Appendix A

Timeline for Control of Automotive Emissions in the United States

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1946</td>
<td>South Coast Air Quality Management District</td>
<td>Formed by California legislation to control pollution in Los Angeles basin.</td>
</tr>
<tr>
<td>1947</td>
<td>Los Angeles County Air Pollution District</td>
<td>Formed by California legislation.</td>
</tr>
<tr>
<td>1961</td>
<td>PCV California</td>
<td>Provided by auto companies, prior to legislation.</td>
</tr>
<tr>
<td>1963</td>
<td>PCV USA</td>
<td>Provided by auto companies, prior to legislation.</td>
</tr>
<tr>
<td>1963</td>
<td>Clean Air Act for USA</td>
<td>Congress passed first legislation controlling environmental pollution.</td>
</tr>
<tr>
<td>1965</td>
<td>Amended Clean Air Act</td>
<td>Auto emissions added to controls.</td>
</tr>
<tr>
<td>1966</td>
<td>First year for emission controls in California</td>
<td>Response to Clean Air Act.</td>
</tr>
<tr>
<td>1967</td>
<td>Amended Clean Air Act</td>
<td>Air Quality Act by U.S. Congress.</td>
</tr>
<tr>
<td>1967</td>
<td>Inter-Industry Emission Control Program (IIEC1)</td>
<td>Formed to develop an emission-free automotive powerplant.</td>
</tr>
</tbody>
</table>
Cleaner Cars

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1968</td>
<td>California Air Resources Board (CARB)</td>
<td>Established by California legislation.</td>
</tr>
<tr>
<td>1968</td>
<td>First year for emission controls in USA</td>
<td>Response to Clean Air Act.</td>
</tr>
<tr>
<td>1968</td>
<td>CARB empowered to establish emission standards for diesel-powered vehicles</td>
<td>Established by California legislation.</td>
</tr>
<tr>
<td>1968</td>
<td>7-Mode Driving Test cycle</td>
<td>Established by CARB, emission test.</td>
</tr>
<tr>
<td>1969</td>
<td>End-of-line audit procedure</td>
<td>Established by CARB.</td>
</tr>
<tr>
<td>1969</td>
<td>Smog Case antitrust suit against GM, Ford, Chrysler, and American Motors</td>
<td>United States Department of Justice under the Sherman Act.</td>
</tr>
<tr>
<td>1970</td>
<td>Environmental Protection Agency (EPA) established</td>
<td>Established by U.S. Congress, William Ruckelshaus appointed administrator.</td>
</tr>
<tr>
<td>1970</td>
<td>National Ambient Air Quality Standards (NAAQS)</td>
<td>EPA established first air quality standards.</td>
</tr>
<tr>
<td>1972</td>
<td>Lead removal from gasoline established by EPA</td>
<td>0.05 g/gal, upper limit by 1975, no leaded fuel after January 1, 1997.</td>
</tr>
<tr>
<td>1972</td>
<td>Original Federal Test Procedure (FTP), cold start only</td>
<td>Established by EPA in 1970, Driving Test Procedure, replaced the 7-Mode Test.</td>
</tr>
</tbody>
</table>
Appendix A

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973</td>
<td>Exhaust gas recirculation (EGR) introduced</td>
<td>Required to meet EPA NO\textsubscript{X} standards.</td>
</tr>
<tr>
<td>1973</td>
<td>Regulations for diesel-powered light duty vehicles</td>
<td>Established by CARB, dynamometer test.</td>
</tr>
<tr>
<td>1974</td>
<td>IIEC2 formed</td>
<td>Inter-Industry Emission Control Program extended.</td>
</tr>
<tr>
<td>1975</td>
<td>Oxidizing catalysts introduced</td>
<td>Required to meet EPA standards.</td>
</tr>
<tr>
<td>1975</td>
<td>75FTP, Revised Federal Test Procedure</td>
<td>EPA revised test procedure to include cold start and hot start.</td>
</tr>
<tr>
<td>1977</td>
<td>IIEC2 terminated</td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>Three-way catalysts and electronic controls introduced</td>
<td>Required to meet EPA standards.</td>
</tr>
<tr>
<td>1986</td>
<td>Particulate standard introduced</td>
<td>Established by EPA.</td>
</tr>
<tr>
<td>1987</td>
<td>Chrysler purchased American Motors</td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td>Auto/Oil Air Quality Improvement Program (AQIRP)</td>
<td>Established by 14 oil companies and 3 U.S. automakers.</td>
</tr>
<tr>
<td>1990</td>
<td>Revised Clean Air Act</td>
<td>U.S. Congress, sweeping of 1990 changes to requirements for emission controls.</td>
</tr>
<tr>
<td>Year</td>
<td>Title</td>
<td>Comment</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>1993</td>
<td>Formaldehyde standard introduced</td>
<td>Established by EPA.</td>
</tr>
<tr>
<td>1997</td>
<td>Auto/Oil Air Quality Final Report</td>
<td>Report covering all three original phases.</td>
</tr>
<tr>
<td>1998</td>
<td>Daimler Benz and Chrysler merge</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B

People and Places

Many, many individuals have contributed to this book. The first group consists of the many outstanding individuals whom I have had the opportunity to work with and for during my automotive career. Obviously, my contacts have primarily been with individuals within General Motors, where I worked for 43 years. The second group consists of individuals from the Ford and Chrysler organizations some of whom I have not had the opportunity to meet. To honor their contributions to the development of automotive emission controls, I have asked a colleague from each organization to comment on significant events in the development of automotive emission controls in their “shop” and the individuals involved. The third group consists of members of the supplier community, especially catalyst companies. I would like to acknowledge them for their contributions to advancing the state of the art in emission control systems.

General Motors

Beginning in the late 1960s, General Motors mounted a monumental effort to develop systems and components to control emissions from automobiles. This effort was a logical extension of GM’s ongoing research and development activities, and ultimately involved all of GM’s operations.

In 1969, at GM Research, a team of chemists, physical chemists, and physicists was assembled in the Physical Chemistry Department to focus on the possible use of catalytic converters to control automotive emissions. Preliminary studies were encouraging, but available catalysts were sparse and existing converters were much too large. Thus, a team consisting of members of the Research Laboratories, Engineering Staff, Buick Division, and AC Spark Plug Division was assembled to pursue advanced systems and technologies to lower tailpipe emissions.
Cleaner Cars

General Motor’s management designated the AC Spark Plug Division to serve as the focal point for all catalysts supplied to General Motors. This eliminated the confusion and duplication of effort that would have delayed the development of emission control technologies; the various catalyst suppliers no longer had to coordinate programs with many different GM car divisions. AC Spark Plug Division also developed screening tests to expedite sorting and rating performance of alternative catalyst materials from suppliers.

