Epilogue

When we know of a person’s success or failure and his enthusiasm for his work, especially when we can see the results of his work, it is unfortunate if we cannot always feel his thoughts and doubts and respect him for his work. Yet, we recall the sorrow and emotions that we felt upon first viewing the person’s work weaken and fade with the passage of time. During my research and travels, I often took notes with the intention of retaining these precious impressions and using them as the material for a book reflecting these feelings. However, partially because of my tight business schedule, it was not easy to research and compile a book in an orderly and efficient manner.

I would like to have had more time to polish my words and descriptions. Unfortunately, some of the contents of this volume may be unclear, and some may even have factual errors. Also, I am somewhat embarrassed by my poor sentence structure in English. So, I ask for the reader’s understanding as he or she reads this book.

Some products, such as engines or automobiles, are judged to be failures by this book. It is often difficult to answer the question, “What do you mean by a failure?” A product that does not look or perform well may still sell well and be deemed a success by the marketplace. Similarly, a product that has been critically acclaimed by the automobile reviewers may have a limited commercial life. The reasons behind these different reactions may be extremely diversified and only dimly understood.

Sometimes the only way to arrive at some conclusion on these historical cases is simply to guess about the reason because the true causes of the failures of the products discussed in this book cannot be determined without knowing all the facts and conditions surrounding the product. However, I think that a serious analysis and evaluation of these historical happenings and technologies can still be of benefit to serious thought and reflection, even if some of the facts are unknown.

The author now returns his pen to his desk with many thanks for those people who came before him and devoted their lives to the technology in which he himself has such great interest.
Finally, the author expresses his deepest gratitude for the many people who helped in the publication of this book.

Takashi Suzuki
August 1988
References

(2-1) Frankel, T., Steam Engines and Turbines, Smithsonian Institution Press (1977).
(7-2) Devillers, R., Le Moteur a Explosions, (1934).

(8-4) Shima, S., "Resolving the Lubrication Problem in Automobile Engines (I)," *Heat Engines* (Japanese) Vol. 1, No. 6 (1955-6).

(9-2) Suzuki, T., A free translation of T. Hiroshige (Ref. 9-1) into modern Japanese.

(10-2) Tagawa, Suiho, *Second Lieutenant Norakuro*.

(14-1) Kent, Jack, *Hop, Skip, and Jump*.

(16-2) Hillman, I., Auto Car (22 May 1964).

(19-1) Green, W., Famous Bombers of the Second World War, MacDonald (1959).

(35-2) Ellis, J., "Voyager: Never Have So Few Tried So Much With So Little," *Air and Space* (October/November 1986).

(38-6) Sparrow, S.W., "Recent Developments in Main and Connecting-Rod Bearings," *SAE Transactions* (July 1934).

(40-1) *All about WW II Japanese Aviation Technology*, (Japanese) Hara shobo (1976).

Index

f = figure; t = table; p = photo; n = footnote

ABC engine
 cooling problem in, 229-232, 231f
 head of, 232f
 see also All British Engine Company
Accelerated combustion, 104, 104f
ACE research on combustion, 412-414, 413p
Adams Farwell automobile, 221
 with air-cooled radial engine, 222f
 engine of, 222p
 evaluation of, 235-236, 236f
Ader, Clement, 5
 steam airplane by, 6p
Adiabatic engines
 American approach challenged, 73-74, 75p
 Carnot's idea of, 62-65
 compound
 concept of, 64, 64f
 efficiency increase with, 64-65, 65f
 founder of, 79, 80f
 revival of, 74, 76p, 76-77, 77p, 78f, 79p
Cummins Engine Company research into, 65-66
 energy saving and, 68-69, 69f
 exergieverlust in, 58f
 exhaust gas energy recovery in, 69, 71
 heat loss in, 69, 70f
 heat-insulated
 combustion phenomenon on, 79-80, 82-84
 research on, 84, 85f
 Hino's, improvement process of, 78f
 ignition delay period in, 83f
 Prince Takamatsu asking questions about, 75p
 test engine, heat insulation applied to, 81f
 turbocompound engine, 75p
 war and development of, 65-67, 66f, 67p, 68p
Adiabaticity, equation for, 79
Adiabatics, Inc., 68p
Adianomique engine, 268p, 268-269
 principle model of, 269p
Aerodome airplane
 tragedy of, 223-225, 225p
 wing of, 226p
Aeroengines, 216-218, 220p
 Koken aircraft equipped with, 220p
 Shimpu, 218p
 type 98 Ki-36 aircraft equipped with, 219p
AIDA. See Adiabatics, Inc.
Air turbulence, in cylinder, 112-117, 115f, 116f
Air-cooled radial engines
 Adams Farwell automobile with, 222f
 aeroengine, in World War II, 308
 converted into liquid-cooled inverted V, 344f
 liquid-cooled inverted V converted into, 344f
 Nakajima HA54 engine, 267f
 in Tucker automobiles, 140
 V8 engine, 233p
Air-cooling valve, 326f
Aircraft
 for close support and reconnaissance
 Salmson 2A2 plane, 244f, 244-245
 Voisin LA5B2 bomber, 244-245, 245f
 Convair Model XC-99 sightseeing plane, 271p
 with Gasuden engine, 219p
 high-speed, 131-132
 jet planes, 381-382
 world’s first jet passenger plane, 13p
 Junkers JU288 interceptor fighter, 265p
 for long-range research, 219p
 with Packard diesel engine
 Bellanca monoplane, 277
 Stinson-Detroiter airplane, 279p
passenger planes
 Goliath passenger plane, 246, 248p
 hydraulic pressure test of, 13p
 world’s first jet passenger plane, 13p
Spirit of St. Louis, with Wright Whirlwind engine mounted to, 278p
steam, 6p
Voyager, 317-318

see also specific aircraft
Aircraft engines
 Alfa Romeo P2 engine, 356, 357f
 Anzani engine of Bleriot's monoplane, 44f, 45p
 designed by Hargrave, 225-226, 227p
 life of, 43-46
 Wright's biplane engine, 44p
 see also specific engines
 Alfa Romeo P2 engine, 356, 357f
All British Engine Company (ABC)
 radial engine and, 226, 228-229
 see also Wasp engine
Allison V-3420 coupled engine, 149, 150p
Aluminum piston, 85f
Amagiri (Japanese destroyer), PT boats and, 306-307
Amakaze (Tempu) engine, 216-218, 220
Ambient pressure, 113f
Annergie
 definition of, 58
 in engine, 56-59
 German meaning of, 57
Anzani engine, 43, 44f, 45p
Atlantic coupe, 159, 160p
Australia, root of radial engine in, 225-226, 227f, 227p
Automobiles
 NOx emitted from, 410f
 see also specific automobiles
Automotive energy distribution, 69f
Automotive engines, life of, 43-46, 46f

