References

84. IMSL STAT/LIBRARY for VAX: Version 1.0, April 1987.

86. Technik aktuell, in Motorrad.

95. Paramins, Autotrends ’96.

Index

Accelerating pump devices, 101
Aeromot Anemometric Tester, 46–47
Afterburners. See Thermal afterburners
Aircraft engines
- Junkers opposed-piston engine, 24
- Napier dual-scavenged engine, 4, 8
Air-fuel ratio
- air mass rate, 79
- calculation methods compared, 80
 vs. carbon monoxide, 99–101
- CO, specific emission of, 78–79
 derived expression for, 80
- HC specific emission, 78–79
- hydrocarbon oxidation, chemistry of,
 77–79
 of Piaggio FAST engine, 202
 vs. pollutant balance, 99
- scavenging process, effect of, 85–87
Autoignition
- characteristics of, 69
 Honda Paris-Dakar motorcycle engine, 76
 vs. misfiring, 69
 Piaggio VLB 1 M engine and tests, 71–75
 problems with positive engine shut-off, 76
 Semenov/Hinshelwood studies of, 69–70

Blair, Gordon
- single-cycle gas testing method, 49
Blowdown
- blowdown phase (in bench tests), 56
- blowdown process, 15, 16
- exhaust blowdown angle, 130–131
Bore/stroke ratio
- research cylinder geometry, 146
- scavenging/trapping efficiencies
 constant port area, 147
 similar geometries (50-cc, 500-cc), 149
 variable port area, 148
Carbon monoxide emissions
- vs. air-fuel ratio, 99–101
- CO conversion rate (cloth catalyst), 225
- effect of catalysts on (EFI), 188
 Ficht-PDS fuel injection system
 ICOMIA outboard engine tests, 181, 182
 Orbital Engine Company (OEC) system
 OCP exhaust emissions, 196
 SEFIS exhaust emissions, 197
 Piaggio direct-injection system
 direct-injected engine: CO emissions map, 175
 stock engine: CO emissions map, 174
 Piaggio FAST small-engine system
 CO emissions maps (FAST vs. standard), 201, 203
 ECE R47 emissions comparison
 (FAST vs. standard), 204
 ICOMIA emissions (FAST), 204–205
 ICOMIA emissions (standard), 205
 predicted vs. measured (scooter engines)
 50-cc base configuration (road load points), 250
Carbon monoxide emissions (continued) predicted vs. measured (scooter engines) (continued)

125-cc base configuration (road load points), 250
125-cc base configuration (WOT points), 249
200-cc base configuration (road load points), 248, 249
200-cc base configuration (WOT points), 247, 248

basic chemistry of, 246
factors affecting, 252
HC emissions, temperature corrections for, 251–252
and thermal afterburners
CO conversion fraction vs. temperature, 215–216
See also Catalysis/catalytic converters;
Hydrocarbon emissions; Nitrogen oxide emissions; Smog; Soot and particulates
Catalysis/catalytic converters
advantages of, 183
basic limitations of, 229
CO emissions: calculated vs. measured base configuration (WOT points), 247, 249
basic chemistry of, 246
improved scavenging (road load points), 249, 250
improved scavenging (WOT points), 248
exhaust gas temperature vs. catalysis, 245
materials/applications of
applications of (discussion), 222–223
catalytic substrates, typical properties of, 222
chainsaw engine, 223
CO conversion rate (fabric cloth), 225
fabric cloth muffler design, 224
HC conversion rate (fabric cloth), 226
hot tubes (Degussa), 227
legislative requirements, 222
metallic cartridge catalyst technology, 222
moped engine, 223
motorcycle engines, 223–224, 226–227
mufflers with precatalyst device/ clusters, 228
pellet catalysts, 221
temperature resistance of, 221–222
two-stroke vs. four-stroke engines, 221
oxygen stoichiometry, equations for, 253
and Piaggio direct injection system, 188
secondary air addition, enhancement by discussion of, 231, 233
reed valve device, 232
schematic layout of, 232
secondary air filter, 233
See also Hydrocarbon conversion (experimental)
Compression-ignition engines
combustion-generated hydrocarbons in, 88
emission characteristics of, 115
exhaust tuning of, 155
friction losses in, 59
loop scavenging in, 4, 5, 6, 24, 151
opposed-piston, 4, 7, 8
scavenging bench test results, 151–152
scavenging dynamometer test results, 153
scavenging layouts, various, 151
soot formation in, 115–116
See also Scavenging port design
Discharge coefficient, defined, 54
DKW
parallel-piston motorcycle engine, 4, 8
Duct shape. See Scavenging port design