A staff of catalyst experts was assembled at the Research Laboratories. John Larson, head of the Physical Chemistry Department, served as leader of this staff, which included Richard Klimish, Kathy Taylor, Louis Hegedus, Jerry Summers, James Schlatter, and others.

The Fuels and Lubricants Department was led by Charles Tuesday, and staff included William Agnew, Joseph Colucci, Norman Brinkman, James Spearot, Fred Bowditch, Jack Benson, and many others. The smog chamber was developed in the Fuels and Lubricants Department through the efforts of Joe Wentworth, Charles Begeman, Joe Collucci, Chuck Tuesday, and John Kaplan.

The Emissions Research and Engine Research Departments focused their efforts on studying engine controls and alternative engine designs. William Agnew, Charles Amann, Nick Gallopoulos, and James Mattavi, with the support of many colleagues, contributed toward developing the technology necessary to control emissions from automobiles.

The GM Proving Grounds was an invaluable resource, testing hundreds of vehicles thousands of miles, to provide emission control data. R. Johnson, M. Homfeld, and W. Kolbe were early contributors to vehicle test procedures and test schedules. Al Robinson consistently advocated common sense approaches to vehicle emission testing and correlation of data. Harold Haskew contributed his knowledge of fuels and evaporative emissions, as well as his skills in negotiating with government agencies for logical solutions to emission controls.

During the 1960s, technical experts and administrators from the various GM staffs, primarily Research, had to spend a great deal of their time testifying in Washington, D.C., responding to requests from the U.S. Government for information on progress in research and development toward meeting emission standards. This heightened federal interest in industry procedures prompted GM in 1971 to organize a new staff to deal with environmental regulations.
Appendix B

The Environmental Activities staff was responsible for interactions with all government agencies issuing any type of environmental regulations that concerned GM; this included not only motor vehicles regulations, but also plant emissions regulations. One of the primary responsibilities of the Environmental Activities staff was to improve GM’s technical image with the public and the government, particularly with regard to environmental issues. The new vice president lured to head up this staff was Dr. Ernest Starkman, a member of the faculty of the University of California, whose specialty was combustion processes and associated chemistry.

Ford Motor Company

(Courtesy of Bob McCabe, Principal Staff Engineer, Chemical Engineering Department, Ford Research Laboratory)

The Ford Motor Company, under the leadership of Henry Ford II, also relied on its Research Laboratories to guide development of emission control systems. Starting out with fewer resources than General Motors, Ford entered into cooperative efforts with other industry supporters and suppliers, including oil companies and catalyst companies. An outgrowth of these joint efforts was the IIEC Program.

Inter-Industry Emission Control (IIEC) Program

Robert Campau, Executive Engineer, emerged as the spokesman for the IIEC effort, which involved eleven separate companies. Started in 1967, the three-year program, estimated to spend $7.0 million, ultimately spent $21.0 million over a six-year period.

Catalytic Converter Development

A team of chemists, physical chemists, engineers, and supporting staff was organized at the Ford Scientific Research Laboratories (SRL) to investigate catalysts and catalytic converter systems. J.T. Kummer, M. Shelef, and Klaus Otto contributed to the technology, and H.S.Gandhi established himself as a worldwide authority on catalyst systems for automobiles. Much of the work at the Ford Scientific Research Laboratories was carried out under the direction of Serge Gratch.
Cleaner Cars

In addition to the work at SRL, notable contributions were made by Eugene Weaver and Jim Gagliardi in Powertrain Operations. These two individuals, together with Joe Kummer, are generally credited with Ford's decision to proceed with the development and application of monolithic catalytic converters, which are now the industry standard. The issue of monoliths vs. pellets for substrates, and which was the better choice, will probably never be satisfactorily answered; each had both advantages and disadvantages.

Chrysler Corporation

(Courtesy of Michael Brady, Engineering Specialist, Supervisor, Catalyst Development, Advanced Engine System Development, Chrysler Corporation.)

During the 1970s, Chrysler Corporation endured some very difficult times. Many industry observers did not believe the company would survive. The story of Lee Iaccoca's leadership and the company's return to financial health is a legend in the auto industry. During the trying times, Chrysler was in no position to mount a large effort to study emission controls. Nevertheless, a number of dedicated individuals, including Maxwell Teague, Floyd Allen, Richard Goodwillie, and Bernard Robertson, managed to ensure that technology to control emissions was incorporated into vehicles. Much of the technology was a product of joint projects between Chrysler and its supplier network, which historically has provided Chrysler with more of its emission control technology than that provided to General Motors and Ford.

In 1970, various parts of Chrysler were assigned the joint task of meeting the dictates of the Clean Air Act of 1970. In the research office, the Chemical Research Department was directed to develop a catalyst, and Power Plant Research, headed by James Franceschina, was assigned the task of integrating catalytic converters into vehicles. In 1970, the Chief Research Scientist for Basic Sciences was Clayton Lewis. Lewis was succeeded by D. Maxwell Teague, who headed the catalyst research effort through most of the formative years.

The head of Catalyst Development was Leo B. Clougherty, and the early group leaders were Jack Engel and Philip J. Willson, followed in the mid-'70s by Edward J. Lesniak, Philip J. Willson, and Michael J. Brady. Willson
Appendix B

did much of the early substrate development and selection for Chrysler, while Engel and Brady were responsible for formulation development; Lesniak was responsible for process development.

Chrysler worked with Universal Oil Products (UOP) to jointly develop catalyst formulation and design and build the manufacturing plant in Tulsa, Oklahoma. During the time period 1972–1973, the 1975 production oxidation catalyst systems were developed. Richard E. Goodwillie was the manager of the department, which included both the certification group and the early engine and emission system development group. At that time, Richard Geiss and Roger Ortega were the senior engineers for the development groups that were most actively involved with catalysts. They both reported to William Hoffmeier, who, in turn, reported to Goodwillie. Douglas Teague and Richard Geiss were involved with supplier interactions and selections.