B2 diesel engine, 207p
 for T34 tank, 199-200, 200p, 206-207
Ball-bearings, accuracy of, 341f
Balzer, Stephen M., quadricycle made by, 223, 223p
Bantan, duel of Fokker versus, 230f
Bellanca monoplane, Packard diesel engine mounted to, 277
Bellanca seaplane tragedy, 295-296
Bentley, W.O., Mercedes engine and, 169-170
Benz, Karl
 formula engine, 255-259, 256f, 257p, 258f
 in-line, eight-cylinder engine, 256f
 model 170H engine, 125-126, 127p, 128p
 racing car, 249, 249p
 Salmsön's idea admired by, 249-250
Bevel gear-driven overhead cam, in Mercedes, 172, 173f
Big 6, 191
Bleriot, Louis, 43, 44f
BMW model 803 engine, 264, 266, 266p
Boeing Aircraft Company
 299 as prototype plane of B17, 144p
 four-engine strategic bomber manufactured by, 143
Boron cast-iron, composition of, 50f
Boron cylinder liner, invention of, 46-48, 49f
Bowdich, F.W., 180
Box kite, 225-226, 227f
Breguet-Leviathan, using Bugatti’s quadruplet engine, 163f
Brown, Julian, automobile made by, 236, 236f, 237p
Bucciali automobile, 159, 161p
Buchi, Alfred, 74
 compound engine of, 79, 80f
Bugatti automobiles, 159
 Atlantic coupe, 160p
 T54 automobile, 347-348, 348f
Bugatti engines
 coupled engine, 162p
 quadruplet engine, 163p
 Breguet-Leviathan powered by, 163f
 Royale engine, 159, 160p

Cadillac Hotel, Detroit, Michigan, 183p
Canadian National Railways’ Model 6400 locomotive, 54p
Canton, Georges Henri Marius, 246
Canton-Unne engine, 245-246, 247p
Canton-Unne system, 254-255, 255f
Carburizing and quenching, 351
Carlqvist, S., 371
Carnot, Sadi
 alma mater of, 57p
 engine cycle conceived by, 51-53, 52f
 idea of, 53, 54p, 55
 of adiabatic engine, 62-65
 in Napoleon’s army, 55-56, 56f
 theorem of, 56
 see also Adiabatic engine; Carnot’s cycle
Carnot’s cycle, 51-53, 52f
Catalyst, 417-419, 418f
Catalytic engine, 419, 427-428
 total image of, 428f
 truck with, 420f
Cavitation pitting of cylinder liner wall, 308, 311-315, 312f
 bubbles on outside wall of cylinder liner, 313p
 during bubble breakage, 314f
 sound at occurrence of, 316f
Ceramic turbine, thermal efficiency of, 389, 389f
Chadwick, Roy, Manchester airplane and, 155, 156-157
Christie, John Walter
 army contract given to, 202-203
 four-wheel-drive vehicle manufactured by, 191-192
 front engine/front wheel drive system produced by, 190-191, 191f
Christie tank, 193-194
 1930s version of, 205, 206p
 offers for, 203
 Russian duplication/development of, 194, 194p
 sale of, 202-203, 204p, 205
 shipped to Soviet Union, 205
 sold to Soviet Union, 203
 see also T34 tank; Tanks
Chupakhin, T., diesel engine in T34 tank credited to, 196
Citroën Big 6, 191
Clean Air Act, enforcement of, 61-62
Coccinelle rhombus car, 240f
Collier Trophy awarding ceremony, 280p
Combustion
 accelerated, 104, 104f
 ACE research on, 412-414, 413f
 comparison of conventional-based engine and heat-insulated engine, 82f
 control of, 103-105
 diesel, with high-pressure fuel injection, 423-424, 424f, 424p, 425f, 426f, 427f
 improved by turbulence, 122f
 in Packard diesel engine, 299-301, 301f
 stratified charge
 inspiration for, 23-24, 24f
 in present measures of exhaust gas, 24-26, 25f, 26p
 swirl ratio and, 424p, 426f
 see also Initial combustion; Internal combustion engine
Combustion chamber
 of direct injection system, 285f
 of first MAN automobile diesel engine, 285f
 inside of, 184f
 of MAN four-ton truck, 283p
 of prechamber system, 284f
Combustion development, 115f
Combustion period, comparison of thermal efficiency and, 116f
Combustion systems, diesel, 284f
Combustion temperature, NO formation versus ambient pressure and, 113f
Comet accident, investigation of, 12
Commerce, 191, 192f
Company, engineering integral part of, 335-336
Compound engine
Buchi’s, 80f
description of, 64-65
founder of, 79
revival of, 74, 76-77, 77p
Wright Turbocompound R3350 engine, 76p
Compression ratio, thermal efficiency and, 21-22
Conservatoire National de Arts et Matiers, Paris, 262p
Contessa automobiles
900 Sprint, 123, 125f
1300 automobile, 123-124, 124p
design of, 128-131, 130p
cooling system for, 132, 134f, 135f
Renault car and, 125
Convair Model XC-99 airplane, powered by six radial engines, 270, 271p
Conventional-based engine, comparison of heat-insulated engine and, 82f
Cooling problem
in Benz 170H, 128p
in Benz car, 127p
in Contessa 900 Sprint, 124, 125p
in Contessa 1300 prototype, 124p
Contessa’s cooling system, 132, 134f, 135f
cooling system of rear-mounted engine, 126f, 127p
copper plating and, 230-231, 231f
in Curtiss P40 fighter plane, 97, 99f, 100
in Curtiss XF15C-1 fighter plane, 100, 100p
decline of Curtiss Company, 96-98, 100-101
design of, 128-131
engine compartment unique to, 130, 130p
in Grumman F8F plane, 131, 133p
in Japanese army fighter Ki-83, 131-132, 132f, 133f
Michelotti’s rejection, 123-125
in racing car designed by Hans Nibel, 127f
Regie Renault’s concern, 125-126
in Renault 4CV, 128p
renovation of Curtiss R3C-2 plane and, 95-96, 96f
in Wasp engine, 231f, 232f
Index

Cooling system
 of Contessa, 132, 134f, 135f
 of rear-mounted engine, 126f
Copper plating, cooling problems and, 230-231, 231f
Corliss, George H.
 steam pump made by, 269, 270p
Corvair automobile, influence of Tucker automobile on, 140-141, 141p
Coupled engine
 by Bugatti, 162p
 for Greif bomber, 146f, 146p
Crankshaft
 of DB601 engine, excessive wear from, 350, 351p
 insufficient heat treatment of, 360, 362
Crankshaft bearing
 of Daimler-Benz DB600 series engines, 362, 364t
 of Dyna Panhard engine, 335f
Crankshaft hardness, of Ha-40 engine, 361f
Crankshaft journal shape, 354f
Crankshaft problems, with DB601 engine, 354
Crosshatch of cylinder, 35-38, 38f
Crosshead, explanation of, 28f, 28-29
Cruiser tank. See Crusader MKII tank
Crusader MKII tank, 205, 206p
 see also Tanks
Cugnots, Joseph, 5
 steam engine car by, 6p
Cummins Engine Company, research into adiabatic engine by, 65-66
Curtiss, Glenn H., 95-96
Curtiss Airplane & Motor Company, decline of, 96-98, 100-101
Curtiss airplanes
 Model R3C-2 plane, 95, 96f
 Model XF15C-1 fighter, 100, 100p
 P36, for export to Thailand, 98p
 P40 Warhawk, 96-97, 99f
 conversion of, 98, 99f, 100
Curtiss engine, 96, 97p
Curtiss-Wright Corporation, establishment of, 291-292
Cyclops Eye, 139
Cylinder
 seizure problems, 31-32
 wear in, due to liner material, 49f
Cylinder bore
 crosshatching in, 35-38, 38f
 x piston stroke, 110-111
Cylinder liner
boron cylinder liner, invention of, 46-48, 49f

cavitation pitting of, 308, 311-315, 312f
bubbles on outside wall, 313p
during bubble breakage, 314f
piston head hitting liner and, 315f
sound at occurrence of, 316f
surface finish of, 39f