274
Exhaust tuning
broad range tuning, 157–159
of compression-ignition engines, 155
crankcase scavenging, dynamics of, 155–156
exhaust boost ports, 164–165
exhaust resonating volume (WOT), 164
exhaust sonic speed vs. specific output, 156–157
exhaust throttling
effect on hydrocarbon emissions, 166
exhaust throttling device, 167
exhaust throttling valve, 165
Piaggio variable-exhaust tests, 162–163
sharp range tuning, 159–161

Ficht-PDS fuel injection system. See Fuel injection (high-pressure)
Flow modeling and simulation, 25–26
one-dimensional method
analytical expressions for, 30–35
discussion of, 26–28
position characteristic, 31
Reimann variables in, 31, 33
schematics (tuned/untuned engines), 27
three-dimensional method
KIVA computer model for, 39
Snapper piston-motion logic model, 39–40
two-dimensional method
experimental vs. theoretical results, 39
mathematical model for, 35–36
three-zone model: cylinder domains, 36–37
three-zone model: scavenging stream shape, 38
three-zone model: theoretical results, 37

Four-stroke engines
applications of, 12
catalytic converters on, 221

friction losses in, 60–62, 63, 65
smog formation in, 111–112

Friction losses, 59
from direct motoring tests, 62, 64–65
estimation from IMEP, 62
v.s. load (two-stroke, four-stroke), 60–62, 63, 65
Willans line, estimation from, 62, 63

Fuel consumption
Ficht-PDS fuel injection system, 180
IAPAC Cosa 125 with exhaust throttle, 192, 194
IAPAC Cosa 125 without exhaust throttle, 192, 193
importance of in future engines, 263–264
Piaggio 50 cc-engine system (FAST, standard), 200, 202
Piaggio carbureted stock engines, 173, 186
Piaggio high-pressure direct-injection system, 175
Piaggio low-pressure EFI system, 185

Fuel injection (air-assisted), 191
IAPAC air-assisted system
BSFC/BSHC curves: Cosa 125 with exhaust throttle, 192, 194
BSFC/BSHC curves: Cosa 125 without exhaust throttle, 192, 193
ECE R40 emission characteristics (various engines), 194
functional description, 191–192
on Piaggio Cosa 125 engine, 192
Orbital Engine Company (OEC) system
injection system design, 196
OCP exhaust emissions from, 196
orbital engine cross section, 195
SEFIS system diagram, 197
SEFIS system exhaust emissions, 197
Piaggio FAST small-engine system
50-cc engine specifications, 200
air-fuel ratio map (FAST), 202
Fuel injection (air-assisted) *(continued)*
Piaggio FAST small-engine system *(continued)*
ECE R47 emissions comparison (FAST vs. standard), 204
engine layout (sectional view), 198
fuel consumption maps (FAST, standard), 200, 202
functional description, 198–199
HC/CO emissions maps (FAST, standard), 201, 203
ICOMIA emissions (FAST, standard), 204–205
two-duct carburetor, 199

Fuel injection (high-pressure)
advantages over external carburetion, 169
characteristics of, 170
early development of, 169–170
electromagnetically controlled injection pump, 176, 177
Ficht-PDS fuel injection system
comparative outboard engine tests (ICOMIA), 181, 182
description and schematic diagram, 178
injection pressure surges, 178–180
installation on two-stroke engine, 179
power and fuel consumption, 180
specific hydrocarbon emissions, 180–181
Piaggio direct-injection (DI) system
BSFC maps (stock, DI), 173, 175
functional description, 170
HC/CO emissions maps (stock, DI), 174, 175–176
pump transverse section, specifications, 172, 173
schematic diagram, 171
Fuel injection (low-pressure)
advantages over external carburetion, 183
catalyst, effect on exhaust emissions, 183, 188
comparative performance (vs. carburetion)
fuel economy, 189
hydrocarbon emissions, 189–190
Piaggio direct injection system
BSFC maps (EFI, stock), 185, 186
emissions maps (EFI, stock), 185–186, 187
functional description, 184
sectional view, 184
use of catalysts with, 188

