INDEX

ABB, 266
ACC. See Advanced cruise control
Acceleration, fuel economy and, 112, 113
Accelerometer, 338, 419
Accessories, fuel economy and, 116–117
Accident-avoidance systems. See Collision avoidance
Accident statistics, 368, 369–372
automobile size and, 372–373
daytime and nighttime driving, 376–377
driver age and, 374–375
Japan, 378–380
rural driving, 376, 383
traffic fatalities, 370, 371
United States, 369, 372–378
urban driving, 376–377, 383–384
Accidents. See Collisions; Crash dynamics; Crash protection; Safety
Active collision avoidance. See Collision avoidance
Active lean control, 337–339
Active steering, 86
Active thermo-atmosphere combustion (ATAC), 161–162, 289
Actuators, intelligent vehicles, 414, 421, 423
Adaptive cruise control, 402
Adiabatic diesels, 136
Adsorbent storage, 193, 201, 205–208
Adsorption storage, of hydrogen, 214
Advanced cruise control (ACC), 424, 427
Advanced Vehicle Control Systems (AVCS), 401
lateral maneuvers, 417–419, 430–444
longitudinal maneuvers, 417, 418, 424–430
Aerodynamic drag, 112, 114, 118, 119, 122–124
sources of, 127
streamlining and, 124–127
three-wheel vehicles, 309
Aerodynamics, 122–133
drag, 122–127
frontal area, 131–132
Aerodynamics (continued)
induced drag, 127, 129
internal flow, 127, 131
parasitic drag, 127, 129–130
profile drag, 127–129
relative wind, 124
streamlining, 124–129
AFCs. See Alkaline fuel cells
Africa
 gross domestic product (GDP) growth in, 6
 natural gas reserves in, 195
 petroleum reserves of, 11
 urban population growth in, 24
AFS. See American Flywheel Systems
AFS Trinity Power Corp., 274
AGLAR. See Atlanta Gas Light Adsorbent Research group
Agricultural ethanol. See Bioethanol
AHS. See Automated Highway System
Air bags, 391–394, 395
Air belt, 390
Air conditioning, fuel economy and, 116, 117
Air-injection supercharging, 157
Air inlet, 131, 132
Air pollution
 auto emissions and, 28–29
 greenhouse gases and global warming, 29–32
Air resistance, 124. See also Drag
Air travel, share of transportation energy use, 17–19
Airbags, 391–394
Akroyd-Stuart, Herbert, 154
Albuquerque (NM), traffic congestion in, 20
Alcohol fuels, 180
Alkaline fuel cells (AFCs), 291
All-terrain vehicles, 164
Alternating current, controllers for, 244
Alternative fuels
 advantages and disadvantages of, 177–182
 electric power to replace oil, 217–219
 energy density of, 180
 ethanol, 178, 180–182
 flexible fuel vehicles (FFVs), 182, 186
 fuel cell, 180, 189–190, 216–217
hydrogen, 179, 180, 209, 211–217
hydrogen/methane blends, 209, 210
liquefied petroleum gases (LPGs), 180, 190–193
methanol, 177, 180, 181, 182–190
natural gas, 193–209
need for, 176, 219–220

Alternative vehicles, 38–41
for the 21st century, 38–105
battery-electric vehicles. See Battery-electric vehicles
commuter cars, 51, 53–56, 279, 380
corporate leadership and, 40–41
crash protection, 77
design. See Design
doors, 78, 79–82
electronic automobiles, 85–88
in Europe, 449–467
flexible fuel vehicles (FFVs), 182, 186
fuel-cell vehicles (FCVs), 224, 225
fuel economy. See Fuel economy
hybrid/electric vehicles. See Hybrid/electric vehicles
lower vehicle mass, 45–47
“man-wide vehicles” (MWVs), 58
marketing issues, 39, 40
materials for, 53, 84–85
microcars, 450–457
narrow-lane vehicles, 51, 56–58
new paradigm for, 32–34, 38–41, 66–67, 98–100
potential market for, 92–97
station cars, 101–103
sub-cars, 61–66
three-wheel vehicles. See Three-wheel vehicles
ultra-low-mass vehicles. See Ultra-low-mass (ULM) vehicles
urban cars, 51, 59–60
see also Personal mobility products

Alternator, power required for, 116, 117
Altra EV (Nissan), 96, 259, 276
Aluminum-air batteries, 252, 256–258, 267
American Flywheel Systems (AFS), 273–274
Anderson Development Co., 206
ANG. See Low-pressure adsorbent storage
Anisotropic flywheel, 272
APU. See Auxiliary power unit
Aqueous battery systems, 249
Argonne National Laboratory, lithium polymer battery, 259
Asia
 gross domestic product (GDP) growth in, 6
 industrialization of, 5, 6
 natural gas reserves, 195
 oil consumption of, 10
 traffic congestion in, 25
 urban population growth in, 24
ATAC. See Active thermo-atmosphere combustion
Athens, traffic congestion in, 25
Atkinson cycle engine, 295
Atlanta Gas Light Adsorbent Research group (AGLAR), 193
Atmosphere, greenhouse gases, 29–32
Aura Systems, 152–153
Australia/New Zealand, urban population growth in, 24
Automated Highway System (AHS), 401
Automatic-shift manual transmission, 297
Automatic transmission, 163
Automobile aerodynamics. See Aerodynamics
Automobile crash dynamics, 381–384
Automobile design. See Design
Automobile emissions. See Vehicle emissions
Automobile safety. See Safety
Automobile size. See Vehicle size
Automobiles
 aerodynamics, 122–133. See also Aerodynamics
 crash dynamics, 381–384
 curb weight of, 42
 design. See Design
 emissions. See Vehicle emissions
 energy efficiency, 33–34
 environmental issues, 28
 global warming and climate change, 29–32
 gross domestic product and automobile ownership, 16–17
 higher fuel costs, 26–28
 leasing of, 461
 load factor, 19, 42–47
 mass/size relationship of, 33, 42
 ownership of. See Vehicle ownership
 payload capacity, 42, 43
 safety. See Safety
 size of. See Vehicle size
smaller
 benefits of, 33
 reducing hardware overhead and load factors, 42–47
subliminal messages of, 97–98
as subsystem of total transportation system, 100–104
ultra-low-mass (ULM) vehicles compared to, 45–47
underutilization of, 43–45
urban traffic, 20–26
see also Alternative vehicles; see also under Vehicle
Autonomous (advanced) cruise control (ACC), 427
Auxiliary power unit (APU), 280, 282
AVCS. See Advanced Vehicle Control Systems
AVERE. See European Electric Road Vehicle Association
AX-21 carbon, 206, 210