Cylinder-fastening, to Packard diesel engine, 302f, 302-304
Cylinder-fastening bolt, load applied to, 303f

Dachstein, Austria, 166p
Daimler, Gottlieb, Otto four-stroke-cycle compound engine designed by, 89
Daimler, Paul
Mercedes engine and, 169
Mercedes racing engine by, 176

Daimler-Benz DB600 series engines
changes on crankshaft bearing of, 362, 364t
development process of, 359f
list of, 360t
testimony obtained in Europe, 341-342, 343p

Daimler-Benz DB601 engine, 356, 357f, 358p, 359, 359f, 360t
crankshaft bearing failure analysis
bearings design evaluation, 366-368, 367f
change to shell bearing, 362-364, 364t, 364p, 365f, 366, 366f
insufficient heat treatment of crankshaft, 360, 361f, 362, 363p, 364p
roller bearing accuracy, 369-370
roller bearings ill-suited for use, 342-343, 344f, 345
use of roller bearings, 355-356
engine bearing story, 333, 334p, 335f

Hein Ki-61 fighter powered by, 330-331, 331p
Hitler’s anger, 347-348, 348f, 349p
Messerschmitt Me109 powered by, 329, 330f

problems with
excessive wear from crankshaft, 351p, 352p
major causes of, 350-351, 353, 353f, 354f
overcoming problems, 354-355
skewing of roller bearing, 352f
tracing problems in Japan, 350, 351p
V12 gasoline liquid-cooled engine, 329-331, 330, 331p

see also Ha-40 engine

DB600 series engines. See Daimler-Benz DB600 series engines
DB601 engine. See Daimler-Benz DB601 engine
De Havilland Comet 4, 12, 13p
Descartes system, 421, 422f
Desmodromic, definition of, 259
Desmodromic system, 255, 257p
disadvantage of, 258
lack of use of, 259
valve lift enhanced by, 258f
Detonation, 180, 186
Detroit Cadillac Hotel, 183p
Deutz Gas Motoren GmbH. See KHD Company
Diesel, as basis of research, 414, 415f, 416f
Diesel, Rudolf, diesel engine invented by, 279-280, 281p
Diesel combustion, 299-301
contradictions lying in improvement of, 411f
with high-pressure fuel injection, 423-424, 425f, 426
combustion better with higher swirl ratio, 424p, 426f
NO\textsubscript{x} reduced by pilot injection, 427f
particulate emission reduced, 424f
Diesel combustion system, 282, 284f, 285f
Diesel engines
advantages of, 287-289
combustion in, 299-301
competition in improvement of, 279-281, 283p
first diesel truck, 283p
four-row radial diesel engine, 211p
lightweight, Packard’s challenge for, 292-293, 293p, 294p
L’Orange’s concept of, 282, 284f
Rudolf Diesel’s engine for research, 281p
Safir compact prototype diesel engine, 280-281, 282p
shortcomings of, 286-287
size comparison between Stirling engine and, 375f
for T34 tank, 206-207, 207f
type 100, 203p
see also Packard diesel engine
Diesel trucks
first, 281, 283p
life cycle cost of, 409f
Direct fuel injection
indirect vs., 109
NO\textsubscript{x} emission from, 111-112, 113f, 114f
Direct injection system, combustion chamber of, 285f
DOE. See United States Department of Energy
Doolittle, J.H., 95
see also Curtiss R3C-2 plane
Dorner, Hermann I.A., 277
Dornier Wal Flying Boat, midair disintegration of, 14, 14f
Dornier Wal White Pigeon, 12, 14
Double expansion engine, 93, 94f
 built by EHV Company, 87-89, 88p
Double expansion process, 90
Dragonfly engine, 228
Ductile piston, 85f
Dyna Panhard automobile, 333, 334p
Dyna Panhard engine, 336-337, 337f
 crankshaft bearing of, 335f

Earhart, Amelia, 280p
Ecole Polytechnique, Paris, 56, 57p
Egtvedt, Clairmontl, 143
EHV Company
 double expansion engine built by, 87-89, 88p
 poor gas consumption and, 89
Electrolysis, 404
End gas, knocking and, 182, 182f
Energy distribution, automotive, 69f
Energy recovery efficiency, enhanced by Hino Super Flow Turbine, 85f
Energy saving
 basis of, 68-69, 69f
 passenger car, 189-190, 190f
Engine compartment of Contessa 1300, 128-131, 130p
Engine cowl, purpose of, 228, 229p
Engine knock, 179-180, 187, 187p
 control of, 182-183, 185
 description of, 182
 end gas and, 182, 182f
 victory over, 185
 visual confirmation of, 180-181, 183p, 184p
 inside of combustion chamber, 184f
 knocking due to Gewaltakt of end gas, 182f
see also Detonation
Engine life
 aircraft and automotive, 43-46
 critical diseases in, 39-41, 40f, 41f
 determination of, 48f
 improvement of, 48f
 lubricating oil consumption and, 32-35, 34p
 lubrication and, seizure problems, 31-32
Engine life (continued)
prolongation of, 36f
comparison of crosshatch of cylinder, 38f
improved method of cylinder liner surface finish, 39f
key factors in, 35-39
main factors in, 49-50

Engine oil consumption
engine life and, 32-35
by fuel, 33f
progress of wear and, 37f
reduction of, 35f
transition in, 46f
of truck engine, 36f

Engine output, too low, Packard's failure and, 297

Engine technology
future direction of, 416f
noise reducing measure in, 417f
polimotor plastic engine, 418p
progress of, 414-415

Engineering staff
difference between Russian and Japanese, 196-197
integral part of company, 335-336
of Soviet Union, 199-201

Engines
of Adams Farwell automobile, 222p
anergie in, 56-59
Benz in-line, eight-cylinder engine, 256f
of Benz's racing car, 249-250
catalytic, 415-419, 420f, 427-428, 428f
comparison of major engines and alternative engines, 407-408, 408f, 409f
efficiency of, 52f
exergie in, 56-59, 58f
Fiat ANI aerodiesel engine, 201p
internal moment of, 250-253, 251f, 252f, 253f
made by Charles L. Lawrence, 291
overhauled, during World War I, 44-45
plastic, 415, 418p
polimotor plastic engine, 418p
repair of, 46
roller bearings in, 333
Salmson in-line, eight-cylinder race engine, 256f
thermal efficiency of, 415f
see also specific engines