Hinshelwood, C.N.
autoignition studies, 69–70

Honda
Paris-Dakar motorcycle engine, 76
stepped-piston motorcycle engine, 9, 11

Hydrocarbon conversion (experimental)
200-cc SI engine
calculated vs. measured (WOT points), 251, 252
correction factors for, 251
factors affecting, 252–253
high-output SI engine, 240
conversion at constant power, 240, 242
exhaust gas temperature at constant power, 241
exhaust gas temperature vs. HC conversion, 241
space velocity, impact on conversion, 242
medium-output SI engine, 235–236
conversion at constant power, 238
conversion at constant RPM, 237
conversion at WOT, 236
space velocity, effect on conversion, 239
oxygen stoichiometry, equations for, 253
secondary air injection
effectiveness of, 253
exhaust gas temperature vs. catalysis, 245
Hydrocarbon conversion (experimental) (continued)
secondary air injection (continued)
normalized CO vs. equivalence ratio, 243–244
normalized HC vs. equivalence ratio, 244
temperature control, problems with, 245
See also Catalysis/catalytic converters
See also Carbon monoxide emissions;
Hydrocarbon emissions
Hydrocarbon emissions
afterburners, effect of, 211–212
catalysis efficiency (measured vs. calculated), 246–252
catalysis with EFI, 188
crevise volume, influence of, 89–90
cylinder gas analysis, 91, 92
exhaust throttling, effect of, 166
Ficht-PDS fuel injection system, 180–181
flame quenching, influence of, 88–89
HC composition: catalyzed engine, 95–96
HC composition: standard engine, 94–95
HC conversion rate (cloth catalyst), 226
HC oxidation, chemistry of, 77–79
HC specific emission, 78–79
ICOMIA outboard engine tests (FichtPDS system), 181, 182
and incomplete combustion, 91–93
lubrication oil, absorption in, 90–91
Orbital Engine Company (OEC) system
OCP exhaust emissions, 196
SEFIS exhaust emissions, 197
Piaggio direct-injection system
direct-injected engine: emissions maps, 176
stock engine: emissions maps, 174
Piaggio FAST small-engine system
ECE R47 emissions comparison
(FAST vs. standard), 204
HC emissions maps (FAST, standard), 201, 203
ICOMIA emissions (FAST, standard), 204–205
quenching distance for benzene, isoctane, 89
reactivity classes/ranges for, 93, 96–97 vs. scavenging efficiency, 87
test setup for, 93–94
See also Carbon monoxide emissions;
Catalysis/catalytic converters;
Hydrocarbon conversion (experimental);
Nitrogen oxide emissions; Smog;
Soot and particulates
Irregular combustion. See Surging
Jante’s method
different duct designs, Jante’s tests of, 133–137
five-port and six-port flow bench test maps, 139–140
of scavenging evaluation, 42–45
JASO standards (Japan), 257–259
KIVA computer model
three-dimensional flow modeling, 39
Loop scavenging
in compression-ignition engines, 4, 5, 6, 24, 151
inverted-loop (basic schematic), 4, 5
reverse-loop engine (Schnürle), 5
scavenging efficiency of, 22
stream direction (scavenging port angle), 129–131
Subaru loop-scavenged rotary-valve engine, 5, 6
Lubricating oil. See Oil, lubricating
Martini, C.
scavenging evaluation method, 50
Mechanically controlled inlet (Pavletti), 9, 12
Moped engine
catalytic converter on, 223
Motorcycle engines
catalytic converters for, 223–224, 226–227
DKW parallel-piston engine, 4, 8
Honda Paris-Dakar engine, 76
Honda stepped-piston engine, 9, 11

Napier
dual-scavenged aircraft engine, 4, 8
Nitrogen oxide emissions
formation of (Zeldovich mechanism), 104–105
ICOMIA outboard engine tests (Ficht-PDS fuel injection system), 181, 182
multizone model for, 105–106
Orbital Engine Company (OEC) system
OCP exhaust emissions, 196
SEFIS exhaust emissions, 197
Piaggio FAST small-engine system
ECE R47 emissions comparison
(FAST vs. standard), 204
ICOMIA emissions (FAST, standard), 204–205
in stratified-charge engines, 106–107
as unburned mixture diluent, 106, 107
See also Carbon monoxide emissions;
Hydrocarbon emissions; Smog; Soot and particulates
Noise reduction, importance of, 209–210
Nuti’s method
of scavenging evaluation, 45–46

Oggero, M.
scaevenging evaluation method, 50

Oil, lubricating
20-hour detergency tests (Piaggio), 259
API two-stroke oil specifications, 259
future trends in, 260
ISO standards, 259
oil classification levels (JASO, global), 257–258
oil specification tests (JASO, global), 257–258
Opposed-piston engines
advantages, basic cross section of, 4, 7
Junkers aircraft engine, 24
Piaggio engine, 8
Orbital Engine Company (OEC). See Fuel injection (air-assisted)
Oxygen stoichiometry, equations for, 253