Barker, Joel, 99
Barrier Crash Test, 383, 385, 394, 396
Batteries
 aluminum-air batteries, 252, 256–258, 267
 aqueous battery systems, 249
 for battery-electric vehicles (BEVs), 241–242, 248–271
 crash testing, 406
 flow-through battery, 253–255
 high-temperature battery systems, 249
 lead-acid batteries, 180, 225, 249, 251–256, 265, 276
 lithium ion batteries, 249, 252, 258–259
 lithium-iron disulfide batteries, 252, 258
 lithium-iron sulfide batteries, 258
 lithium-metal sulfide batteries, 249
 lithium polymer batteries, 249, 252, 259–260
 metal-air batteries, 256–258
 nickel-cadmium batteries, 252, 260–261, 278
 nickel-iron batteries, 252, 261–262
 nickel metal hydride batteries, 249, 252, 262–265
 nickel-zinc batteries, 252, 265–266
 requirements for performance of, 249, 250
 self-discharge of, 249, 253
 sodium-metal chloride batteries, 249
 sodium-sulfur batteries, 249, 252, 266–267
 vanadium redox flow battery, 267–268
 zinc-air batteries, 252, 267, 269–271
 zinc-bromine battery, 249, 252, 271
Battery-electric vehicles (BEVs), 59, 60, 95–97, 101, 224–280
advantages of, 225–226
batteries for, 241–242, 248–271
 aluminum-air batteries, 252, 256–258, 267
 lead-acid batteries, 180, 225, 249, 251–256, 265, 276
 lithium ion batteries, 249, 252, 258–259
 lithium-iron sulfide batteries, 252, 258
 lithium polymer batteries, 249, 252, 259–260
 nickel-cadmium batteries, 252, 260–261, 278
 nickel-iron batteries, 252, 261–262
 nickel-zinc batteries, 252, 265–266
 sodium-sulfur batteries, 249, 252, 266–267
 vanadium redox flow battery, 267–268
 zinc-air batteries, 252, 267, 269–271
 zinc-bromine battery, 249, 252, 271
controller, 242–244
conversion of fuel into power, 227–228
design, 225
disadvantages of, 226
electric motor, 238–242
energy consumption, 230–232
energy sources and consumption, 226–232
energy storage, 248–274
in Europe, 465
examples of
 EV-1, 62, 96, 121, 230, 231, 275, 276–277
 Hypermini (Nissan), 279–280
 Smart Car, 60, 71, 72, 279, 449
 TH!NK City, 59–60, 260, 278–279
integrated electronic controls, 247–248
kinetic energy storage, 271–274
mechanical overview of, 237–248
onboard energy flow, 233–237
purpose-built, 275–280
regenerative braking, 234–237
transmission, 237
vehicle downsizing and, 274–275
vehicle emissions, 232–233
Battery pack, for ac systems, 241–242
Belgium
car tax rates in, 462
diesel engine in, 156
vehicle leasing in, 461
Belt CVT, 163–164
Belt squeeze, 164, 246
Belted tire, 121
Berra, Yogi, 104
BEVs. See Battery-electric vehicles
Bias-ply tires, 120, 121
Bicycle Transportation Systems, Transglide 2000, 63–64, 65
Bicycles
 Charger electric-assist bicycle, 62–63
 electric commuter bicycles, 61–62
 as mode of transportation, 25
 Nexus human-assist vehicle, 61
 recumbent bicycles, 70–71
Bioethanol, 181–183
Bon Bug, 321
Boundary layer, 130
Brake horsepower, 135
Brake specific fuel consumption (bsfc) curve, 111
Braking, fuel economy and, 113
Brazil, ethanol as fuel in, 181
Bricklin, 79
Brinks Dynamics, 362
British Technology Group, 167
Bubble cars, 450
 Heinkel, 452, 454
 Isetta, 452–455, 457
Buses, share of transportation energy use, 17–19
Businesses, vehicle ownership by, 460–461
Butane, 180, 191, 192
Cabin width, 132–133
CAFE. See Corporate average fuel economy
Cagnard, George, 464
California, traffic congestion in, 20–21
California Partners for Advanced Transit and Highways (PATH), 415, 432
Calleja (vehicle), 349, 355–358
Calleja, Carlos, 356
Canada, urban population growth in, 24
Caravan Electric (Dodge), 230
Carbon, adsorbent storage of natural gas, 206
Carbon AX-21, 206, 210
Carbon dioxide emissions, 6, 292
 battery-electric vehicles and, 232
 greenhouse gases, 29–32
Carbon dioxide emissions (continued)
in various driving modes, 50
vehicle mass and, 49–50
Carbon-fiber composites, 53
Carbon monoxide emissions, 198
battery-electric vehicles and, 232
contribution to U.S. emissions, 29
in various driving modes, 50, 114
Carburetor, natural gas, 199, 200
Carey, Dave L., 53
Carpooling, 19
Cars. See Automobiles; Vehicle
Carver TTW (Vandenrink), 58, 349, 362–364
Cascade delivery, 203
Catalyst light-off time, 114, 115
Catalytic converter, series hybrid system, 284–285
Central America
oil consumption of, 10
petroleum reserves of, 11
urban population growth in, 24
Centurion (Quincy-Lynn), 78
Charge-air heaters, 115
Charge-depleting hybrid, 287
Charge-sustaining hybrid, 282
Charger electric-assist bicycle, 62–63
Chee, Wonshik, 432, 445
Chevrolet, S10 Electric, 230, 231, 276
Chicago (IL), population growth in, 21
Chloride Silent Power, 266
“Chopper” controller, 243
“Choppers,” 243
Chow, Jimmy, 84
Chrysler Corp.
 EPIC, 96, 265, 276
 ETV-1, 234, 235–237, 242
 natural gas and electric vehicle study, 198
 Patriot turbine-powered hybrid, 289, 290
 TEVan, 242, 260
CI engine. See Compression-ignition (CI) engine
Cities
controlling cars going into, 25–26
traffic congestion in, 20–26
Citroën 2CV, 457
City driving. See Urban cars; Urban driving cycle
Clamshell canopy design, 78, 79–82
Clemson variable camshaft, 150, 151
Closed-throttle deceleration, fuel economy and, 113
CNG. See Compressed natural gas
Coal
for electrical generation, 218
as source fuel for electrical power, 228
as source of world electric energy, 226
world energy use and, 13
Coastdown test, 119
Coates, George, 142–143, 145
Cocconi Engineering, EV1 motor, 242
Coefficient of drag (Cd), 125
Coefficient of rolling resistance, 120
Cold-running characteristics, urban driving cycle, 114
Cold-starting
fuel economy and, 114–115
methanol, 188
Collision avoidance, 404–405
intelligent safety systems, 395–396, 407
at intersections, 404–405
sensors for, 404
Collisions
accident statistics, 368, 369–372
airbags, 391–394
crash kinematics, 381–384
crash tests, 368, 383, 385, 394
deceleration, 384–387
head-on, 383, 384
intelligent safety systems, 395–396
platoon maneuvers, 429
restraint systems, 384–385, 388–394, 407
seat belts, 388–391
see also Crash protection
Colorado Springs (CO), traffic congestion in, 20
Commuter cars, 51, 53–56, 279, 380, 407, 465
Commuting
carpooling, 19
traffic congestion and, 20–23, 25
Compact car, electric vehicle performance, 285
Composite materials, 53
Composite V-belt type CVT, 164
Compound machine, 239, 240
Compressed natural gas (CNG), 193
 refueling station, 203, 204
 storage vessels, 201–203
Compression-ignition engine, 154, 199
Compression ratio, 146
Computers, advanced vehicle control system, 414, 417, 421–424
"Constant horsepower" machine, 238
Constant-volume process, internal combustion engine, 135
Continuously variable transmission (CVT), 163–169, 245
"Contract for hire," 461
Control algorithms, 422, 423, 431
Control systems
 Advanced Vehicle Control Systems (AVCS), 401, 417–444
 tilting three-wheelers (TTWs), 338
 see also Intelligent vehicles
Controller
 battery-electric vehicles (BEVs), 242–244
 visual guidance system, 438
Corbin Motors, Sparrow, 329, 330
Cornering, three-wheel vehicles, 310
Corporate average fuel economy (CAFE), 230
Corvette, 130
Counter-steering, motorcycles, 336–337
Crank angles, 148
Crash-avoidance systems. See Collision avoidance
Crash dynamics, 381–384
Crash protection, 77
 airbags, 391–394
 evaluation of, 383
 intelligent safety systems, 395–396
 restraint systems, 384–385, 388–394, 407
 seat belts, 388–391
Crash tests, 368, 383, 385, 394, 396–400
Cross, Rowland, rotary-valve design, 142
Cross Manufacturing Co., 142
Cruise control systems, 424, 427
Cruise operating mode, fuel economy and, 113
CRX (Honda), 269, 270
CVT. See Continuously variable transmission
Index 479

