velocities, 595-596
 part-load performance, discussion of, 593, 595
 power output, 588, 590-591
 pumping losses in, 595
 time-areas for, 627, 628
 torque (as bmep), 588, 589, 591
 trapped charge purity, 597
Squish
 introduction to squish behavior, 474-476
 CFD squish flow visualization (DI diesel engine), 471-472
 squish band/squish clearance, 414-415
 squish behavior theoretical model, 415, 478-483
 squish flow and turbulence kinetic energy, 483
 squish flow area, defined, 481
 squish flow area (DI diesel), 482
 squish flow area (2V SI engines), 482
 squish flow area (4V SI engines), 482-483
 squish geometries (DI diesel), 453, 478
Squish (continued)
squish geometries (SI cylinder heads), 477
squish lip in DI diesel piston, 19, 20, 453
squish velocity evaluation (DI diesel), 485-486
squish velocity evaluation (IDI diesel), 486-491
squish velocity evaluation (SI engine), 484-485
swirl characteristics, optimization of (IDI diesel), 491-494
swirl ratio/swirl rotation rate, defined, 475, 491
swirl velocity, defined, 491
turbulence, effect of fuel used on, 496
turbulence kinetic energy and squish flow, 483
in 4-valve pent-roof cylinder head, 12, 477
See also Combustion chambers, diesel engine
Standards, British
BS 1041 (air/fuel flow rate), 73
BS 1042 (Fluid Flow in Closed Conduits), 328
Standards, German
DIN 73021 (cylinder numbering), 528, 529
Standards, SAE
J604 (delivery ratio), 56, 59
J1088 (exhaust emissions), 73
J47 (motorcycle noise), 756-758
J331 (motorcycle noise), 756-758
noise standards, list of, 765
Steam
mass ratio vs. crank angle, 517, 520
Steenson, Brian, 548, 549, 554, 561
Surtees, John, 769
Swept volume
basic expression for, 23
definitions, analytical, 79
graphy of (illus.), 2
Swirl
swirl characteristics, optimization of (IDI diesel engine), 491-494
swirl velocity, defined, 491
swirling/tumbling, defined, 475
See also Squish
Taylor, R., 699
Temperature, cylinder See Cylinder temperature
Temperature/entropy characteristics
pressure wave reflection at inflow from pipe to cylinder/plenum, 249-250
pressure wave reflection in cylinder/plenum outflow to pipe, 241, 242
pressure-wave reflection at pipe expansion/contraction, 211
reflected wave at butted joint, 219
Tests See Engine tests
Thermal efficiency (diesel engine) vs. fueling level (phased burn), 125, 127, 128
Thermal efficiency (Otto cycle) brake (from dynamometer testing), 72 compression ratio, effect of, 95-97 in engine power cycle analysis, 89 ideal, 64, 70, 144-146
Thermodynamic mayhem, 598
Thermodynamics of closed systems See Closed cycle, thermodynamics of
Throttle valves, intake system as “butted joint” elements (discussion), 392, 394, 399 butterfly throttle, 393, 394-396 slide valve throttle, 393, 396-397 sliding plate throttle, 393, 397-398
Time-area relationships introduction to, 622-624 vs. bmep (exhaust blowdown), 629, 630 vs. bmep (exhaust overlap), 630, 632 vs. bmep (exhaust pumping), 630 vs. bmep (intake overlap), 630, 632 vs. bmep (intake pumping), 630, 631 vs. bmep (intake ramming), 630, 631 for Chapter 5 engines, 627, 628 for exhaust blowdown, 624-625 for exhaust pumping, 625 for intake ramming, 624 as pseudo-dimensionless number, 626-627 for valve overlap period, 625-626 for various high-performance engines, 627, 628 concluding remarks on, 693-694 See also Empiricism (various); Intake overlap; Intake pumping; Intake ramming
Top dead center, defined, 3, 25
Torque asymmetrical firing and inter-cylinder torque variations, 580-581 Ducati V-twin engine, 567 indicated (Otto), 69 measured/calculated, Ryobi engine, 538, 540 Nissan Infiniti IRL engine, 577-578 Seeley G50 motorcycle engine, 551, 552 single- vs. double-plane crankshafts, effect of, 580-581, 583-584 sports car engine (2000 cm³ SI), 588, 589, 591 stub, straight pipe and collector systems compared (ITC “single” engine), 672-674 Trapping conditions, cylinder trapped fuel quantity, 62 Trapping efficiency and charging efficiency, 59 from exhaust gas analysis, 76-77 expression for, 57
Design and Simulation of Four-Stroke Engines

Tuning, exhaust See Exhaust tuning
Tuning, intake See Intake overlap; Intake pumping; Intake ramming; ITC car engine
simulation, empiricism in; ITC "single" engine intake tuning

Turbocharged 2000 cm³ diesel engine
bsfc (diesel vs. sports car), 604, 605
Cd at maximum valve lift, 634
charge purity (full load), 609, 610
charge purity (part load), 612-614
cylinder head/valve geometry, 599
cylinder/exhaust/intake pressures (full load), 606-608
cylinder/exhaust/intake pressures (part load), 611
cylinder/exhaust/intake temperatures (full load), 608
cylinder/exhaust/intake temperatures (part load), 611-612
delivery ratio, 602, 603
in-cylinder temperatures (diesel vs. sports car), 606
input data for simulation of, 598
intake/exhaust ducting, 599
manifold-to-port area ratio, 636
NO emissions (bsNO), 605-606
part load performance, discussion of, 609-610
particle velocities (full load), 608-609
particle velocities (part load), 612-613
part-load performance of (data summary), 593
power output (NA vs. turbocharged), 602, 604, 605
time-areas for, 626, 628
torque (NA vs. turbocharged), 602, 603
turbocharger, modeling, 600
See also Diesel engines, DI turbocharged