By 1975, Floyd Allen and Bernard Robertson had assumed supervision of the development of the three-way catalyst system with feedback control, which was introduced in production in 1980 in California. Advanced Engine Systems Development was formed, with Floyd Allen, Richard O. Schaum, and Richard Geiss leading the efforts of Clinton L. Syverson, Dewane D. Cogswell, Galen Kerns, and David C. VanRaaphorst. The Engine Performance Development Department, headed by Howard Padgham, was responsible for carburetor development and dynamometer testing, of catalyst performance.

In 1980, Gordon Rinschler became manager of Advanced Engine Systems Development, with both groups reporting to James Franceschina. In recent years, suppliers have become more involved than in the 1970s; however, emission control system have always been calibrated within Chrysler.
Appendix C

Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/F</td>
<td>air to fuel ratio</td>
</tr>
<tr>
<td>AAMA</td>
<td>American Association of Automobile Manufacturers</td>
</tr>
<tr>
<td>ADP</td>
<td>alternative durability procedure</td>
</tr>
<tr>
<td>AIR</td>
<td>air injection reactor</td>
</tr>
<tr>
<td>AMA</td>
<td>Automobile Manufacturers Association</td>
</tr>
<tr>
<td>AQIRP</td>
<td>Air Quality Improvement Research Program</td>
</tr>
<tr>
<td>BSFC</td>
<td>brake specific fuel consumption</td>
</tr>
<tr>
<td>BSNO\textsubscript{X}</td>
<td>brake specific oxides of nitrogen</td>
</tr>
<tr>
<td>CAFE</td>
<td>Corporate Average Fuel Economy</td>
</tr>
<tr>
<td>CARB</td>
<td>California Air Resources Board</td>
</tr>
<tr>
<td>CFC</td>
<td>chlorofluorocarbon</td>
</tr>
<tr>
<td>CLA</td>
<td>chemiluminescence analyzer</td>
</tr>
<tr>
<td>CNG</td>
<td>compressed natural gas</td>
</tr>
<tr>
<td>CRADA</td>
<td>Cooperative Research and Development Activity</td>
</tr>
<tr>
<td>CRC</td>
<td>Coordinating Research Council</td>
</tr>
<tr>
<td>CVS</td>
<td>constant volume sampler</td>
</tr>
<tr>
<td>CVT</td>
<td>continuously variable transmission</td>
</tr>
<tr>
<td>DF</td>
<td>deterioration factor</td>
</tr>
<tr>
<td>DME</td>
<td>dimethyl ether</td>
</tr>
<tr>
<td>DOT</td>
<td>Department of Transportation</td>
</tr>
<tr>
<td>DS-VDV</td>
<td>distributor-spark vacuum delay valve</td>
</tr>
<tr>
<td>DS-VMV</td>
<td>distributor-spark vacuum modulator valve</td>
</tr>
<tr>
<td>ECE</td>
<td>Economic Commission for Europe</td>
</tr>
<tr>
<td>ECM</td>
<td>electronic control module</td>
</tr>
<tr>
<td>ECS</td>
<td>evaporation control system</td>
</tr>
<tr>
<td>EEC</td>
<td>European Economic Community</td>
</tr>
<tr>
<td>EFE</td>
<td>early fuel evaporation</td>
</tr>
</tbody>
</table>

237
Cleaner Cars

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR</td>
<td>exhaust gas recirculation</td>
</tr>
<tr>
<td>EGR-TVS</td>
<td>exhaust gas recirculation-thermal vacuum switch</td>
</tr>
<tr>
<td>EHC</td>
<td>electrically heated converter</td>
</tr>
<tr>
<td>EOS</td>
<td>exhaust oxygen sensor</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>EPCA</td>
<td>Energy Policy and Conservation Act</td>
</tr>
<tr>
<td>EUDC</td>
<td>Extra Urban Driving Procedure</td>
</tr>
<tr>
<td>EVAP</td>
<td>evaporation control</td>
</tr>
<tr>
<td>FID</td>
<td>flame ionization detector</td>
</tr>
<tr>
<td>FTP</td>
<td>Federal Test Procedure</td>
</tr>
<tr>
<td>GVW</td>
<td>gross vehicle weight</td>
</tr>
<tr>
<td>H/C</td>
<td>hydrogen to carbon ratio</td>
</tr>
<tr>
<td>H₂S</td>
<td>hydrogen sulfide</td>
</tr>
<tr>
<td>HC</td>
<td>hydrocarbons</td>
</tr>
<tr>
<td>HEW</td>
<td>Health Education and Welfare</td>
</tr>
<tr>
<td>IIIEC</td>
<td>Inter-Industry Emission Control</td>
</tr>
<tr>
<td>LEV</td>
<td>low emission vehicle</td>
</tr>
<tr>
<td>LPG</td>
<td>liquid petroleum gas</td>
</tr>
<tr>
<td>LTR</td>
<td>lean thermal reactor</td>
</tr>
<tr>
<td>MBT</td>
<td>minimum spark advance for best torque</td>
</tr>
<tr>
<td>MIL</td>
<td>malfunction indicator light</td>
</tr>
<tr>
<td>MPI</td>
<td>multiport fuel injection</td>
</tr>
<tr>
<td>MTBE</td>
<td>methyl tertiary butyl ether</td>
</tr>
<tr>
<td>MVPCB</td>
<td>California Motor Vehicle Control Board</td>
</tr>
<tr>
<td>NAAQS</td>
<td>National Ambient Air Quality Standards</td>
</tr>
<tr>
<td>NDIR</td>
<td>non-dispersive infrared</td>
</tr>
<tr>
<td>NLEV</td>
<td>National Low Emission Vehicle</td>
</tr>
<tr>
<td>NMOG</td>
<td>non-methane organic gases</td>
</tr>
<tr>
<td>NOₓ</td>
<td>oxides of nitrogen (NO + NO₂)</td>
</tr>
<tr>
<td>OBD</td>
<td>on-board diagnostic</td>
</tr>
<tr>
<td>OEM</td>
<td>original equipment manufacturer</td>
</tr>
<tr>
<td>OTC</td>
<td>Ozone Transport Commission</td>
</tr>
<tr>
<td>PCV</td>
<td>positive crankcase ventilation</td>
</tr>
<tr>
<td>PM</td>
<td>particulate matter</td>
</tr>
<tr>
<td>PNGV</td>
<td>Program for New Generation Vehicle</td>
</tr>
<tr>
<td>PULSAIR</td>
<td>pulse air injection reactor</td>
</tr>
</tbody>
</table>
Appendix C