DAF Variomatic, 164
DaimlerChrysler
 Dodge ESX3, 301–302
 EcoStar, 278
 EPIC, 96, 276
 fuel cell vehicles, 293, 302, 304
 Jeep Willys, 86
 NECAR5, 302–304
 Smart Car, 60, 71, 72, 279, 449
DBW. See Drive-by-wire
dc motors. See Direct current motors
Deceleration
 collisions, 384–387
 fuel economy and, 113
Delorean, 79
Deluchi, Mark A., 228, 229, 233
DEMI. See Dreisbach Automotive, Inc.
Dendrites, Ni/Zn couple, 265
Design
 aerodynamics and, 122–133
 battery-electric vehicles, 225
 cabin width, 132–133
 clamshell canopy, 78, 79–82
 engine size, 113
 of engines, 134
 in Europe, 452, 457
 flexible/plastic body panels, 84–85
 flywheel, 272
 fuel economy and, 111–112
 gull-wing door, 78, 79, 80, 81, 82, 323
 ingress and egress, 78–83
 methanol as fuel, 187
 modular, 83–84
 occupant zone, 74–75
 power systems. See Power systems
 seating capacity, 94–95
 seating layout, 75–78
 three-wheel vehicles, 309–310, 311, 349
 variable valve actuation (VVA), 148–153
 vehicle height, 132
 vehicle theme, 72–74
Developed countries
 energy consumption in, 16–19
 gross domestic product (GDP) growth in, 6
 urban population growth in, 24
Developing countries
 gross domestic product (GDP) growth in, 6
 oil consumption of, 10
 urban population growth in, 24
DI engine. See Direct injection (DI) engine
Diesel, Rudolph, 154
Diesel engine, 137, 154–156, 298, 300
Diesel fuel, energy density of, 180
Direct current motors, 238, 241, 243
Direct injection (DI) engine, 154, 158–161, 300
Direct-methanol fuel cells (DMFCs), 291
Distance/fuel-consumed, 112
DMFCs. See Direct-methanol fuel cells
Dodge
 Caravan Electric, 230
 ESX2, 301
 ESX3, 301–302
 Intrepid ESX, 241, 301
Door design, 78–83
 clamshell canopy, 78, 79–82
 gull-wing door, 78, 79, 80, 81, 82, 323
Dormer, Pete, 73
Drag
 frontal area, 131–132
 induced drag, 129
 internal flow, 131
 parasitic drag, 129–130
 profile drag, 127–129
Drag profile, factors contributing to, 123
Draw-bar test, 119
Dreisbach Automotive, Inc. (DEMI), 269
Drive-by-wire (DBW), 414, 421
Driving cycle. See Highway driving; Urban driving cycle
Duo-Delta, 320
DVC. See Dynamic vehicle control
Dwell time, 148
Dynamic vehicle control (DVC), 58, 362–363
E301 (Esoro AG), 83
Eagle-Picher, 262

Economics
- diminishing petroleum resources, 7–13
- population growth and industrialization, 3–6
- population growth and urbanization, 24
- transportation energy use, 13–16

EcoStar, 278
ECU. See Electronic control unit
ECVT. See Electro continuously variable transmission
Edison, Thomas, 261
Edwards, Larry K., 91, 350
Ehrlich, Paul, 3, 4

Electric-assist bicycle, 62–63
Electric commuter bicycles, 61–62
Electric motor, battery-electric vehicles (BEVs), 238–242
Electric power, 217–219
Electric Test Vehicle (ETV-1), 234, 235–237, 242
Electric vehicles, 217–219, 224, 465
- advantages and disadvantages of, 179
- clamshell canopy, 79
- cost of running, 27–28
- crash testing, 406–407
- onboard energy flow, 233–237
- speed controllers, 243
- station cars, 101–103

see also Battery-electric vehicles; Hybrid/electric vehicles

Electrical energy, world sources of, 226–228
Electrical generating capacity, 227
Electrical system, idle shut-off systems, 113

Electricity
- cost of, 196
- sources of, 229

Electro continuously variable transmission (ECVT), 164, 167
Electrochimica Corp., 266
Electromagnetic valve actuator (EVA), 152
Electromagnetic valve lift, 152
Electronic automobiles, 85–88
Electronic control unit (ECU), 247
Electrosource, Inc., Horizon battery, 255–256
Elrod, Alvon C., 150
EM-1 (Subaru), 82
Energy consumption
 in developed countries, 16–19
 diminishing petroleum resources, 7–13
 electrical and conventional vehicle, comparison, 230
 growth of, 9
 total world consumption, 217–218
 transportation energy use, 13–16
 world oil gap, 7–8
Energy Conversion Devices, Inc., 263
Energy density, of alternative fuels, 180
Energy efficiency, 33–34
Energy flow, ETV-1, 235–237
Energy-production chains, 229
Energy recovery, regenerative braking, 234–237
Engine design, 134
Engine efficiency
 active thermo-atmosphere combustion (ATAC), 161–162
 diesel engine, 154–156
 homogeneous charge compression ignition (HCCI), 161
 low-heat-rejection engine, 158
 part-load fuel consumption, 137–140
 reciprocating internal combustion engine, 136–137
 rotary valves, 141–146
 supercharging, 139–140, 156–157
 two-stroke cycle engine, 158–161
 variable compression ratio, 146–148
 variable valve actuation (VVA), 148–153
Engine load, 137, 138
Engine size, 113
Engines
 active thermo-atmosphere combustion (ATAC), 161–162, 289
 Atkinson cycle engine, 295
 design of, 134
 diesel engine, 137, 154–156, 298, 300
 four-cylinder radial engine, 142
 homogeneous charge compression ignition (HCCI), 161, 289
 low-heat-rejection engine, 158
 methanol and engine wear, 188–189
 modeling and control of, 425
 rotary-valve designs, 141–146
 size of, 113
 supercharging, 139–140, 156–157
 thermal efficiency of, 134–135
transmission, 162–169
turbine engine, 289
two-cycle engine, 137
two-stroke cycle engine, 158–161
variable compression ratio, 146–148
variable valve actuation (VVA), 148–153
see also Internal combustion engine; Reciprocating internal combustion engine