England. See Great Britain
England’s cruiser tank. *See* Crusader MKII tank

Environment, Hybrid Inverter Controlled Motor and Retarder effects on, 401f

Equivalence ratio, NO\textsubscript{x} formation time and, 114f

ERDA. *See* United States Energy Research and Development Agency

Exergie

- definition of, 58
- in engine, 56-59, 58f
- German meaning of, 57

Exergieverlust, in adiabatic engine, 58f

Exhaust gas, present measures on, 24-26

Exhaust gas energy, recovery of, 69, 71

Exhaust gas turbocharging, 63p, 63-64

Exhaust loss, on Otto cycle, 70f

Farman Goliath passenger plane, 246

- fuselage of, 248p

Farwell. *See* Adams Farwell automobile

Feiyan, Zhao, 332

Ferdinand, Prince of Austria

- assassination of, 169, 170p

Ferdinand Schichau company, triple expansion engine and, 90, 91p

F-F. *See* Front engine/front-drive

Fiat ANI aerodiesel engine, 201p

Fiat automobiles, Mercedes overhead cam design and, 173

Fisher, Carl, race car developed by, 177, 177f

Fisher P75 plane, 149-150, 151f

Fisher P75A Eagle, 151-152, 152p

Flow pattern of HMMS, 122f

Flying tank, 205

Focke Wulf FW190 fighter, powered by DB601 engine, 343, 344f, 345

Fokker, duel of Bantam versus, 230f

Ford gas turbine truck, 386-387, 387p

Ford Model A automobile, cost of, 297, 298p

Ford Motor Company, thermal efficiency of future engine presented by, 389f

Forest, Fernand, four-row radial engine built by, 263p

Four-engine strategic bomber, appearance of, 143-146, 147

- Boeing 299, 143, 144p
- coupled engine, 146f, 146p
- Heinkel Greif bomber, 143-145, 145f

Four-row radial diesel engine, 211p

Four-row radial engine, 263p

Four-stroke cycle engine, 20-21

Four-wheel-drive vehicle, 191-192
France
 Conservatoire National de Arts et Matiers, Paris, 262p
 radial engine made in, 237p, 238
France Grand Prix, Mercedes automobile at, 169, 170p
Frankle, G., 362
Front engine/front wheel drive system (F-F), 189-190
 by Hino, 192f
 problems with, 190-192
 produced by Christie, 190-192, 191f
Fuel consumption
 improvement in, 82f
 poor, 89
 reduction of, 190f
 of Stirling engine, 376-377
Fuel consumption rate, comparison of, 378f
Fuel cost, steady rise in, 409f
Fuel injection
 high-pressure, 413f
 indirect or direct, 109
 see also High-pressure fuel injection
Fuel injection pump problems, with DB601 engine, 354-355
Fuel injection system, inadequate technology for, 296-297
Fujita, Yuzo, 323
Fukida, Akira, 403
Furuhama, Shoichi
 explaining hydrogen truck, 393p
 hydrogen engine designed by, 391

Gas consumption. See Fuel consumption
Gas turbine engines
 before real Ne-20 engine, 384p
 design drawings, 383p
 Ford’s discontinued project, 386-388
 GT-21 engine, 390f
 Hino bus with, 386p
 hope for, 381, 382f
 joint development by Toyota and Hino, 390, 390f
 operating principles of reciprocating engine, 374f
 practical application of, 388-390
 reciprocating engine cars, 385p
 restored Kikka, 384p
 sleeping in museum, 382-383, 385
 thermal efficiency of future engine by Ford, 389f
The Romance of Engines

Gas turbine test cars, 386p
Gas turbine truck, 387p
Gasoline direct injection system, 354
 see also Direct fuel injection
Gasoline-electric hybrid car, 398p
Gasuden, Y. Azuma, aeroengines designed by, 216-218, 220, 220p
 Japan's first mass-production aeroengine "Shimpu", 218p
 type 98 Ki-36 close support and reconnaissance aircraft, equipped with, 219p
General Motors Corporation
 Corvair model by, 140-141, 141p
 Hino Motors opposed by, 210, 211f, 211p
 X Cars by, 189-190
German Grand Prix, 347-348, 348f
Gibson, A.H., Renault air-cooled V8 engine made by, 232
Gibson head, Jupiter engine compared with, 231-232, 232f
Gnome engine
 formation of, 215f, 215-216
 spinoffs from, 212
 success of, 212-213, 213p, 214p
 see also Radial engine; Rotary engine
Gnome-Rhône engine, 212-213, 214p
Goliath passenger plane, 246
 fuselage of, 248p
Graf and Stift automobile, 169, 170p
Grand Sport VAL automobile, 246, 247p
Great Britain
 PV70 boat introduced by, 305
 radial engine in, 226, 228-229
Gregoire, J.A., 336
Greif bombers, 144-145, 145f
 coupled engine for, 146f, 146p
Grumman F8F airplane, 133p
 air speed record of, 131
GT-21 engine, 390f
Gyro effect, 229, 230f

Ha-40 engine, 350
 crankshaft hardness of, 361f
 excessive wear from crankshaft of, 351p, 352p
 problems with, 369t
 troostite precipitated on crankshaft of, 362, 363p
 see also Daimler-Benz DB601 engine
Hargrave, Laurence, 225-226
 box kite invented by, 227f
 radial engine and, 227p
Harrah, William, 87
 death of, 90-91
Harrah Museum, 12
 1930s streets reproduced in, 93p
 closing of, 90-93
 exhibition in, 92p
 revival of, 92-93, 93p
 see also William Harrah Foundation
Haugdahl, Sig
 Mercedes overhead cam design and, 173
 Wisconsin Special driven by, 175p
Hawk aircraft engine, 172, 174p, 175p
Heat engine, 7-8
Heat insulation applied to test engine, 81f
Heat loss, in theoretical cycle, 69, 70f, 71
Heat treatment, of crankshaft, 360, 361f, 362, 363p
Heat-insulated engine
 combustion phenomenon on, 79-80, 82-84
 comparison of conventional-based engine and, 82f
 comparison of research results on fuel consumption improvement in, 82f
 research on, 84, 85f
Heinkel Greif bomber, 144-145, 145f, 147
 coupled engine for, 146f, 146p
Heron, S.D., 232
Hien Ki-61 fighter
 powered by DB601 engine, 330-331, 331p
 without engine, 332f, 332-333
High-pressure fuel injection, 413f
 diesel combustion with, 423-424, 424p, 426f
 effect of, 425f
 particulate emission reduced by, 424f
 swirl causes adverse effect in, 425f
High-pressure pilot injection, 413-414
High-speed plane, 131-132
Hillman Imp, problems with, 130-131
HIMR. See Hybrid Inverter Controlled Motor and Retarder
Hino HMMS
 flow patterns of, 122f
 hypothesis of, 117-119, 120f
 in-cylinder air turbulence and, 112-117
 combustion development, 115f
 comparison of combustion period and thermal efficiency, 116f
Hino HMMS (continued)