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAF</td>
<td>reactivity adjustment factor</td>
</tr>
<tr>
<td>RTR</td>
<td>rich thermal reactor</td>
</tr>
<tr>
<td>RVP</td>
<td>Reid vapor pressure</td>
</tr>
<tr>
<td>SEA</td>
<td>Selective Enforcement Audit</td>
</tr>
<tr>
<td>SFTP</td>
<td>Supplemental Federal Test Procedure</td>
</tr>
<tr>
<td>SIP</td>
<td>State Implementation Plan</td>
</tr>
<tr>
<td>SO₂</td>
<td>sulfur dioxide</td>
</tr>
<tr>
<td>SOF</td>
<td>soluble organic fraction</td>
</tr>
<tr>
<td>SPI</td>
<td>sequential port fuel injection</td>
</tr>
<tr>
<td>SULEV</td>
<td>super ultra-low emission vehicle</td>
</tr>
<tr>
<td>TBI</td>
<td>throttle body injection</td>
</tr>
<tr>
<td>TCS</td>
<td>transmission control spark</td>
</tr>
<tr>
<td>THERMAC</td>
<td>thermal air cleaner</td>
</tr>
<tr>
<td>TLEV</td>
<td>transition low emission vehicle</td>
</tr>
<tr>
<td>TVS</td>
<td>thermovacuum switch</td>
</tr>
<tr>
<td>TWC</td>
<td>three-way catalyst</td>
</tr>
<tr>
<td>ULEV</td>
<td>ultra-low emission vehicle</td>
</tr>
<tr>
<td>USCAR</td>
<td>United States Council for Automotive Research</td>
</tr>
<tr>
<td>ZEV</td>
<td>zero emission vehicle</td>
</tr>
</tbody>
</table>
Index

Abbreviations are used after the page number to indicate figure (f), end note (n), or tabular material (t).

AC02 procedure, 217, 218f
Acetaldehyde, 23, 24t
Acid rain, 209–210, 209f
AC Rochester, 112
Activated charcoal, 54–55, 104f
Additives in fuel, 125
ADP (alternative durability procedure), 37
Adsorber systems, 54–55, 165–166, 166f, 174–175, 174f, 175f
Aerogels, 206
A/F ratio. See Air to fuel ratio
AIR (air-injected reactors), 64, 66, 79–80
Air conditioning, 217, 218f
Air pollution
 constituents, 10–13, 11t
 early regulation of, 1–2
 link to automobile emissions, 4, 29
 public reaction to, 29
 standards, 2, 5, 30
 trends in, 6, 218–222, 219f, 220f, 221f, 222f
 see also Smog
Air quality standards. See Clean Air Act
Air Resources Board, California (CARB), 4, 31, 228
Air to fuel ratio (A/F)
 catalytic converters and, 91, 125t
 controlled cycling, 224
 in diesel engines, 28
 emissions and, 21–23, 22f, 25
 in exhaust gas recirculation, 70f, 71f
Air to fuel ratio (A/F) (continued)
in fuel injection, 135
in lean burn engines, 206–207, 208f
in thermal reactors, 67–68
three-way catalysts and, 157–158
Air-injected reactors (AIR), 64, 66, 79–80
Aldehydes, 21, 23, 24t, 196
Allen, Floyd, 235
Alternative durability procedure (ADP), 37
Alternative fuels, 193–199
Clean Air Act of 1990, 145, 215
comparison of, 195f, 195t, 196f, 197f
in the future, 213–215
gaseous, 193
GM Progress of Power, 80
greenhouse effect and, 204, 205f
liquid, 193–194
oxygenated, 194, 196–199, 196f, 197f, 198f, 213
Panel on Electrically Powered Vehicles, 29
see also Electric vehicles
Alternative powerplants, 29, 79–80
Alumina substrates, 94–95, 103, 121f
AMA (Automobile Manufacturers Association), 2–3
AQIRP (Auto/Oil Air Quality Improvement Research Program), 199–200,
202, 229–230
ARCO, 69
Atmosphere, 7–12, 12f
Automobile industry
1954 trip to California, 2–3
response to 1966 California requirements, 87–88
Revised Clean Air Act and, 146f
role in emissions control, 43–48
Automobile Manufacturers Association (AMA), 2–3, 35–37, 36f, 46–47, 228
Automotive emissions
1971 controls, 58–60
audits, 137–139, 228
catalyst volume and, 164, 165f
cold-start, 60, 148–150, 154f, 156, 161f, 167
contribution to air pollution, 4, 19, 29
Automotive emissions (continued)
cost-effectiveness, 56–57
from diesel engines, 28, 119–120, 205, 223–224
before emissions controls, 51–52, 52f
European standards, 39–41, 41t
fuel tank, 26, 56
from incomplete combustion, 8, 10–11, 11t, 21
Muskie Bill, 59
standards for, 21, 57, 215–216, 216t
tailpipe, 2, 40, 81f, 83f
timeline for control, 227–230
trends in, 218–222, 219f, 220f, 221f, 222f
see also Clean Air Act; Driving test procedures
Auto/Oil Air Quality Improvement Research Program (AQIRP), 199–200, 202, 229–230

Backpressures. See Pressure drop
Barium, 100, 207
Batteries, 168, 224
Benzene, 23, 24t
Bernoulli’s equation, 177
Besler Developments, 82
Blowby gases, 26
BMW, 170
Brake specific fuel consumption (bsfc), 21, 22f, 71, 71f
Brake specific NOx (BSNOx), 70, 70f
Buckley, Francis J., Jr., 105
Bureau of Air Sanitation (California), 1–2
1,3-Butadiene, 23, 24t

CAFE (Corporate Fuel Economy) Standards, 116–117, 229
California
1966 standards, 86–91
1990 standards, 146t
Bureau of Air Sanitation, 1–2
cost maximum, 87
Motor Vehicle Pollution Control Board, 2–3, 31, 86, 227
California (continued)