Environmental issues

greenhouse gases, 29–32
vehicle emissions. See Vehicle emissions

Environmental Protection Agency (EPA), Urban Driving Cycle, 50
EP-X (Honda), 54, 55, 76
EPA. See Environmental Protection Agency
EPIC (Chrysler), 96, 265, 276
Epoxy/carbon-fiber skin, 53, 54
Esoro AG, E301, 83
Esso Research Co., 142
Estimated Ultimately Recoverable (EUR) deposits, 7
Ethanol, 178, 180–182
advantages and disadvantages of, 178, 181–182
Brazil, use of in, 181
cost of, 196
exhaust emissions comparison, 198
exhaust emissions from, 186, 198
properties of, 181

ETV-1. See Electric Test Vehicle

Europe
alternative cars in, 449–467
auto design in, 452, 457
battery-electric vehicles (BEVs) in, 465
diesel engine in, 155–156
gross domestic product (GDP) growth in, 6, 17
LPG motor fuel, 191
microcars in, 464–465
natural gas reserves, 195
oil consumption of, 10
petroleum reserves of, 11
rail travel in, 463–464
traffic congestion in, 23, 25
transit systems in, 462–464
transportation in, 459–462
travel, breakdown by mode of transportation in, 17
Europe (continued)
 urban population growth in, 24
 vehicle leasing in, 461
 vehicle ownership in, 17, 459–460
European Electric Road Vehicle Association (AVERE), 465
European Union, gross domestic product (GDP) growth in, 6
EV-1 (General Motors), 62, 96, 121, 230, 231, 275, 276–277
EV Plus (Honda), 96, 230, 276
EVA. See Electromagnetic valve actuator
Exhaust emissions. See Vehicle emissions
Exhaust turbocharger, 156, 157
Exterior color, fuel economy and, 116
Exxon Research & Engineering, 271

F300 Life Jet (Mercedes), 41, 76, 86, 89, 90, 133, 349, 352–354
Fan, power required for, 116, 117
Far East
 natural gas reserves, 195
 petroleum reserves of, 11
Fatalities. See Traffic fatalities
FCVs. See Fuel-cell vehicles
FFVs. See Flexible fuel vehicles
Fiat 500, 457
Fiat 600, 457
Five-point harness, 407
Fixed roll axis, 342
Flexible fuel vehicles (FFVs), 182, 186
Flexible/plastic body panels, 84–85
Flow-through battery, 253–255
Flywheels, 271–274, 288
Forces of acceleration, 382
Ford Motor Co., 467
 battery-electric vehicles, 275–276, 278–279
 clamshell canopy, 79
 continuously variable transmission, 166, 167
 EcoStar, 278
 electric car study, 96
 Model A, 126
 Mondeo, 297
 night vision icon projection system, 403
 Prodigy, 297–298
 Ranger EV, 96, 230, 231, 276
 sodium-sulfur batteries, 266
TH!NK City, 59–60, 260, 278–279
TH!NK Group, 59
TH!NK Neighborhood, 63
42-volt electrical system, 113–114
Fossil fuels, greenhouse gases and global warming, 29–32
Four-cylinder radial engine, 142
Four-pole motors, 241
France
 car tax rates in, 462
diesel engines in, 156
gasoline prices in, 28
miniature car sales, 457
rail transportation in, 463, 464
road and rail infrastructure in, 463
travel, breakdown by mode of transportation in, 17
vehicle ownership in, 17, 459, 462
Front-wheel-drive, three-wheel vehicles, 320, 324
Front-wheel-drive powertrain, 452
Frontal area, 131–132
FRP/urethane foam composite, 53
Fuel
 cost of, 219–220
 fossil fuels and greenhouse gases, 29–32
gasoline, 176
higher fuel costs, 26–28
see also Alternative fuels; Fuel consumption; Fuel economy
Fuel-cell vehicles (FCVs), 224, 225, 293
 NECAR5 (DaimlerChrysler), 302–304
 Precept (General Motors), 298
Fuel cells, 216–217
 alkaline fuel cells, 291
direct-methanol fuel cells (DMFCs), 291
 efficiency curve of, 292–293
 energy density of, 180
 hybrid/electric vehicles (HEVs), 289–293
 hydrogen in, 290–291
 methanol in, 189–190
 proton exchange membrane (PEM) fuel cells, 291
 solid oxide fuel cells, 291
 "throttling," 292–293
Fuel consumption
 factors affecting, 112
 minimum fuel consumption, 110
Fuel consumption (continued)
 transmission, 162–169
 vehicle emissions and, 50
 vehicle weight and, 137–138
Fuel economy, 107–172
 accessories and, 116–117
 active thermo-atmosphere combustion (ATAC), 161–162
 aerodynamics and, 122–133
 cold-running characteristics, 114
 diesel engine, 154–156
 engine load and, 137, 138
 exterior color and, 116
 fleet-average fuel economy, 230
 glazing and, 116
 homogeneous charge compression ignition (HCCI), 161
 idle shut-off systems, 113–114
 ingredients of, 110–122
 interior color and, 116
 of internal combustion engine, 109
 low-heat-rejection engine, 136, 158
 part-load fuel consumption, 137–140
 PNGV goal, 109
 powertrain, 134–169
 road load, 117–120
 rolling resistance and, 120–123
 rotary valves, 141–146
 supercharging, 139–140, 156–157
 tires and, 120–122, 123
 transmission, 162–169
 two-stroke cycle engine, 158–161
 units of, 112
 urban driving cycle patterns and, 112–116
 variable compression ratio, 146–148
 variable valve actuation (VVA), 148–153
 warm-up period, 114–115
Fuel injection systems, 201
Fuel metering, natural gas, 199–201
Fuel system
 liquefied petroleum gases (LPGs) and, 192–193
 methanol and, 189
Fuels. See Alternative fuels; Fuel
Garrison, William L., 33, 48

Gasoline, 176, 215
 from coal, 229
 cost of, 196
 energy density of, 180
 exhaust emissions comparison, 198
 higher fuel costs, 26–28
 from petroleum, 229
 properties of, 181
 rationing in Europe, 451
 "Geared neutral," 167, 169, 170

General Electric
 ETV-1, 234, 235–237, 242
 ETX-1, 242
 ETX-II, 242
 MEVP, 242

General Motors Corp., 467
 clamshell canopy, 79
 EV-1, 62, 96, 121, 230, 231, 275, 276–277
 Lean Machine, 48, 56–58, 71–72, 335, 349, 359–361
 nickel metal hydride batteries by, 263
 Precept concept car, 126, 129, 298–300
 S-10 electric vehicle, 96, 230, 231, 276
 Ultralite, 51–53, 79, 80, 84

General Motors Research Labs, air-injection supercharging, 157

Geo Metro, 230, 231

Germany
 car tax rates in, 462
 diesel engine in, 156
 fleet-average fuel economy, 230
 gasoline prices in, 28
 miniature car sales, 457
 rail transportation in, 463, 464
 road and rail infrastructure in, 463
 "scooter car," 450
 traffic congestion in, 23–24, 25, 26
 travel, breakdown by mode of transportation in, 17
 vehicle ownership in, 17, 459, 460, 462