Panasonic cloth catalyst, 224–226
Parallel-piston engine (DKW), 4, 8
Piaggio engines
Cosa 125 scooter engine, 192–194
FAST engine (50-cc)
air-fuel ratio, 202
fuel consumption, 200, 202
See also Carbon monoxide emissions;
Fuel injection (air-assisted);
Hydrocarbon emissions; Nitrogen oxide emissions
Hexagon engine (for oil tests), 259
opposed-piston, 7, 8
variable-exhaust tests, 162–163
VLB1M engine autoignition tests, 71–75
Piaggio fuel-injection systems
See Fuel injection (air-assisted); Fuel
injection (high-pressure); Fuel
injection (low-pressure)
Piaggio oil detergency tests, 259
Piston-controlled inlet, 6
Piston-reed valve combined inlet, 7
Poppet-valve engine (Toyota), 8–9
Port design
five-port and six-port tests
combustion analysis test results compared, 145
dynamometer tests, combustion analysis of, 139, 141
exhaust hydrocarbons maps of, 143
experimental cylinder schematics, 138–139
flow bench tests, Jante’s maps of, 139–140
short-circuit maps of, 142
WOT test results compared, 144
high-performance port design trends, 145
port angle (stream direction), 129
loop scavenging port design (schematic), 129
vs. scavenging efficiency and delivery ratio, 130
typical port angle, 130

Reed-valve engine
advantages of, 6
cross section of, 7
Reverse-loop engine (Schnürle), 5
Rotary-valve engine (Subaru loop-scavenged), 5, 6

Scavenging angle
defined, 15
vs. maximum power RPM (SI engines), 126
Scavenging efficiency
vs. bore/stroke ratio (SI engines), 146–148
of cross scavenging, 22
defined, 18, 19, 20, 21
vs. hydrocarbon emissions, 87
of loop scavenging, 22