Southern California Air Quality Study (1989), 13
stringent limits for, 19, 23, 57, 59
California Air Resources Board (CARB), 4, 13, 31, 137, 228
Cam phasing, 223
Campau, Robert, 233
Campbell, John, 2
Carbon adsorbers, 54–55, 104f
Carbon dioxide, 7–8, 204–206, 204f
Carbon monoxide (CO)
alternatives fuels, 197, 198f
emissions compliance, 136, 136f
emissions data, 219f, 220, 222f
formation of, 11, 11t, 21
fuel combustion, 21–23, 22f, 26–27
oxidation kinetics, 114f
spark timing and, 63f
standards for, 16, 40, 46, 81f, 146t, 216t
thermal oxidation, 64
Carburetors, 55, 60–61, 118, 130–133, 133f, 135
CaRFG, 201
Carter, William, 10
Carter reactivities, 10, 11t, 23, 24t
Catalysts
aging, 99–100, 110f, 114f, 123–124, 124f
base-metal, 96–97, 99
contributions by companies, 98–99
General Motors, 88–90, 101–102
guard, 159–160
heated, 167–168, 167f
IIEC2 and, 92
microscopic structure of, 123, 123f
overview, 84–85
palladium, 96, 99, 103, 105, 121f, 164
poisoning, 96, 99–100, 125
processes, 107, 110–115, 110f, 111f, 114f
reducing, 101, 207
storage, 207

244
Catalysts (continued)

substrates, 94–95, 98

temperature effects, 121–125, 121f, 122f, 123f, 124f, 125t, 126f

thermal durability, 159–160

three-way, 128–129, 129f, 131, 157–158, 214

transient testing, 128–129

see also Platinum catalysts; Substrates

Catalytic converters, 79–140

1966 California requirements, 86–91
cascaded, 164
ceramic monolith, 106–107, 106f, 121f, 181f
chronology of development, 81, 84–86
costs, 57, 87, 214
diesel engines, 119–120
dual systems, 57, 95–96, 156–157, 156f
dual wall downpipes, 154, 154f, 156–157, 162, 162f
durability testing, 85, 87, 101
eyearly designs, 3, 90–93
electrically heated, 167–171, 167f, 169f, 170f, 174
emission results, 164, 165f

flow maldistribution, 182–183, 183f, 184f

General Motors, 47, 88–89, 101–105, 104f, 107, 109

kinetics, 112–115, 114f, 115f

leaded fuels, 57, 89, 93–94

loss coefficients, 184–185, 185f, 186f

manufacturing, 105

metal monolith, 108–109, 108f, 121f

monolithic, 89–90, 95, 102, 112–113, 113f, 181

overheating, 85–86, 159–160

pelleted, 94–95, 102–103, 104f, 107

retaining grid, 103

sizing, 102, 113, 114f

supplementally heated, 171–174, 171f, 172f, 173f

temperature effects, 121–125, 121f, 122f, 123f, 124f, 125f, 126f

testing procedures, 100–101, 128–129

three-way, 57, 126–127, 128f, 129f, 131, 214

warm-up, 162–164, 163f, 165f

see also Catalysts; Pressure drop; Subsystems, alternative

245
Cleaner Cars

Ceramic monolith catalysts, 106–107, 106f, 121f, 181f
Cerium oxide, 98–99, 131
Chassis Dynamometer Emission Test Procedure, 34–35
Chlorinated fluorocarbons (CFCs), 203
Chrysler Corporation, 47, 102, 225, 234–235
Clean Air Act
 of 1963, 5, 227
 of 1965, 5, 144
 of 1970, 5, 16–17, 91, 228
California limits, 19
driving schedules, 31, 33f, 38
methods for controlling emissions, 30
Muskie Bill, 56–59
Ozone Transport Commission, 13, 229
Revised (1990), 59, 144–145, 149, 215
standards in, 36, 46, 56
urban area classifications, 17–19
Clougherty, Leo B., 234
CNG (compressed natural gas), 195f, 195t, 196f, 201
CO. See Carbon monoxide
Coal-burning, 8
Cole, Edward, 88, 93
Combustion of fuel
 carbon monoxide, 21–23, 22f, 26–27
 Carter reactivities, 10, 11t, 23, 24t
chemical reactions, 21–23, 22f
hydrocarbons, 22–23, 23f, 25–26
oxides of nitrogen, 21–23, 22f, 27
particulates, 27–28
products, 8, 10–11, 11t, 21
spark timing and, 62, 63f, 64
Compressed natural gas (CNG), 195f, 195t, 196f, 201
Computer controls, 74, 133–134, 134t
Constant volume samplers (CVS), 36
Convection, 151–152, 151f
Cooperative Research and Development Activity (CRADA), 206
Copper zeolites, 207, 208f
Cordierite, 95, 107
Corporate Fuel Economy (CAFE) Standards, 116–117, 229
Index

Costs
- California maximum, 87
- dual catalytic converter, 57
- emission controls, 214, 214f
- inspection tests and repairs, 138

Cosworth Vega, 65

CRADA (Cooperative Research and Development Activity), 206

Crankcase emissions, 26

CVS (constant volume samplers), 36

Dallas-Forth Worth area (Texas), 17, 17f

Denver, brown cloud in, 10

DF (emissions deterioration factors), 37

Diesel engines, 28, 119–120, 166, 205, 223

Diesel fuel, 195f, 195t, 197f

Dimethyl ether (DME), 194, 195f, 195t, 196f, 197f

Direct-flame afterburners, 3

Doble steam cars, 82

Driveability limit, 71–72

Driving test procedures
- AC02, 218f
- Europe, 38–41, 39f, 40t, 41t
 - Federal Test Procedures, 31, 33f, 35–38, 40t, 129, 228
 - Japan, 42–43, 42f
 - Supplemental Federal Test Procedure, 218
 - US06, 217, 217f

Durability testing, 37, 41, 85, 87, 101, 129

Dynamometers, 33–35, 37

ECM (electronic control module), 130–132, 134t

Economic Commission for Europe (ECE), 38

EEC (European Economic Community), 38–41, 39f, 40t, 41t

EGR. See Exhaust gas recirculation

Electric vehicles, 29, 197, 224

Electrically heated converters (EHC), 167–171, 167f, 169f, 170f, 174

Electronic control module (ECM), 130–132, 134t
Cleaner Cars

Electronic ignition, 91
Emissions. See Automotive emissions

Emissions control devices
1960s, 53–57, 53f
1971, 58–60, 60f
1973, 65f
1975, 115–119
1980, 119f
closed loop, 127, 128f, 129–136, 130f
costs, 56–57, 214, 214f
direct-flame afterburners, 3
evaporative, 54–55, 60f, 88
positive crankcase valve, 53–54, 53f, 60f, 88, 119f, 227
PULSAIR, 65, 65f, 69, 119f
spark timing control, 61–65, 62f, 63f, 69–71, 116, 119f
thermal air cleaner, 60–61, 60f, 61f, 88
thermal reactors, 66–68, 75, 79–81
thermovacuum switch, 60f, 64, 88, 119f
timeline for, 227–230
transmission controlled spark, 60f, 64, 88
see also Exhaust gas recirculation