Gizmo (Neighborhood Electric Vehicle Co.), 329–330

GK-0 microcar, 77

GK Industrial Design Associates, 1+1 microcar, 76–77
Glazing, fuel economy and, 116
Global warming, greenhouse gases and, 29–32
GM-Ovonic LLC, 263
Goch, Stephen, 394
Goodyear, low rolling-resistance tire, 121, 122
Gravity-Vacuum Transit System, 350
“Green” orientation, marketing, 98, 466
Greenhouse gases
 battery-electric vehicles (BEVs), 233
 and global warming, 29–32
Gridlock, 20
Gross domestic product (GDP)
 automobile ownership and, 16–17
 growth of, 5–6
Ground Hugger XR2, 71
Grove, William, 289
Gull-wing door, 78, 79, 80, 81, 82, 323
GV Engine Research PTY Ltd., 142
Gyllenhammer, Pehr, 23

Half-toroidal variator, 167, 168
“Hard shell” concept, 396–399
Harley-Davidson, 327, 409
HCCI. See Homogeneous charge compression ignition
Head-on collision, 383, 384
Heat battery, 116
Heat-energy work-equivalent, 135
Heat engine, 281
Hempshil, John, 94
HEVs. See Hybrid/electric vehicles
High-temperature battery systems, 249
Highway driving, time spent in various driving modes, 113
Holland
 car tax rates in, 462
 vehicle leasing in, 461
 vehicle ownership in, 460, 462
Homogeneous charge compression ignition (HCCI), 161, 289
Honda
 Civic CNG, 201, 202
 CRX, 269, 270
 EP-X, 54, 55, 76
EV Plus, 96, 230, 276
Insight, 139, 293–295
VTEC engines, 150
Honeycomb structure, 85
Horizon battery (Electrosource, Inc.), 255–256
Horlacher AG, 101, 396
Hubbert curve, 7
Hunter, Marcus, 141
Hybrid/electric vehicles (HEVs), 224, 280–304
configurations, 281–287
parallel hybrid, 281, 285–287
series hybrid, 282–285
split hybrid, 281, 287
energy storage systems for, 287–293
examples of
Dodge ESX3 (DaimlerChrysler), 301–302
Insight (Honda), 139, 293–295
NECAR5 (DaimlerChrysler), 302–304
Precept (General Motors), 126, 129, 298–300
Prius (Toyota), 295–296
Prodigy (Ford), 297–298
Town Car (Quincy-Lynn), 283
exhaust emissions, 291–292
fuel cells, 289–293
power system, 110
prime movers for, 288–289
ultracapacitors, 287–288
Hydride storage, of hydrogen, 214
Hydro-Quebec, lithium polymer battery, 259
Hydrocarbon emissions, 198
battery-electric vehicles and, 232
greenhouse gases and, 29, 31–32
in various driving modes, 50, 114
Hydroelectric power, world energy use and, 13
Hydrogen (as alternative fuel), 179, 209, 211–217
abundance of, 211
advantages and disadvantages of, 179
cost of, 196
energy density of, 180
in fuel cells, 290–291
internal combustion engine and, 216
Hydrogen (as alternative fuel) (continued)
 source of, 211
 storage technologies for, 214–216
 supply infrastructure and cost, 211–214
Hydrogen/methane blends, 209, 210
Hypermini (Nissan), 279–280

Ideker, Darrel, 262
IDI engine. See Indirect injection (IDI) engine
Idle, fuel economy and, 113
Idle shut-off systems, 113–114
IMA. See Integrated Motor Assist
Impact. See Crash dynamics; Safety
Indianapolis (IN), traffic congestion in, 20
Indirect injection (IDI) engine, 154
Induced drag, 129
Industrialization, population growth and, 3–6
Industrialized countries. See Developed countries
Inertial load, 112, 113, 114
Infinitely variable transmission (IVT), 169
Inflatable Tubular Torso Restraint, 390–391
Ingram, 335
Ingram Zero G, 349
Injuries and fatalities. See Traffic fatalities
Inline skates, 68
Insight (Honda), 139, 293–295
Integrated electronic controls, battery-electric vehicles (BEVs), 247–248
Integrated Motor Assist (IMA), 293
Intelligent communication systems, 414, 416
Intelligent infrastructure, 414, 415, 416
Intelligent safety systems, 395–396
Intelligent Transportation Systems (ITS), 401, 413–445
 advanced vehicle control systems (AVCS)
 lateral maneuvers, 417–419, 430–441
 longitudinal maneuvers, 417, 418, 424–430
 defined, 414
 future of, 444–445
 intelligent communication systems, 414, 416
 intelligent infrastructure, 414, 415, 416
 objectives of, 416
 see also Intelligent vehicles
Intelligent Vehicle and Highway System program (IVHS), 401
Intelligent vehicles, 414–415
 advanced vehicle control systems (AVCS), 417–444
 lateral maneuvers, 417–419, 430–441
 longitudinal maneuvers, 417, 418, 424–430
Inter-platoon distance, 428
Interior color, fuel economy and, 116
Internal combustion engine, 134
 constant-volume process, 135
 continuously variable transmission, 163
 fuel economy of, 109
 hydrogen as alternative fuel, 216
 liquefied petroleum gases (LPGs), compatibility with, 193
 methanol as fuel, 187
 transmission, 162–169
 Wright brothers, 134
Internal flow, 131
Intra-platoon distance, 428
Intrepid ESX (Dodge), 241
Ireland, car tax rates in, 462
Isetta, 452–455, 457
Italy
 car tax rates in, 462
 rail transportation in, 463, 464
 road and rail infrastructure in, 463
 travel, breakdown by mode of transportation in, 17
 vehicle ownership in, 17, 459, 462
ITS. See Intelligent Transportation Systems
IVHS. See Intelligent Vehicle and Highway System program
IVT. See Infinitely variable transmission
Jacobsen, Clayton, 69
Japan
 accident statistics, 378–380
 fleet-average fuel economy, 230
 gasoline prices in, 28
 gross domestic product (GDP) growth in, 6, 17
 hybrid/electric vehicles, 296
 Kei-car (K-car), 47, 323, 378–380
 rail transportation in, 463, 464
 road and rail infrastructure in, 463
 travel, breakdown by mode of transportation in, 17
 vehicle ownership in, 17, 459
J.D. Power and Associates, 94
Jeep Willys (DaimlerChrysler), 86
Jephcott, Dr., 361
“Jet Ski,” 69
Jo-Car (Subaru), 82
Johnson Controls, Inc., batteries, 254, 271
Jump seat, 77
Justy (Subaru), 164, 167

K-car (Kei-car), 47, 323, 378–380
Kalman filter, 422–423
Kawasaki
 “Jet Ski,” 69
 personal watercraft, 69
Kei-car (K-car), 47, 323, 378–380
Kinetic energy storage, battery-electric vehicles (BEVs), 271–274
Kirov Yanov, Antanas, 82–83
Korff, Walter, 131, 320

Laminar flow, drag and, 127
Lane-changing maneuvers, 418, 430, 439–444
Lane-following maneuvers, 417–419, 430, 435
Larsen, Gregory, 147
Latent heat storage, 115–116
Lateral accelerometer, 338, 441
Lateral maneuvers, advanced vehicle control systems (AVCS), 417–419, 430–444
Lead, contribution to U.S. emissions, 29
Lead-acid batteries, 225, 249, 251–256, 265, 276
 energy density of, 180
 properties of, 252
 sulfation in, 253
Lean angle, 334, 338
Lean-burn system, 188
Lean limit, 334, 338
Lean Machine (General Motors), 48, 56–58, 71–72, 335, 349, 359–361
Lear, William, 272
Leasing, of vehicles in Europe, 461
Lee, William, 34
Liability, three-wheel vehicles, 409–410
Life Jet F300 (Mercedes), 41, 76, 86, 89, 90, 133, 349, 352–354
Index 493