Turbocharged SI engines
combustion analysis of, 442-447
detonation, effect of turbocharging on, 446
imep (NA vs. turbocharged SI engines), 445-447
See also Diesel engines, DI turbocharged; Turbocharged 2000 cm³ diesel engine

Turbulence
dissipation of (in pressure wave reflection), 249
squish, fuel characteristics effect on, 496
turbulence kinetic energy and squish flow, 483

Two-stroke engines
combustion-related emissions from, 430
See also Discharge coefficients, two-stroke engines

Unsteady gas flow, analysis of
moving shock waves in, 323-326
particle velocity in (derivation of), 318-322
See also GPB Finite System Method (for engine modeling); QUB SP unsteady gas flow
experimental apparatus

Uphill, Malcolm, 548

812
Valve apertures
 - annular flow areas, intake/exhaust, 35
 - aperture areas, intake/exhaust, 32
 - aperture geometry, poppet valve, 32-35
 - calculated valve flow areas, accuracy of, 46-48
 - connecting with manifold, 31-32
 - pipe-to-port area ratios, 31
 - valve curtain areas, 32-34
See also Valve lift
Valve geometries, intake
 - as “butted joint” elements (discussion), 392, 394, 399
 - butterfly throttle, 393, 394-396
 - slide valve throttle, 393, 396-397
 - sliding plate throttle, 393, 397-398
Valve lift
 - acceleration-velocity characteristics, 37-38
 - calculated valve flow areas, accuracy of, 46-48
 - Cd at maximum (Chapter 5 engines), 633-634
 - Cd at maximum (high-performance engines), 633-634
 - Cd vs. bmep (at maximum exhaust lift), 634, 635
 - Cd vs. bmep (at maximum intake lift), 634, 635
 - lift curve design, introduction to, 39-41
 - lift curve design, analysis of, 41-45
 - lift curve design, smoothing technique for, 49-51
 - lift ratios (up vs. down ramps), 52-54
 - measured vs. calculated valve lifts, 45-46, 47
 - ramp lift vs. maximum lift, 37
 - ramp/lift coefficients (compression-ignition engines), 45
 - ramp/lift coefficients (SI engines), 45
 - valve lift vs. crank angle, 36
See also Time-area relationships; Valve apertures
Valve overlap
 - basic, some caveats regarding, 10
 - in compression-ignition engines, 17
 - exhaust, time-area vs. bmep, 630, 632
 - intake, time-area vs. bmep, 630, 632
 - and scavenging efficiency, 58
 - time-area relationships for, 625-626
See also Time-area relationships; Valve apertures
Valve timing, intake (ITC “single” engine)
 - vs. DR, 659, 660
 - vs. particle velocity, 663, 666
 - vs. pressure diagrams, 663, 665
 - right/left waves (310 mm intake tract), 663, 665
Vibe coefficients
 - for diesel mass-fraction burn curve, 119-121
 - and rate of heat release, comment on, 450
Design and Simulation of Four-Stroke Engines

Vibe coefficients (continued)
for SI engine heat release analysis, 437-438
for SI mass-fraction phased-burn curve, 82, 83, 119
Volumetric efficiency, expression for, 54

Wallace, F.J., 256, 769
Wankel engines, 15-16
“Water gas” reaction, 422, 506, 514
Wendroff, B., 256
Williams, Jack, 547, 550, 551, 636, 670, 769
Withrow, L., 419, 469
Work
produced by ideal Otto cycle, 65-66
pumping work (Otto intake/exhaust strokes), 67-68
Woschni, G., 432
Wrist pins See Gudgeon pins
Wynne, Steve, 567

Yamaha FRZ 600 motorcycle engine
discharge coefficients, 372-377
effect of valve masking on Cd, 372-377

Zeldovitch, Ya.B., 504
About the Author

Dr. Gordon P. Blair is a world-renowned expert on the design and development of two-stroke engines. Since 1997, he is Professor Emeritus at The Queen's University of Belfast (QUB), where he has taught a couple of generations of students and has single-mindedly carried out research into the internal combustion engine. This book reveals that a much greater proportion of that research than is generally appreciated was into four-stroke engines.

Professor Blair began his academic career by holding the post of Assistant Professor at New Mexico State University from 1962–1964 and then returned to Belfast. Apart from holding the Chair of Mechanical Engineering at QUB for some twenty years, Professor Blair has served the University as Dean of the Faculty of Engineering and as Pro-Vice Chancellor. In addition, Professor Blair has been a consultant for many well-known companies, such as Ford, General Motors, Mercury Marine, Volvo, and Yamaha, and international sporting bodies such as the Union Internationale Motonautique and the Federation Internationale Motocycliste. He has been named a Fellow of the Society of Automotive Engineers, the Institution of Mechanical Engineers, and the Royal Academy of Engineering. Professor Blair has been recognized by Her Majesty The Queen by the award of a CBE (Commander of the Order of the British Empire).