Emissions deterioration factors (DF), 37
Emitec, 109
Energy Policy and Conservation Act of 1975 (EPCA), 116
Environmental Protection Agency (EPA)
audits, 138
durability testing, 37
emission compliance, 136
formation of, 5, 30, 32
EOS (exhaust oxygen sensors), 163
EPCA (Energy Policy and Conservation Act) of 1975, 116
Ethanol, 196f, 197f
Ethylene, 10
EUDC (extra urban driving cycle), 39f, 40
Euro I/II/III levels, 40–41, 41t
European Economic Community (EEC), 38–41, 39f, 40t, 41t, 216
Evaporative emission control system, 54–55, 60f, 88
Exhaust gas recirculation (EGR)
 diesel engines, 120
 introduction of, 229
 overview, 69–74, 70f, 71f, 72f, 73f, 74f, 75f
 oxides of nitrogen and, 27, 66n
 schematic, 119f
Exhaust oxygen sensors (EOS), 130, 131f, 163
Exhaust systems
 flow processes, 177–179, 178f, 179f, 181
 thermal management, 149–155
 see also Combustion of fuel; Pressure drop
Extra urban driving cycle (EUDC), 39f, 40

Ford Motor Company
 catalytic converters, 102, 106, 233–234
 emission control overview, 233
 IIEC, 5, 45, 75, 91
 1965 Mustang, 52f
Formaldehyde, 23, 24t, 126, 230
Franceschina, James, 234–235
Freon, 203
FTP (Federal Test Procedure), 31, 33f, 35–38, 40t, 129, 228
 see also Driving test procedures
Fuel cells, 225
Fuel economy
 air to fuel ratio, 21
 alternative fuels, 194, 195f, 195t
 brake specific fuel consumption, 21, 22f, 71, 71f
 driving schedules, 33f
 exhaust gas recirculation, 71–72, 71f, 72f
 sales weighted, 116–117, 118f, 147
 spark timing and, 62
 steam cars, 83
Fuel tank emissions, 26, 56
Cleaner Cars

Fuels
additives, 125
compositional changes, 200–201
future quality, 213
gasoline, 195f, 195t, 196f, 197f, 198
hydrogen/carbon ratios, 91–92
improved quality of, 145
lead in, 57, 89, 93–94, 125, 228
reformulated gasoline, 198–202
see also Alternative fuels; Fuel economy

Gagliardi, Jim, 234
Gandhi, H.S., 233
Gasoline, 195f, 195t, 196f, 197f, 198–202
see also Fuels
Geiss, Richard, 235
General Motors (GM)
air-injected reactors, 64, 66
catalytic converters, 85, 88–89, 100–105, 104f, 107, 109
chassis dynamometer facility, 35
electric vehicles, 224
emissions from, 136, 136f
fuel economy, 117, 118f
fuel-cell cars, 225
HIWAY model and, 58
IIEC and, 47
overview of effort, 231–233
Progress of Power, 80
smog chamber, 44–45, 232
steam-powered vehicles, 82
throttle body injection, 131–133, 133f
Global warming, 202–206, 203f, 204f, 205f
GM. See General Motors
Goodwillie, Richard E., 235
Governmental role, 30, 48
see also Clean Air Act; Environmental Protection Agency

250
Index

Gratch, Serge, 233
Greenhouse effect, 202–206, 203f, 204f, 205f
Grimm, Robert A., 133

Haagen-Smit, Arie, 4, 29
Haskew, Harold, 232
HC. See Hydrocarbons
Health effects
 assessment of, 30
 MTBE, 194
 nickel catalysts, 97
 particulate matter, 28
Heat transfer studies, 149–155, 151f
HFC-134a, 203
HIWAY model, 58
Honda Motor Company, 170, 215–216, 225
Hybrid vehicles, 225
Hydrocarbons (HC)
 catalyst volume, 165f
 cold start, 148f, 149, 166
 electrically heated converters, 169f
 emissions regulations, 81f
 fuel combustion, 22–23, 23f, 25–26
 reactivities, 10–11, 11t, 14–15, 14f, 24t
 sampling, 64
 spark timing and, 63f, 64
 standards, 21, 40, 46, 136
 supplementally heated converters, 173f
 temperature and, 122–123, 122f
 thermal oxidation, 64
Hydrogen fuels, 196f, 197f, 225
Hydrogen sulfide, 16
Hydrous metal oxides, 206
Hydroxyl radicals, 9, 9f
Cleaner Cars

IIEC (Inter-Industry Emission Control Program), 5, 45–47, 75, 227, 233
IIEC1, 5, 46, 75–76
IIEC2, 5, 46, 91–93, 229
IM240 test, 138–139, 139f
Infinitely variable transmission (IVT), 223
Inlet supercharging, 223
Insulation, 150, 152–155, 153f, 161, 162f
Inter-Industry Emission Control Program (IIEC), 5, 45–47, 75, 227, 233
Iridium catalysts, 97
IVT (infinitely variable transmission), 223

Japan, 42–43, 42f, 216

Kinetics, 112–115, 114f, 115f
Kummer, Joe, 234

Lanthanum oxide, 100
Larson, John, 232
Leaded fuels, 57, 89, 93–94, 125, 228
Lean limit, 25
Lean thermal reactors (LTR), 67–68
Lean-burn catalysts, 206–207, 208f
LEV. See Low emission vehicles
Lewis, Clayton, 234
Light duty vehicles, 36, 228
Light-off emissions, 100, 149, 160
Liquid natural gas (LNG), 195f, 195t, 196
London fog, 8
Los Angeles Basin, 1, 14–15, 18, 18f
Los Angeles County Air Pollution Control District, 1
Los Angeles-type smog, 8
see also Smog
Loss coefficients, 184–185, 185f, 186f
Low emission vehicles (LEV)
1998 regulations, 216t
Index

Low emission vehicles (LEV) (continued)
 active subsystems and, 169f, 175, 176f
 FTP test emissions, 148f
 standards for, 145, 146t
LTR (lean thermal reactors), 67–68
Luxembourg Agreement (1985), 39