Liquefied natural gas (LNG), 193, 201, 204-205
Liquefied petroleum gases (LPGs), 190–193
 composition of, 191
 cost of, 196
 energy density of, 180
 exhaust emissions from, 191–192
 fuel system and, 192–193
 internal combustion engines, compatibility with, 193
 properties of, 191
 sources of, 190
Lithium ion batteries, 249, 252, 258–259
Lithium-iron disulfide batteries, 252, 258
Lithium-iron sulfide batteries, 258
Lithium-metal sulfide batteries, 249, 258
Lithium polymer batteries, 249, 252, 259–260
LNG. See Liquefied natural gas
Load factor, 19, 43
London, traffic congestion in, 20
Longitudinal maneuvers, advanced vehicle control systems (AVCS), 417, 418, 424–430
Look-ahead distance, 436, 438
Loop sensors, 415
Los Angeles (CA)
 population growth in, 21
 traffic congestion in, 20, 21, 26
 vehicle occupancy in, 45
Low-heat-rejection engine, 136, 158
Low-pressure adsorbent storage (ANG), 193, 201, 205–208
Low rolling-resistance tire (Goodyear), 121, 122
LPGs. See Liquefied petroleum gases
Lubricant, contamination with methanol, 188
Lubricated-steel-belt CVT, 166

MacCready, Paul, 97
Magnet method, position measurement with, 419
Magnetometers, 420, 432, 433
Malliaris, A.C., 372
“Man-wide vehicles” (MWVs), 58
Management layer, intelligent vehicles, 422, 423–424
Manual-shift transmission, 163
Marketing
 "green" orientation, 98, 466
 lifestyle marketing, 64–66
 microcars, 450, 457–459
Maruyama, Chiaki, 64
Mass transit, 19
Materials
 composites, 53
 flexible/plastic body panels, 84–85
 thermoplastic panels, 279
Maximum lean angle, 336
McClenahan, John, 48
McKee, Bob, 79, 325
Mechanical roll axis, 342, 363
Mechatronic systems, 414, 415, 417, 421
Mercedes
 300SL, 79
 Life Jet F300, 41, 76, 86, 89, 90, 133, 349, 352–354
 Smart Car, 60, 71, 72, 279, 449
Messerschmitt (vehicle), 455–457
Metal-air batteries, 256–258
Methane
 chemical composition of, 193, 194
 energy density of, 180
 greenhouse gases, 29, 198
 hydrogen/methane blends, 209, 210
Methanol, 182–190
 advantages and disadvantages of, 177, 183–184
 cold-starting, 188
 cost of, 196
 energy density of, 180
 environmental issues, 184–187
 exhaust emissions comparison, 198
 exhaust emissions from, 184–186, 198
 in fuel cells, 189–190
 increased engine wear with, 188–189
 internal combustion engine design and, 187
 lubricant contamination with, 188
 M85, 186, 187, 188
 M100, 186, 187
 materials compatibility, 189
 from natural gas, 184, 185
 NECAR5 (DaimlerChrysler), 302–304
properties of, 181
safety concerns with, 187
sources of, 184, 185
toxicity of, 187
MEVP (General Electric), 242
Micro (Jephcott), 349, 361–362
future of in Europe, 464–465
Heinkel, 452, 454
Isetta, 452–455, 457
marketing, 450, 457–459
Messerschmitt, 455–457
transmission, 164
Microprocessor technology, electronic vehicles, 85–88
Microvan, electric vehicle performance, 285
Middle East
gross domestic product (GDP) growth in, 6
natural gas reserves, 195
petroleum reserves of, 11
Midget cars, 47, 450. See also Microcars
Milan, traffic congestion in, 25
Mild hybrid ("mybrid") powertrain, 301
Millennium Tracer, 349, 354–355
Mini-boats, 69
Minivan, electric vehicle performance, 285
Model A Ford, 126
Modular design, 83–84
Molded foam/vinyl laminates, 85
Mondeo (Ford), 297
"Monohead," 147
Motor fuel LPG (HD5), 190–191
Motor Suite three-wheel sports cycle, 64
Motor vehicles. See Automobiles; see also under Vehicle
Motorcycles, 64, 66
counter-steering, 336–337
lean control in, 333
lean limit, 334
safety statistics, 369
three-wheel vehicles defined as, 309, 408
turn behavior of, 331
Motors
battery-electric vehicles (BEVs), 238–242, 245–247
as subsystem of transmission, 245–247
MTBE, 177
Munich, traffic congestion in, 23–24
MWVs. See “Man-wide vehicles”
Hybrid (mild hybrid) powertrain, 301

Nanofibers, 214
Nanotubes, 214, 215
Narrow-lane vehicles, 51, 56–58
National Station Car Association, 101, 102
Nationwide Personal Transportation Survey (NPTS), 43, 44, 92, 94
Natural gas, 193–209
adsorbent storage (ANG), 193, 201, 205–208
advantages and disadvantages of, 178
carburetor, 199, 200
compressed natural gas (CNG), 193, 201–203, 204
cost of, 195–196
for electrical generation, 218
ingine design and, 199
environmental issues, 197–199
exhaust emissions comparison, 198
exhaust emissions from, 197–198
fuel metering, 199–201
home refueling with, 208–209
liquefied natural gas (LNG), 193, 201, 204–205
methanol from, 184, 185
onboard storage of, 201
safety factors, 197
source and supply of, 194–199
as source fuel for electrical power, 228
as source of world electric energy, 226–228
world energy use and, 13
world reserves, 195
Natural gas vehicles (NGVs), 197
Navigation systems, 416
Near-vehicle surveillance systems, 402
NECAR5 (DaimlerChrysler), 302–304
Neighborhood Electric Vehicle Co., Gizmo, 329–330
Netherlands
car tax rates in, 462
vehicle leasing in, 461
vehicle ownership in, 460, 462
New York City, traffic congestion in, 25
Nexus human-assist vehicle, 61
NGVs. See Natural gas vehicles
Nickel-cadmium batteries, 252, 260–261, 278
Nickel-iron batteries, 252, 261–262
Nickel metal hydride batteries, 249, 252, 262–265
Nickel-zinc batteries, 252, 265–266
Night vision icon projection system (Ford), 403
NiMH batteries. See Nickel metal hydride batteries
Nissan
 Altra EV, 96, 259, 276
 driver fatigue monitoring system, 405
 Hypermini, 279–280
 "Z" car, 95
Nitrogen oxide emissions, 198
 battery-electric vehicles and, 232
 compression ratio and, 146
 contribution to U.S. emissions, 29
 in various driving modes, 50
Nitrous oxide, greenhouse gases, 29
No leaning wheel vehicles, 349
No tilting wheel vehicles, 334–335
Nonleaning rear wheels, tilting three-wheelers (TTWs), 342
Nontilting three-wheel vehicles, 321–330, 332
North America
 battery-electric car sales, 96
 oil consumption of, 10
 petroleum reserves of, 11
Norway
 Ford's TH!NK City, 59, 278
 travel, breakdown by mode of transportation in, 17
 vehicle ownership in, 17
NPTS. See Nationwide Personal Transportation Survey
Nuclear electricity, world energy use and, 13
Nuclear power, for electrical generation, 218