process of, 121

turbulence generation mechanism in, 119-120, 121, 122

Hino Motors

adiabatic engine

improvement process of, 78

Prince Takamatsu asking questions about, 75

promotion of, 73-74, 75

Contessa 900, 123, 125

Contessa 1300, 123-124, 124

effect compartment unique to, 128-131, 130

direct fuel injection problems, 339, 340

EA100 engine, 345, 345

front engine/front wheel drive system cars, 191, 192

gas turbine engine

bus with, 386

developed by Hino and Toyota, 390, 390

GM opposed by, with radial engine at sea, 210, 211, 211

see also Hybrid Inverter Controlled Motor and Retarder

Hino Super Flow Turbine (HSFT), energy recovery efficiency enhanced by, 85

Hispano Suiza engines, 291-292

Hitler, Adolph

anger of, 347-348

Volkswagen and, 166-167

HMMS. See Hino HMMS

Hoffmann, Heinz, 362

Holiday Corporation, Harrah Museum and

closing of, 91-92

revival of, 92-93

Holobics, 422-423

Homan, Arthur Lee, comment on Christie F-F car, 190-191

Honda CVCC, stratified charge combustion used in, 24-25, 25

Hoover, H., 280

Hornblower, Jonathan, double expansion process and, 90

HSFT. See Hino Super Flow Turbine

Huygens, Christiaan, 421

idea of, 4

internal-combustion engine originated by, 3, 3-4

Huygens, Constantine, 421

Hybrid engines, 397-398

Hybrid Inverter Controlled Motor and Retarder (HIMR)

beginning of, 398-401

bus, 404

effects of, on environment and safety, 401
Hybrid Inverter Controlled Motor and Retarder (HIMR) (continued)
 hybrid system of, 400f
 Lohner-Porsche gasoline-electric hybrid car, 398p
 structure of, 399f
Hybrid system, 400f
 in future, 403-405, 405f
Hydrogen, generation of, 392, 392f
Hydrogen diesel engine, 393
 basic specifications of, 396t
 principle of, 395f
Hydrogen engine, development of, 392-393, 394p
Hydrogen fuel, 391-392, 392f
 supply system for, 396f
Hydrogen injection nozzle, 395f
Hydrogen-powered freezer van, 394p

Ignition delay period, 117, 118
 comparison of, 83f
In-cylinder air turbulence, HMMS and, 112-117, 115f, 116f
Indirect fuel injection
 direct vs., 109
 NOx and, 109-110
 NOx emission from, 111-112, 113f, 114f
Information, compilation of
 reformation of heat engine and, 7-8
 Potta’s tenacious spirit and, 8-10
Initial combustion. See Combustion
Initial combustion temperature
 NOx formation versus ambient pressure and, 113f
Inner face of cylinder, 38f
 see also Crosshatch
Internal combustion engine
 completed by Maybach, 27-29
 crosshead, 28f, 28-29
 experimental engine, 29, 30p
 invented by Otto, 23-26, 24f
 lubrication of, 28-29
 major distinguishing points in, 28
 Otto cycle, 22f
 production engine, 29, 30p
Internal moment of engine, 250-253, 251f, 252f, 253f
Internal-combustion engine
 barrier against birth of, 19-20
 originated by Christiaan Huygens, 3f, 3-4
Inverter
 development of, 401-403, 402f
 size of, 403, 403f
Irreversibility. See Exergieverlust
Iwai, Masumi, gas turbine and, 387-388

Jano, Vittorio, 366
Japanese army fighter Ki-83, 131-132, 132f, 133f
Japanese engineering staffs
 difference between Russian and, 196-197
Japanese garden, in harmony with nature, 420-421, 421p
Jet plane, principle of, 381-382
Julian automobile, 236, 236f
 evaluation of, 235-236, 236f
Julian engine, 236, 237f
Junkers JU288 interceptor fighter, 265p
Junkers Jumo Model 222E engine, 265p
Jupiter engine, Gibson head compared with, 231-232, 232f

Kamikaze (Shimpu) engine, 216-218, 219p, 220
Kamo, May, 68p
Kamo, Roy, 67, 67p
 adiabatic engine and, 63, 64
Katogawa, Kohtaro,
 comment on Japanese army tank development, 197
Kawasaki BMW-9C engine, 318-319, 319p
Kennedy, John F., PT boats and, 306
Kettering, C.F., 182-183, 185
KHD Company, Otto four-stroke-cycle compound engine manufactured by, 89
Ki-83 fighter plane, 131-132, 132f, 133f
Kikka jet plane, powered by Ne-20 engine, 383, 384p
Kittyhawk, 99f
Knocking phenomenon. See Engine knock
Koestler, Arthur, 422
Kohkuki, Aichi, 149
Koken long-range research aircraft, 219p
KOKENKI long-range research aircraft, 317-318
 exhaust temperatures at take-off, 325f
 landing of, 323, 327p
 lean burn of, 323-326, 324f
 powered by Kawasaki BMW-9C engine, 318-319, 319p
Komodori, death of, 131
Korakuen, 420-421, 421p
Koshkin, Mikhail, duplication/further development of Christie tank by, 194, 194p
Kubo, Tomio, 131-132

Lancaster airplane, development of, 155-156, 156p
Langley, Samuel, 223-225
Langley's Aerodome
 Manly five-cylinder radial engine mounted to, 225p
 tragedy of, 223-225, 225p
 wing of, 226p
Lautenschlager, Christian, 170p
Lawrence, Charles L., two/three-cylinder engines manufactured by, 291
Lean burn system of KOKENKI airplane, 323-326, 324f
Ledwinka, Hans, 166, 167
Lenoir, Jean Joseph Etienne, internal combustion engine and, 20
Leyat, Marcel, air propelled car made by, 236, 237p, 238
Liberty aeroengine, 297, 299
Liberty aircraft engine
 Mercedes overhead cam design and, 173
Life magazine, impact of, on Packard, 275-276
Lightweight diesel engine, Packard's challenge for, 292-293, 293p, 294p
Lindbergh, Charles, Whirlwind engine and, 292
Lindbergh's plane, 185, 186p
 see also Spirit of St. Louis
Link rod/master rod of radial engine, 254, 254f
Liquid-cooled inverted V, 344f
Lockheed Constellation, 77p
Lockheed Shooting Star jet plane, 381, 382f
Locomotive model 6400, 54p
Lohner-Porsche gasoline-electric hybrid car, 398p
L’Orange, P., diesel engine and, 282, 284f
Lubricating oil consumption
 engine life and, 32-35, 33f, 34p, 35f
 see also Oil consumption
Lubrication
 engine life ensured by, 31-32
 improvement in, 28f, 28-29
Lycoming XR-7755 type 3 engine, 267p