M85, 196, 196f, 197f, 199, 201
Malfunction indicator light (MIL), 144
Metal monolith catalysts, 108–109, 108f, 121f
Methane, 23, 204–205
Methanol fuels, 92, 194, 195f, 195t, 196f, 197f
Methyl tertiary butyl ether (MTBE), 194, 196f, 197f
Minnesota Mining and Manufacturing Company (3M), 106
Misfiring, 86, 159
Mobil Oil Corporation, 5, 75
7-mode cycle test procedure, 33, 228
Modeling
 dual converter systems, 156–157
 exhaust gas recirculation, 69
 exhaust heat transfer, 150–152, 151f
 HIWAY model, 58
 multidimensional, 155–157
 ozone, 201–202
 statistical, 156
 three-way converter systems, 156–158
Monel catalysts, 97
Monolith catalysts
 advantages, 90
 ceramic, 106–107, 106f, 121f, 181f
 cordierite, 89
 flow in, 181
 of Ford and Chrysler, 102
 manufacture of, 95
 metal, 108–109, 108f, 121f
 Stanford kinetics study, 112–113
Morse, Robert, 29, 79, 82
Motor Vehicle Pollution Control Board (MVPCB), 2–3, 31, 86, 227
Cleaner Cars

MTBE (methyl tertiary butyl ether), 194, 196f, 197f
Multipoint injection (MPI), 135
Muskie Bill, 56, 58–59, 228

National Ambient Air Quality Standards (NAAQS) (1970), 5, 16–17, 143, 228
National Low Emissions Levels (NLEV), 6, 145, 230
New York, 18
Nickel catalysts, 97
Niepoth, George, 132
Non-methane hydrocarbons (NMHC), 158f, 175
Non-methane organic gases (NMOG), 23, 146t, 147f, 216t
NOX. See Oxides of nitrogen
Nuclear power, 205

On-board diagnostics (OBD), 144, 163
Ortega, Roger, 235
OTC (Ozone Transport Commission), 13, 229
Overflow, 159–160
Oxides of nitrogen (NOX)
- acid rain, 209–210, 210f
- brake specific, 70, 70f
- catalyst volume, 165f
- chemical reactions, 9, 9f, 14–15, 14f, 21
- cold start, 148f
- compliance, 136, 136f
- diesel engines, 120
- effects of, 11–12
- electrically heated converters, 170f
- emissions data, 220–221, 220f, 222f
- emissions regulations, 81f, 144, 146t
- exhaust gas recirculation, 69–70
- in Revised Clean Air Act (1990), 59
- sources of, 21–23, 22f, 27, 210, 210f
- spark timing and, 64
- standards for, 16, 18–19, 21, 40, 46, 216t
- supplementally heated converters, 173f
- three-way systems, 158f

254
Index

Oxygen, 22f, 23, 63f
Oxygen sensors, 130, 131f, 163
Ozone
 1989 study, 13
 chemistry, 9–13, 9f
 exceedances of, 143–144
 formation experiments, 14–15, 14f
 modeling, 201–202
 standards for, 16
 urban area classifications, 17–19, 17f, 18f
Ozone Transport Commission (OTC), 13, 229

Padgham, Howard, 235
PAHs (polycyclic aromatic hydrocarbons), 28
Palladium, 96, 99, 103, 105, 121f, 164
Panel on Electrically Powered Vehicles, 29
Particulate matter (PM)
 combustion products, 27–28
 from diesel engines, 119–120, 223–224
 health effects, 28
 standards for, 17, 126, 216f
Partnership for a New Generation of Vehicles (PNGV), 206, 224
PCV (positive crankcase valve) system, 53–54, 53f, 60f, 88, 119f, 227
Pelleted substrates, 94–95, 102–103, 104f, 107
 see also Catalysts; Substrates
Perovskites, 206
Peroxy radicals, 9, 9f
Phosphorous, 93, 100
Platinum catalysts
 advantages, 96
 disadvantages, 99
 General Motors, 88, 103, 105
 mining of, 105
 temperature and, 121f, 208f
PM. See Particulate matter
PNGV (Partnership for a New Generation of Vehicles), 206, 224
Poisoning, 96, 99–100, 125
Polycyclic aromatic hydrocarbons (PAHs), 28
Polycyclic organic matter, 23, 24
Pontiac Bonneville (1993), 52
Positive crankcase valve (PCV) system, 53–54, 53, 60, 88, 119, 227
Pressure drop
effects of, 176–177, 177
flow processes, 177–179, 178, 179
loss coefficients, 184–185, 185, 186
maldistribution, 182–183, 183, 184
substrates and, 180–182, 181, 182, 183
vehicle applications, 187, 187

Prius, 224
Promoters, 92, 110
Propane, 195, 195, 196, 197
Propylene, 207
Public opinion, 29, 31, 46–47
PULSAIR, 65, 65, 69, 119

Radiation, 151–152, 151
Rapid aging test, 129
Reactivity adjustment factor (RAF), 10, 11, 23, 24
Reformulated gasoline fuels, 198–202
Reid vapor pressure (RVP), 198

Reno, Nevada, 17
Retaining grids, 103
Revised Clean Air Act (1990), 59, 144–145, 149, 215
Reynolds number, 152, 181, 185, 185
Rhodium, 129
Rich thermal reactors (RTR), 67–68
Rinschler, Gordon, 235
Robertson, Bernard, 235
Robinson, Al, 232
RTR (rich thermal reactors), 67–68
Ruckelshaus, William, 5
Ruthenium catalysts, 97
RVP (Reid vapor pressure), 198
Schedule 15-04, 39, 39f
Seinfeld, John, 19
Selective enforcement audits (SEA), 137
Sequential port fuel injection (SPI), 135
SE101/SE124, 80, 82–83
SFTP (Supplemental Federal Test Procedure), 218
Shed test, 34
Single point injection, 131–132, 133f, 135
Sintering, 84–85, 98–100, 123f
SIPs (State Implementation Programs), 138, 144
Smog
 antitrust lawsuit, 46–47, 228
 Carter reactivities, 10, 11t, 23, 24t
 chemical reactions, 9, 9f
 London fog, 8
 ozone formation, 10–12, 11t
 in Southern California, 1–4, 8
 see also Air pollution
Smog chambers, 4, 14, 44–45, 232
Soluble organic fraction (SOF) emissions, 119–120
South Coast Air Quality Management District, 1, 227
Southern California Air Quality Study (1989), 13
Southern California Basin, 1, 10, 14–15, 18, 18f
Spark timing control, 61–65, 62f, 63f, 69–71, 116, 119f
SPI (sequential port fuel injection), 135
Sport utility vehicles (SUVs), 216
Stabilizers, 92, 110, 123
Standard fuels, 193
 see also Fuels
Stanford Kinetics Study, 112–113
Starkman, Ernest, 233
State Implementation Programs (SIPs), 138, 144
Steam reforming, 99
Steam-powered vehicles, 80, 82–83
Substrates
 alumina, 94–95, 103, 121f
 ceramic, 106–107, 106f, 121f
 improvements in, 98
Cleaner Cars