Oakes, Richard, 362
Occupant crash protection, 77, 384–396
Occupant zone, 74–75
Oceania
 natural gas reserves, 195
 urban population growth in, 24
Oil
 consumption figures, 9–10
 for electrical generation, 218
Oil (continued)
 Estimated Ultimately Recoverable (EUR) deposits, 7
 hidden costs in fuel prices, 27
 higher fuel costs, 26–28
 production of, 10–11
 U.S. import trends, 11–12
 world oil gap, 7–8
Oil production, world oil gap, 7–8
Oklahoma City (OK), traffic congestion in, 20
Onboard sensors, intelligent vehicles, 419, 441
“One plus one” seating concept, 76–78
One tilting wheel vehicles, 335
1+1 microcar, 76–77
Orski, Ken, 21, 33
OTA. See U.S. Office of Technology Assessment
Otto engine, 187. See also Internal combustion engine
Oversteer-understeer characteristics, three-wheel vehicles, 315
Ovonic Battery Co., nickel metal hydride batteries, 262

Pacejka formula, 425
Panasonic, batteries by, 263
Parallel hybrid/electric vehicle, 281, 285–287
Parasitic drag, 129–130
Paris, traffic congestion in, 25
Part-load fuel consumption, 137–140
Particulate matter
 battery-electric vehicles (BEVs), 233
 contribution to U.S. emissions, 29
Partnership for a New Generation of Vehicles (PNGV), 41, 109
PATH. See California Partners for Advanced Transit and Highways
Patriot turbine-powered hybrid (Chrysler), 289, 290
Payload capacity, 42, 43
PEM fuel cells. See Proton exchange membrane fuel cells
Performic acid, 189
Permanent magnet motors, 240–241
Personal mobility products
 bicycle-based, 25, 61–64, 70–71
 electric commuter bicycles, 61–63
 fuel economy. See Fuel economy
 inline skates, 68
 large-scale vehicles as outmoded concept, 104
 lifestyle marketing of, 64–66
 mini-boats, 69
motorcycles, 64, 66
new paradigm for, 32–34, 38–41, 66–67, 98–100
personal watercraft (PWC), 67–69
recumbent bicycles, 70–71
roller skates, 67
three-wheel vehicles. See Three-wheel vehicles
tilting three-wheelers (TTWs). See Tilting three-wheelers
see also Alternative vehicles

Personal transportation
energy use crisis, 1–19
environmental issues, 28–32
higher fuel costs, 26–28
inevitability of change, 23, 25–26
new paradigm for, 32–34, 38–41, 66–67, 98–100
urban traffic, 20–23, 24

Personal watercraft (PWC), 67–69

Petroleum
as source fuel for electrical power, 228
world energy use and, 13

Petroleum resources
diminishing, 7–13
reserves, 11

Phoenix (AZ), population growth in, 21

Pitch/lean coupling, three-wheel vehicles, 344–345, 347

Pitstick, Mark E., 33, 48

PIVCO, 60, 278

Plastic body panels, 84–85

Platoon, 417, 427–428

Platoon maneuvers, 416, 417, 425, 427–430

Pneumatic resilience, 120

PNGV. See Partnership for a New Generation of Vehicles

Polar mass, 312

Polar moment of inertia, 312

Poppet valves, 141

The Population Bomb (Ehrlich), 3–4

Population growth
global growth since 1000 A.D., 4
industrialization and, 3–6
traffic congestion and, 20–22
in urban areas, 21, 23, 24

Porsche 924, 126, 130
Porsche 968, 149

Positive displacement supercharger, 157
Power curve
 diesel engine, 155
 spark-ignition engine, 136

Power steering, power required for, 116, 117

Power systems
 battery-electric vehicles (BEVs), 238–242
 design, 109
 engine size and, 113
 hybrid/electric vehicles, 281
 mild hybrid ("mybrid") powertrain, 301
 see also Engines; Fuel economy; Transmission

Powered deceleration, fuel economy and, 113

Powertrain, 134–169

Precept (General Motors), 126, 129, 298–300

Preheaters, 115

Prime movers, 281, 288–289

Prius (Toyota), 295–296

Prodigy (Ford), 297–298

Product liability, three-wheel vehicles, 409–410

Profile drag, 127–129

Project 32 Slalom (Transit Innovations), 89, 91, 349–352

Propane, 180, 190, 191, 192

Proton exchange membrane (PEM) fuel cells, 291

Pulse-width modulator, 243

Pumping losses, 134–136

Purdue University, Mobility Enterprise studies, 44

PWC. See Personal watercraft

Quincy-Lynn Enterprises, Inc.
 battery-electric vehicles (BEVs), 246–247
 Centurion, 78
 composite materials, 53
 continuously variable transmission (CVT), 245
 safety systems, 400–401
 Town Car, 283
 Tri-Magnum, 78, 81, 315, 320, 327–329
 Trimuter, 78, 118, 119, 164, 315, 318
 Urbacar, 76, 164

Radar, intelligent vehicles, 420, 425–426

Radial tires, 120, 121

RAFs. See Reactivity adjustment factors
Rail travel
 in Europe, 463–464
 share of transportation energy use, 17–19
 in United Kingdom, 25
Ranger EV (Ford), 96, 230, 231, 276
RAV4-EV (Toyota), 96, 276
Reactivity adjustment factors (RAFs), 191–192
Rearview mirror, drag and, 129–130
Reciprocating internal combustion engine
 power and fuel efficiency characteristics of, 136–137
 thermal efficiency of, 134–135
Recumbent bicycles, 70–71
Reformulated gasoline, advantages and disadvantages of, 179
Regenerative braking, 234–237, 245
Rejected heat, 135, 140
Relative wind, 124
Reliant Robin, 89, 457, 458
Research octane number (RON), 193
Restraint systems, 384–385, 388–394
 air bags, 391–394, 395
 five-point harness, 407
 seat belts, 388–391
 side impact systems, 395
 three-point seat belt, 388–391
Reverse teardrop shape, 128
Ride-down space, 396
Rigid foams, 85
Ringdal, Jan Otto, 278
Road load
 components, 110–111
 defined, 110
 fuel economy and, 117–120
 steady-state road load, 118
Road load graphs, 117, 118–120
Robin (Reliant), 89, 457, 458
Rocking yoke actuator, 358
Roll acceleration, 338–339
Roll moment, 314
Roll-yaw coupling, 344–346
Roller skates, 67
Rolling resistance
 fuel economy and, 112, 113, 114, 118, 119, 120–123
 three-wheel vehicles, 309
Rolling resistance coefficient, 120
Rollover
 NHTSA standards, 407
 three-wheel vehicles, 308–309, 313–314, 341
Rollover threshold, 342–344, 347
RON. See Research octane number
Rotary-valve engines, 141
Rotary valves, 141–146
Rubia, Carlo, 27
Rumble seats, 77
Rural driving, accidents and, 376, 383–384