MacArthur (U.S. General), escape from Corregidor by, 305-306
MAN automobile diesel engine, combustion chamber of, 285f
MAN energy storage/release equipment, 404, 405f
MAN four-ton truck, combustion chamber of, 283p
Manchester airplane, 156-157, 157p
Manly, Charles M., radial engine designed by, 224-225, 225p
Manly five-cylinder radial engine, mounted to Langley Aerodome, 225p
Man-made power, increase in, 410f
Marcel Leyat automobile, 236, 237p, 238
Master rod/link rod of radial engine, 254, 254f
Maximum output of large truck, 47f
Maybach, Wilhelm
 internal combustion engine completed by, 27-29
 explanation of crosshead, 28f
Mercedes racing engine by, 176, 176p
McNaught, William, double expansion and, 90
Mead, G.J., 292
Mercedes
 engine, 169
 overhead cam design, 173, 175p
 race car
 engine for, 174p
 overhead cam for, 172f
 racing engine, 176, 176p
 successors of, 176p, 176-178, 177f
W25 engine, 349p
Mercedes automobile
 bevel gear-driven overhead cam in, 172, 173f
 at France Grand Prix, 170p
Merlin engine, 307
Messerschmitt air speed record, 131
Messerschmitt Me109 fighter plane, 329, 330f
Meudon Aeronautical Research Institute, 164p
Michelotti, G.
 Contessa 900 designed by, 125p
 Contessa 1300 designed by, 123-124, 124p
 death of, 131
Midair disintegration, cause of, 14
Miller, Harry, 139
 parallel eight-cylinder twin engine and, 162
Miller engine, 140
Mitsubishi Kinsei air-cooled radial aeroengine, 308
Monaca-Trossi automobile, 238, 239p
Morris Commercial Cars, Ltd., tank manufactured by, 205, 206p
Murai, Hitoshi, 383, 384p
Muskie Act. See Clean Air Act
Mustang, 99f
Nacelle engine, 147, 149p
Naito, Yasuo, 153
Nakajima Aircraft Works
 HA54 engine, 267f
 Saiun manufactured by, 152-153, 154f
Naruse, Masao, 341
National Automobile Museum. See Harrah Museum
Nature, scientific technology in harmony with, 419-423, 421p, 422f
Ne-20 jet engine, 382-383
 design of, 383p
 Kikka jet plane powered by, 383, 384p
Newcomen, Thomas, 7
Newcomen steam engine, 7-8, 8p, 9f
 flooded mine shafts and, 8-9
 piston area of, 7, 10p
 Potta’s tenacious spirit and, 8-10
 reformation of heat engine, 7-8
 Watt’s idea for new engine from, 15-17
Newhall, H.K., 110
Nibel, Hans, racing car designed by, 126, 127f
Nikasil (Ni-SiC), 274
Nitrogen oxide (NOₓ)
 Clean Air Act and, 62
 from direct and indirect injection engines, 111-112, 113f, 114f
 emitted from automobile, 410f
 formation of, 113f, 114f
 indirect fuel injection and, 109-110
 reduced by pilot injection, 427f
 relationship between particulates and, 412f
 removal of, 25-26, 26p
 trade-off among other emissions and, 408-409, 410f, 411, 411f
Noise emission, from truck, 378-380, 379f
Noise reduction
 in design stage, 417f
 history of, 416f
North American P51, 99f
NOₓ. See Nitrogen oxide

Oil consumption
 engine life and, 32-35, 33f, 34p, 35f
 progress of wear and, 34-35, 37f
 in radial engines, 228
 reduction of, 35f
Oil consumption (continued)

transition in, 46f
in typical truck, 32-35, 36f, 37f

see also Lubricating oil consumption

Oil cooler, efficiency enhancement of, 105-107, 106f
Oil shock, enforcement of Clean Air Act and, 61-62
Okayama Castle, 420-421, 421p

Orgill, Douglas

comment on Russian T34 tank, 195
comment on T34 tank, 197

Otto, Nicolaus August, 5

internal combustion engine invented by, 19
completion of, 27-29
stratified charge combustion and, 23-24, 24f
air vigorously whirling in cylinder, 26p
Honda CVCC, 25f
in present measures on exhaust gas, 24-26

Otto cycle
exhaust loss on, 70f
explanation of, 21-22, 22f

Otto four-stroke-cycle compound engine, 89
Otto’s double expansion engine, 93, 94f
Overhead cam, for Mercedes race car, 172f

P36. See Curtiss P36
P51. See North American P51
P75 airplane, 149-150, 151f
P75A Eagle, 151-152, 152p
Packard Motor Company, 275-276

045 dual-windshield Phaeton Dietrich body, 298p
automobiles

Clipper automobile, 276f
Panther-Daytona automobile, 312p
diesel engine, 277

advantages of, 287-289
challenge for lightweight diesel engine, 292-293, 293p, 294p
combustion in, 299-301, 301f
cylinder fastened to, 302f, 302-304, 303f
DR-980, 302f
shortcomings of, 286-287
Stinson plane mounting, 295p
Stinson-Detroiter airplane with, 279p
Packard Motor Company, 275-276 (continued)

engines
 cost of, 297
 Merlin engine, 307
 PT boat powered by, 305, 306p, 307p

glory and tragedy of
 achievement of successive world records, 276-277, 278p, 279, 279p, 280p
 America trailing behind Europe, 291-292
 bad luck, 309-310
 Benz and MAN’s idea, 282, 284f, 285, 285f
 cavitation pitting of cylinder liner wall, 311-315, 312f, 313p, 314f, 315f, 316f
 disasters made further attack, 295-296
 essence of failure, 296-297, 298p
 excessive/inadequate quality control, 310-311, 312p
 fatal blow due to wife’s complaint, 293-295, 295p
 fierce competition in improvement, 279-281, 281p, 282p, 283p
 impact of Life magazine, 275-276, 276f
 Packard’s concern, 297, 299
 playing active role in World War II, 305-308, 306p, 307p
 technological leadership of, 308-309, 309p
 post-war, 310-311

Papin, Denis, 5

Parallel eight-cylinder coupled engine, 162p, 162-164, 163f, 163p

Paris Ecole Polytechnique, 56, 57p

Particulates, 409
 emission reduced by high-pressure injection, 424f
 inverse relationship between nitrogen oxide and, 412f

Patrol-Torpedo boat
 powered by Packard engine, 305, 306p, 307p
 see also PT boats

Petit, Emile, 246

Pfeifer und Rangen GmbH sugar company, Otto four-stroke-cycle compound
 engine purchased by, 89
 Phaeton Dietrich body, cost of, 298p
 Pilot injection, nitrogen oxide reduced by, 427f
 Pininfarina XPF1000, 238-241, 240f
 Piston seizure, 31-32
 Pistons, aluminum, 85f

Polimotor plastic engine, 415, 418p

Popular Mechanics magazine, results of survey by, 310

Porsche, F.
 design of Renault 4CV and, 165
 hybrid system and, 398-399
 Volkswagen designed by, 166-167, 167f
Potta, Humphrey, steam engine and, 8
Pratt & Whitney R4360 radial engine, 263p, 264p
Prechamber system, combustion chamber of, 284f
Problem-solving technique, 11
Propeller hub, rubber vibration damper at root of, 293, 294p
PT boats, powered by Packard engine, 305, 306p, 307p