machining tolerances, effect of, 150
for perfect displacement vs. perfect mixing, 18
for perfect mixing, 17, 20–21
perfect scavenge, 17, 20–21
for similar cylinders (SI engines), 149
theoretical, 21–22
trapping efficiency, defined, 18, 21
typical (real engines), 23
of uniflow scavenging, 22
See also Scavenging evaluation,
methods of; Scavenging port design;
Scavenging process
Scavenging evaluation, methods of, 41–42, 52–53
Aeromot Anemometric Tester, 46–47
cross scavenge configuration, 52–53
discharge coefficient, 54
dynamic tests, 54, 56–57
Jante’s method for, 42–45
Martini and Oggero’s method for, 50
Nuti’s method for, 45–46
single-cycle gas testing method, 49–50
steady-state bench tests, 51–54
swirl motion, importance of, 54, 55
three-dimensional pitot tube, 51–52
uniflow scavenge configuration, 52–53
See also Scavenging efficiency;
Scavenging port design; Scavenging process
Scavenging port design
compression-ignition engines, 121
scavenging bench test results, 151–152
scavenging dynamometer test results, 153
scavenging layouts, various, 151
duct shape, influence of
area variation in optimized duct, 132–133
different port designs, Jante’s tests of, 133–137
Scavenging port design (continued)
duct shape, influence of (continued)
impact on power output and
performance, 132–133
test correlation with calculated short-
circuit ratio, 136–137
spark-ignition engines, 121
exhaust angle vs. maximum power
RPM, 126
exhaust blowdown angle, 130–131
five-scavenging-port design, 131
generic port representation, 122–124
machining tolerances, effect of, 150
port area vs. crank angle, 125
research cylinder geometry, 146
scavenging angle vs. maximum power
RPM, 126
scavenging efficiency, effect of bore/
stroke ratio on, 146–149
scavenging process permeability, 124
trapping efficiency, effect of bore/
stroke ratio on, 146–149
See also Scavenging efficiency;
Scavenging evaluation; Scavenging
process
Scavenging process
air-fuel ratio, influence on, 85–87
blowdown phase (in bench tests), 56
blowdown process, 15, 16
charging efficiency, defined, 18–19
in CI engines, 4, 5, 6, 151
delivery ratio, defined, 18
exhaust blowdown angle, 130–131
inherent disadvantages of, 13
inverted-loop (basic schematic), 4, 5
loop scavenging (basic schematic), 4, 5
perfect mixing
analytic expressions for, 20–21
described, 17
perfect scavenge
described, 16–17, 20
purity of charge, 18
reference mass in, 18, 19
reverse-loop engine (Schnürle), 5
scavenging angle, defined, 15
scavenging pump, external, 32
scavenging time area
vs. scavenging efficiency (variable
port geometry), 148
vs. trapping efficiency (variable port
geometry), 148
short-circuit phenomenon
defined, 19
and two-cycle engine disadvan-
tages, 13
See also Short-circuit/short-circuit
ratio (SCR)
 Subaru loop-scavenged rotary-valve
engine, 5, 6
trapping efficiency, defined, 18, 21
See also Scavenging efficiency;
Scavenging evaluation; Scavenging
port design
Schmidt tubes, 209–210
Scooter engines, CO emissions of. See
Carbon monoxide emissions
SEFIS fuel-injection system (OEC), 197
Semenov, N.N.
autoignition studies, 69–70
Short-circuit/short-circuit ratio (SCR)
defined, 19
duct shape test vs. calculated short-
circuit ratio, 136–137
SCR, analysis of, 81
SCR isolines vs. engine speed, power,
85, 86
SCR maximum with crankcase
scavenging, 85
and two-cycle engine disadvantages, 13
Single-cycle gas testing method
of scavenging evaluation, 49–50
Smog
formation mechanisms for, 109–110
smog formation vs. environment, 113
Smog (continued)
smog intensity vs. HC/NO\textsubscript{x} concentrations, 111
smog reduction trends, 113
two-stroke vs. four-stroke engines, 111–112
See also Soot and particulates
Snapper piston-motion model, 39–40
Soot and particulates
CI engines, emission characteristics of, 115
CI engines, soot formation in, 115–116
vs. fuel types, 116
in small SI engines, 117
See also Smog
Spontaneous ignition. See Autoignition
Stepped-piston engines
basic configuration, 9–10
Honda motorcycle engine, 9, 11
Subaru
loop-scavenged rotary-valve engine, 5, 6
Surging (irregular combustion), 67–68
and autoignition, 68
and engine permeability, 68
pollution increase from, 67
Swirl motion, importance of, 54, 55
Thermal afterburners, 209–210
afterburner transverse section, 210
CO conversion fraction vs. temperature, 215–216
combustor reaction chemistry, 214–216
core temperature vs. carburetor jet size, 213
energy balance for (oxidized fraction vs. temperature), 216, 218
equilibrium points
vs. heat loss, 217, 219
vs. inlet temperature, 216, 218
vs. residence time, 217, 218
HC emissions
with afterburner, 212
without afterburner, 211
thermal reaction schematic, 214
Toyota
poppet-valve engine, 8–9
Trapping efficiency
defined, 18, 21
effect of bore/stroke ratio on (SI engines), 146–148
vs. scavenging time area (variable port geometry), 148
for similar cylinders (SI engines), 149
Two-stroke engines, basics of
accelerating pumps, ineffectiveness of, 101
applications of, 12–13
basic configurations of, 3–4
catalytic converters, difficulties with, 221–223
CI engines, loop scavenging in, 4, 5, 6, 24, 151
cost comparisons (single-cylinder engine types), 264
disadvantages of, 13
dual-scavenged Napier aircraft engine, 4, 8
historical note, 3
Honda stepped-piston motorcycle engine, 9, 11
inverted-loop scavenging, 4, 5
parallel-piston DKW motorcycle engine, 4, 8
Pavletti mechanically controlled inlet engine, 9, 12
piston-controlled inlet engine, 6
piston-reed valve controlled inlet, 6, 7
reed-valve engine, 6, 7
reverse-loop engine (Schnürle), 5
Subaru loop-scavenged, rotary-valve engine, 5, 6
Two-stroke engines, basics of
(continued)
supercharging, impossibility of, 15
Toyota poppet-valve engine, 8–9
Two-stroke engines, future of
charge stratification, 262
engine layout/operation requirements, 261
fuel vaporization/diffusion, 262–263
future perspectives, 263–264
late injection, advantages of, 262–263
lean combustion, problems with, 261
performance requirements, 261

Ultra Low Emissions Vehicle (ULEV). See
Fuel injection (air-assisted)

Willans line
in estimating friction losses, 62, 63

Zeldovich mechanism
for NOx emission formation, 104–105
Dr. Marco Nuti has almost thirty years of experience in research and development of engines. He was born in Pisa, Italy, on June 17, 1944, and received his doctorate degree “Laurea” in Mechanical Engineering from the Pisa Technical University in 1968.

In 1969, Dr. Nuti joined Piaggio in its R&D department. There he has been involved in the full range of engine research and development, including CAD, FEM/FEA, CFD, computer modeling, materials, components, and manufacturing technologies. He currently is in charge of Technical Innovation at Piaggio.

Dr. Nuti has written more than 50 technical publications relating to innovative solutions on vehicle and engine design. He is a member of the Society of Automotive Engineers and serves as chairman of a research company, S&R Sud. Dr. Nuti also serves as director of Consorzio Pisa Richerche and director of Consorzio Richerche Benevento. He taught specialized fluid machines at Pisa Technical University.