Substrates (continued)
- metal monolith, 108–109, 108f, 121f
- pelleted, 94–95, 102–103, 104f, 107
- pressure drop and, 180–182, 181f, 182f, 183f
 see also Washcoats
Subsystems, alternative
- active, 167–175, 176f
- passive, 161–164, 175, 176f
- simple adsorber, 165–166, 166f
- valved adsorber, 174–175, 174f, 175f
Sulfate emission standards, 58
Sulfur, 93, 97, 100, 119
Sulfur dioxide, 209–210, 210f
Super-ultra-low-emission vehicles (SULEV), 216, 216t
Supplemental Federal Test Procedure (SFTP), 218
SUVs (sport utility vehicles), 216
Suzuki Motor Corporation, 224
Sweep performance testing, 128

TBI (throttle body injection) carburetors, 131–132, 133f, 135
TCS (transmission-controlled spark), 60f, 64, 88
Teague, D. Maxwell, 234
Thermal air cleaner (THERMAC), 60–61, 60f, 61f, 88
Thermal energy conservation, 150–154, 153f, 162f
Thermal energy profiles, 155
Thermal reactors, 66–68, 75, 79–81
Thermovacuum switch (TVS), 60f, 64, 88, 119f
Throttle body injection carburetors (TBI), 131–132, 133f, 135
Toyota Motor Corporation, 224–225
TPI (tuned-port injection), 135
Transition low emission vehicles (TLEV), 145, 146t, 147f, 175, 176f
Transmission-controlled spark (TCS), 60f, 64, 88
Trucks, 170
Tuesday, Charles, 232
Tuned-port injection (TPI), 135
TVS (thermovacuum switch), 60f, 64, 88, 119f
Ultra low emission vehicles (ULEV)
 1990 regulations, 145, 146t, 147f
 1998 regulations, 216, 216t
 active subsystems and, 167–169, 169f, 173f, 175, 176f
 converter position, 164
 Honda Motor Company, 215–216
Urban Airshed Model, 201–202
Urban areas, classifications, 17–19
U.S. Council for Automotive Research (USCAR), 206
US06 procedure, 217, 217f

Vacuum hose schematic, 117, 119f
Variable stroke, 223
Variable valve timing, 223
Velocity head, 182–183, 184f
Volatile organic compounds (VOCs)
 Clean Air Act, 18, 144
 reactivities, 10–11, 11t
 total emissions, 218, 219f, 220–221, 221f

Washcoats
 barium oxide and lanthanum oxide in, 100
 cerium oxide in, 98–99
 description of, 92, 95
 microscopic structure of, 107, 109, 111f
 sulfur dioxide and, 120
Washington, D.C., 18
Water gas shift reaction, 99
Weaver, Eugene, 234
Wood burning, 10

Zoelites, 166, 206–207, 208f
Zero emission vehicles (ZEV), 145, 146t, 147f
About the Author

J. Robert Mondt is a retired GM engineer with 43 years in the industry and 28 years experience designing, building, and testing exhaust systems for spark-ignition engines. He is recognized as an international authority on systems and hardware for controlling automobile exhaust emissions.

From 1988–1991, Mondt worked in the AC Rochester Division developing the metal-monolith catalytic converter. In 1990, he was awarded the Charles McCuen Special Achievement Award at the GM Research Laboratories for inventing and developing for production the “herringbone” corrugated geometry for heat exchangers and catalytic converters. From 1991–1996, he served as Staff Engineer, supervisor for the Exhaust Systems Technology and Consortia Management Group, Exhaust Subsystems Engineering, for Delphi Energy and Engine Management. He also was Exhaust Subsystems Coordinator for USCAR LEP Cold Start Emissions Team and Lean NOX CRADA.

From 1969–1976, Mondt was a member of the original “GM Catalyst Team,” joint with AC Spark Plug Division, and charged with developing a catalytic converter system to control emissions from spark-ignited piston engines. Prior to that he worked at GM Research, focusing on the application of thermodynamics, heat transfer, and fluid mechanics to research on advanced automotive powerplants including gas turbine, free pistons, hybrids, steam, and advanced gasoline and diesel. He was responsible for much basic research on gas turbine regenerator heat exchangers, and for the design and development of the steam generator for the GM Steam Car, circa 1970.

Mondt holds 15 patents, and has authored 20 publications, mostly through ASME, SAE, and AIChE, on heat transfer, heat exchangers, and emission control. He has made presentations throughout the world, including in
Cleaner Cars

Brazil, Italy, England, Germany, Luxembourg, and India, and has lectured at various universities, including Stanford, Michigan State, Colorado State, University of Wisconsin, and Rensselaer Polytechnic Institute.

Mondt is a member of ASME, SAE, the Combustion Institute, the Michigan Catalysis Society, and Sigma Xi. He has served on the ASME Gas Turbine Heat Transfer Committee, and is currently a member of the ASME ad hoc Committee on Heat Transfer Education. In 1967, ASME recognized the “Mondt number” as a new dimensionless parameter for correlating conduction loss in high-performance heat exchangers, especially gas turbine regenerators and Stirling engine regenerators.

Mondt is a member of the SAE Vehicular Heat Transfer Activity, and initiated the Vehicle Thermal Management Systems Conferences, a joint effort between SAE and IMechE, and chaired the technical program committee for the first meeting, VTMS1, in 1993. Mondt has also served as chairman or co-chair for VTMS2, VTMS3, and VTMS4. He also serves as chairman of the SAE Transactions Selection Committee for all SAE papers on exhaust emissions.

Mondt was born and raised on a ranch in Colorado. He graduated from the University of Denver in 1953 with a BSME and immediately began employment at General Motors Research Laboratories. From 1954–1956, he was on military leave from GM, serving as 1st Lt., Ordnance Corps. Mondt earned a GM Fellowship to Stanford University, and graduated with an MSME in 1957. Following this, he returned to GM Research.