Quadricycle, with radial engine, 223, 223p
Quadruplet engine, 163p
Quenching, 350-351

Radial diesel engine, by GM, 211p
Radial engines
 Adams Farwell engine, 222p
 Adianomique engine, 268p, 268-269, 269p
 air-cooled, 267f
 in Australia, 225-226, 227f, 227p
 for Balzer's quadricycle, 223, 223p
 BMW 803 engine, 264, 266, 266p
 century's masterpiece, 221, 223
 by Charles M. Manly, 224-225, 225p
 Convair Model XC-99 airplane powered by, 270, 271p
 cooling problem in ABC engine, 229-232, 231f, 232f, 233p
 Corliss steam pump, 269, 270p
 description of, 209-210
 fate of, 261-262, 262p, 263p
 by Fernand Forest, 263p
 Forest four-row radial engine, 261, 263p
 future of, 270, 271f; 271p, 272p, 272-273
 Hargrave aircraft engine, 227p
 impact of Life magazine on, 275-276
 Julian engine, 236, 237p
 Junkers JU288 interceptor fighter powered by, 265p
 Junkers Jumo 222E engine, 264, 265p
 for Langleys aerodome airplane, 223-225, 225p
 liquid-cooled, 262, 264, 266-267
 Lycoming XR-7755 engine, 266, 267p
 master rod/link rod of, 254, 254f
 more valve consumed than fuel, 226, 228-229, 229p, 230f
 Nakajima HA54 engine, 266-267, 267f
 Packard aero diesel engine, 275-276
 Pininfarina XPF1000, 238-241, 240f
Radial engines (continued)
 Pratt & Whitney R4360 engine, 261-262, 263p, 264, 264p
 Renard’s Adianomique radial steam engine, 268p, 269p
 roots of, 225-226, 227f, 227p, 268p, 268-269, 269p, 270p
 Teledyne Continental engine, 270, 271f
 water-cooled, 243-245
 at sea, 210, 211f, 211p
 Zoche aero diesel engine, 273-274
 Zoche ZO engine, 270, 272, 272p
 see also Gnome engine
Rankin bottoming cycle, 71
Rassweiler, G.M., honored at annual meeting of SAE, 179-180
Rate of heat release (ROHR), 80, 82
Rear-mounted engine
 cooling system of, 126f
 water-cooled, 137-139
Reciprocating engine
 end of, 382f
 operating principles of, 374f
Reciprocating engine cars, 385p
Renard, Charles
 Adianomique engine designed by, 268-269
 Adianomique radial steam engine designed by, 268p, 268-269, 269p
Renault, Regie, concern about Hino’s Contessa 900, 125-126
Renault 4CV, 123, 128p, 165
Renault air-cooled V8 engine, 232, 233p
Renault Model R8, 124-125
Rochas, Alphonse Beau de, 20-21
Rod bearings of DB600 series engines, 364p, 365f, 366f
Roggendorf, 147, 148p
 comment on roller bearing problems, 342
ROHR. See Rate of heat release
Roller bearings
 accuracy of, 369-370
 problems with, in Japan, 350
 skewing of, 352f
 use of, 355-356
Roller ends, shape of, 353f
Roller tappet, excessive wear of, 340f
Rolls-Royce Hawk aircraft engine, 172, 174p, 175p
Rolls-Royce Silver Ghost automobile, 171p, 171-172
 side valve for, 172f
Roots blower
 for air-cooled exhaust valve, 326, 326f, 327p, 328p
Roots blower (continued)
 of KOKENKI airplane
damage to, 323
disassembled, 327p
Rotary engine
description of, 212n
 see also Gnome engine; Radial engine
Royale engine, 159, 160p
Rubber vibration damper at root of propeller hub, 293, 294p
Russia. see also Soviet Union
engineering staffs in, 196-197
tank technology in, 196, 196f
 see also Soviet Union
Russian T34 tank. See T34 tank
Russian tank engine, Mercedes overhead cam design and, 173
Rutan brothers, Voyager airframe designed by, 317

SAE. See Society of Automotive Engineers
Safety, Hybrid Inverter Controlled Motor and Retarder (HIMR) effects on, 401f
Safir Company, diesel engine manufactured by, 280-281, 282p
Saiun airplane, 152-153, 154f
Sakuyama, Jimmy, 142
Salmson, Emile, death of, 246
Salmson 2A2 reconnaissance plane, 244f, 244-245
Salmson engines, 243-245
 Canton-Unne type M9 engine, 246, 247p
 in-line, eight-cylinder race engine, 256f
 similarities between Benz formula engine and, 255-259, 256f, 257p, 258f
 water-cooled radial engine, 244
Salmson Grand Sport VAL automobile, 246, 247p
Sass, F., explanation of poor gas consumption, 89
Savery, Thomas, 5
Scheitel (former German tankman), comment on T34 tank, 202p
Scheiterlein, Dr., 343p
 comment on roller bearing problems, 342
 indirect fuel injection and, 110, 111f
Scientific technology
 in harmony with nature, 419-423, 422f
 Japanese garden example, 420-421, 421p
 war and, 65-67, 66f, 67p, 68p
Seguin, Laurent, Gnome engine made by, 212, 213p
Seizure problems, 31-32
Sekine, Chikakichi, 323
Self-ignition, knocking and, 182-183
Shell bearing, changes to, 362-364, 364f, 366
 DB605 plain bearing, 365f, 366f
 initial connecting rod bearings, 364p, 365f
Sherman tank, 204p
 see also Tanks
Shimpu (Kamikaze) engine, 216-219, 218p, 220
Shooting Star jet plane, 381, 382f
Side valve, for Rolls-Royce Silver Ghost, 172f
Silver Ghost automobile, 171p, 171-172, 172f
 side valve for, 172f
 engine for, 174p
Simple combustion, 418f
Six-cylinder engine, 174p
Six-monkey village, 243-245
Sloan, A.P., comment on Kettering, 185
Society of Automotive Engineers (SAE) Annual Congress of Engine Fluid Motion
 and Combustion Diagnostics session at, 179-180
 presentation of hydrogen diesel engine made at, 393
 adiabatic engine combustion analysis presented at, 79p
 technical meeting of, cavitation pitting of cylinder liner discussed at, 308-309
Soda, Norimune, 350
Solid injection idea, 282, 284f
Soviet Union
 Christie tank sold to, 203
 Christie tanks shipped to, 205
 engineering staff of, 199-201
 see also Russia
Spark plug problems, with DB601 engine, 355
Spirit of St. Louis, 186p
 Wright Whirlwind engine mounted to, 278p
Star-shaped engine. See Radial engine
Steadite, explanation of, 48
Steam airplane, 6p
Steam engine car, 6p
Steam engines
 beginning of, 5
 studied by Carnot, 53, 54p, 55
 see also Newcomen steam engine; Watt’s steam engine
Steam locomotive, 90, 91p
Steam pump, 270p
Steyr engine, 110-111
Stinson plane, mounting Packard diesel engine, 295p
Stinson-Detroiter plane, 277, 279p
Stirling cycle, 376, 377f
Stirling engine, 376p
 faded charm of, 373-376
 fuel consumption of, 376-377
 comparison of, 378f
 operating principles of reciprocating engine, 374f
 revival of, 371-373, 372p
 size comparison between diesel engine and, 375f
Stoichiometric air/fuel ratio, 286
Stratified charge combustion
 in present measures on exhaust gas, 24-26
 air vigorously whirling in cylinder, 26p
 Honda CVCC, 25f
 source of inspiration for, 23-24, 24f
Submarine propeller sale of, 314
Surface treatment, 360, 362
Suzuki, Takashi, 343p, 383p, 384p
Swatman, Ivan M., 388p
 gas turbine research by, 387
Swirl ratio
 combustion and, 423, 424p, 426f
 high-pressure injection and, 425f
Swirling motion, to intake air, 282, 285f
Systematic combustion, 418f

T34 tank, 194, 194p, 202p
 appearance of, 195p, 195-196
 B2 diesel engine for, 199-200, 200p, 206-207, 207f
 cast steel turret of, 204p
 development process of, 197, 197f
 see also Christie tank; Tanks
Takahashi, Fukujiro, 323
Takamatsu, Prince, 75p
Takao, Tsutomu, steadite explained by, 48
Takatsuki, Tatsuo, 350
Take-Off Power, Packard’s failure and, 297
Tanasawa, Yasushi, 382, 383p
 dark side of scientific technology explained by, 66-67
Tank engines, Russian, 173
Tanks
 cooling louvers, 66, 66f
 flying, 205
 increase in thickness of armor plate for, 196f
Tanks (continued)

Japanese, 197

manufacturer of, 205, 206p

see also Christie tank; Crusader MKII tank; Sherman tank; T34 tank

Tatra Twin automobile, 166-168

Volkswagen design and, 166-167, 167f

Teledyne Continental engine, 270, 271f

Voyager airplane powered by, 317-320, 320f

Tempu (Amakaze) engine, 216-218, 220

KOKENKI aircraft powered by, 326, 327p

Thermal efficiency

comparison of combustion period and, 116f

compression ratio and, 21-22

of various engines, 415f

Tokyo Express, 306

Tokyo Motor Show, 74, 75p

Tomizuka, Kiyoshi, 178, 350

KOKENKI long-range research aircraft and, 318-319

Toyota gas turbine engine, 390, 390f

Hino bus with, 386p

Toyota gas turbine test car, 386p

Tremulis, Alex, 140

Trevithick, F.H., 90

Trevithick, R.F., 90

Tribology, 31

Triple expansion engine, 90, 91p

Troostite, precipitated on Ha-40 crankshaft, 362, 363p

Troy triple expansion engine, 90, 91p

Truck, with catalytic engine, 420f

Truck noise, 378-380, 379f

Tucker, Preston Thomas, automotive concepts of, 139

Tucker automobile

design of, 139

engine compartment layout of, 138p

handling stability problems of, 141

with three headlamps and water-cooled engine, 138p

water-cooled rear engine of, 137-139

Tucker Company, failure of, 140

Turbulence, combustion improved by, 122f

Turbulence generation mechanism, 119-120, 121p, 122f

Turbulent energy

comparison of spectrum of, 120f

definition of, 118-119

equation for, 119

Two-spark-plug system, knocking and, 182
Umehara, Hanji, 335, 336
United States Department of Energy (DOE) project, 374-375
 ceramic turbine program of, 389, 389f
United States Energy Research and Development Agency (ERDA), enforcement of
 Clean Air Act by, 61-62
United States Sherman tank. See Sherman tank
Unne, Pierre Georges, 246
Uozumi, Junzo, 350
Uyehara, Professor and Mrs., 343p

V2 diesel engine. See B2 diesel engine
Vehicle noise reduction, history of, 416f
Versailles, France, invention results from need of water for beginning of steam
 engine, 5
 Clement Ader's steam airplane, 6p
 Cugnots' steam engine car, 6p
 first internal-combustion engine, 3f
 Versailles Palace, 2p
 water keeper Christiaan Huygens' idea, 1-5, 4f
Versailles Palace
 from center of main building to south wing, 2p
 description of, 1
 viewing mile-long canal from Latone Fountain, 2p
 water for, 2-3
Vikhman, J., diesel engine in T34 tank credited to, 196
Vincent, Jesse C., 297
Voisin, Gabriel
 Coccinelle rhombus car, 240f
 LA5B2 reconnaissance bomber, 244-245, 245f
 radial engine and, 238-241
 rear engine, 244-245, 245f
Volkswagen
 birth of, 166-168
 design of, 166-167, 167f
Voyager airplane, 317-318
 design of, 321-322
 main engine of, 322f
 round-the-world flight of, 319-321, 320f; 321p

War, scientific technological development and, 65-67, 66f
Warhawk, 99f
Wasp engine
 cooling problem in, 229-232, 231f, 232f
 inadequate cylinder head cooling in, 228
Water, for Versailles palace, 2-3
Water keeper. See Huygens, Christiaan
Water-cooled radial engine, 243-245
 Hino Motors and GM oppose each other with, 210, 211f, 211p
Water-cooled rear engine, of Tucker automobile, 137-139
Watt, James
 idea for new engine by, 15-17
 problem-solving technique of, 11
Watt’s steam engine, 16p
 created as result of failure analysis
 De Havilland Comet, 13p
 Dornier Wal Flying Boat, 14f
 hydraulic pressure test of passenger plane, 13p
 idea from Newcomen engine, 15-16
 indispensable problem-solving technique, 11
 White Pigeon, 12-14
Weight reduction of engine, 293p
Whirlwind engine
 Charles Lindbergh and, 292
 cost of, 297
White Pigeon accident, investigation of, 12, 14
Wilgoos, A.V.D., 292
William Harrah Foundation, 92
 see also Harrah Museum
Wisconsin aircraft engine, 173
Wisconsin Special automobile, 173, 175p
Withrow, L.
 honored at annual meeting of SAE, 179-180
 lecture on knocking phenomenon by, 180-181, 184p
Woolf, Arthur, double expansion process and, 90
Woolson, death of, 295
World Beater race car, 177, 177f
World War I, engines overhauled during, 44-45
World War II
 engine failures since, 45
 Packard’s active role in, 305-308, 306p, 307p
 PT boat’s part in, 305-308, 306p
Wright Company
 biplane engine, 43, 44p
 Hispano Suiza engines manufactured by, 291-292
Wright Company (continued)
 turbocompound R3350 aircraft engine, 74, 76p
 Lockheed Constellation with, 77p
Whirlwind engine, 277
 mounted to Spirit of St. Louis, 278p

X Cars, characteristics of, 189-190

Zero fighter model 52, 63p
ZIS automobile, 309, 309p
Zoche, George, radial engine manufactured by, 270, 272, 272p
Zoche, Michael, radial engine manufactured by, 270, 272, 272p
Zoche aero diesel engine, 273-274
Zoche ZO engine, 270, 272, 272p
 engine manufactured by, 270, 272