S-10 electric vehicle (General Motors), 96, 230, 231, 276
Saab
 active steering, 86, 88
 “monohead,” 147
 variable compression (SVC) engine, 147
Safety
 accident statistics, 368, 369–372
 advanced systems for, 400–405
 clamshell design, 82
 crash dynamics, 381–384
 crash management, 396–405
 crash protection, 77, 384–396
 gull-wing system, 82
 head-on collision, 383, 384
 improving, 400–405
 intelligent safety systems, 395–396
 Intelligent Transportation Systems (ITS), 401, 413–445
 Japanese accident statistics, 378–380
 new standards for, 405–410
 product liability, 409–410
 restraint systems, 384–385, 388–394, 407
 three-wheel vehicles, 408–410
 traffic fatalities, 370
 U.S. accident statistics, 372–378
 see also Collisions; Crash protection
Safety engineering, 372, 380–381, 400–410
SAFT, batteries by, 260–262
Salsbury torque-sensitive CVT, 165
San Francisco (CA), population growth in, 21
SBW. See Steer-by-wire
Schipper, Lee, 16, 17, 27
Scooter (VW), 79, 320
“Scooter car,” 450
Seat belts, 388–391
Seating capacity, 94–95
Seating layout, 75
 1+1 seating, 76–78
 side-by-seating, 133
 tandem seating, 76, 77, 79, 133, 320, 397
 three-place seating, 65
 two-place seating, 65
 vehicle height and, 132–133
Seattle (WA), population growth in, 21
Self-discharge, of batteries, 249, 253
Sensors
 for collision avoidance, 404
 intelligent vehicles, 419, 420, 423
Series hybrid/electric vehicle, 281, 282–285
Series machine, 238–239
Seymour/Powell, 61
Shunt machine, 239, 240
Side-by-side seating, 133, 320
Side impact systems, 395
Silicon controlled rectifier (SCR), 243
Simkowitz, Howard, 48
Single-rear-wheel (2F1R) layout, three-wheel vehicles, 314–315, 318–320, 348
Skates, inline, 67–69
Skin friction, 130–131
Sloan, Alfred, 467
Smart Car (Daimler Chrysler/Mercedes), 60, 71, 72, 279, 449
Snowmobiles, 164
Sobey, Al, 45
Sodium-metal chloride batteries, 249
Sodium-sulfur batteries, 249, 252, 266–267
Software, advanced vehicle control system, 414, 417, 421–424
Solid oxide fuel cells (SOFCs), 291
South America
 oil consumption of, 10
 petroleum reserves of, 11
 urban population growth in, 24
Spain, diesel engine in, 156
Spark-ignition engine, 136, 199
Sparrow, 378
Sparrow (Corbin), 329, 330
Speed controllers, 243
Sperling, Daniel, 229
Split hybrid/electric vehicle, 281, 287
Sport and recreation vehicle (SRV), 82
Sport utility vehicles (SUVs), 70–71
SRC. See Silicon controlled rectifier
SRV. See Sport and recreation vehicle
St. Paul/Minnesota (MN), traffic congestion in, 20
Starting systems, idle shut-off systems, 113–114
Station cars, 101–103
Steady-state cornering, three-wheel vehicles, 310
Steady-state road load, 118
Steel-belt CVT, 166
Steel wheel, 120
Steer-by-wire (SBW), 85, 86, 414, 421
Steering angle, 431
Stirling cycle liquefier, 205
STM5-200 EV, 260
Stollery, David, 325
String stability, 428, 429
Sub-cars, 61–66
Subaru
 EM-1, 82
 Jo-Car, 82
 Justy, 164, 167
Sulfation, in lead-acid batteries, 253
Sulfur dioxide, contribution to U.S. emissions, 29
Sulfur oxides, battery-electric vehicles (BEVs), 233
Supercharging, 139–140, 156–157
Suspension loading, tilting three-wheelers (TTWs), 340, 341
SUVs. See Sport utility vehicles
Sviden, Ove, 16
Sweden
 travel, breakdown by mode of transportation in, 17
 vehicle ownership in, 17, 460
System efficiency, 111

Tandem seating, 76, 77, 79, 133
 crash protection, 397
 three-wheel vehicles, 320
Tautfest, Peter, 26
Tax policies, car ownership and, 461
Teardrop shape, 124, 127
Telematics, 416
Tempest tilting three-wheel vehicle, 89, 91
TES system. See Thermal Energy Storage system
TEVan (Chrysler), 242, 260
Texas, traffic congestion in, 20
Thermal efficiency, of engines, 134–135
Thermal Energy Storage (TES) system, 206
Thermoplastic panels, 279
TH!NK City (Ford), 59–60, 260, 278–279
TH!NK Neighborhood (Ford), 63
Three-axis accelerometer chips, 419
Three-phase induction motor, 241
Three-place seating layout, 76
Three-point seat belt, 388–391
Three tilting wheel vehicles, 335
Three-wheel vehicles, 307–366
 advantages of, 309
 classification of, 309, 408
 design of, 309–310, 311, 349
 disadvantages of, 364–365
 examples of
 Bon Bug, 321
 Duo-Delta, 320
 Gizmo (Neighborhood Electric Vehicle Co.), 329–330
 Mercedes Life Jet F300, 41, 86, 89, 90, 133, 349, 352–354
 Messerschmitt, 455–457
 Motor Suite three-wheel sports cycle, 64
 Robin (Reliant), 89, 457, 458
 Sparrow (Corbin), 329, 330
 Tri-Magnum (Quincy-Lynn), 78, 81, 315, 320, 327–329
 Trihawk, 320, 325–326, 409
 Trimuter (Quincy-Lynn), 78, 118, 119, 164, 315, 318
 TurboPhantom, 320, 321–322, 323
 VW Scooter, 79, 320
front-wheel-drive, 320, 324
handling, 308–309, 310, 312–313
limitations of, 364–365
marketing of, 88–91
nontilting, 321–330, 332
overturn instability, 308–309
Three-wheel vehicles (continued)
 pitch/lean coupling, 344–345, 347
 product liability and, 409–410
 roll-yaw coupling, 344–346
 safety engineering, 408–410
 side-by-side seating, 320
 single-front-wheel (1F2R) layout, 314–318, 344, 350, 355
 single-rear-wheel (2F1R) layout, 314–315, 318–320, 348
 tilting three-wheelers (TTWs), 56, 89, 91, 316, 331–365
 300SL (Mercedes), 79
 3M Company, lithium polymer battery, 259, 260
 "Throttling," fuel cells, 292–293
Tilting three-wheelers (TTWs), 56, 316, 331–365
 active lean control, 337–339
 with all leaning wheels, 347–349
 classification of, 333–336
 dynamic behavior of, 336–337
 examples of
 Calleja, 349, 355–358
 Carver TTW (Vandenrink), 58, 349, 362–364
 F300 Life Jet (Mercedes), 41, 76, 86, 89, 90, 133, 349, 352–354
 Lean Machine (GM), 48, 56–58, 71–72, 335, 349, 359–361
 Micro (Jephcott), 349, 361–362
 Millenium Tracer, 349, 354–355
 Project 32 Slalom (Transit Innovations), 89, 91, 349–352
 Tempest, 89, 91
 XR3, 89, 336
 lean control in, 333–334
 no leaning wheels, 349
 nonleaning rear wheels, 342
 number of tilting wheels, 334–336
 suspension loading, 340, 341
 tires, 339–340
Tilting trains, 349
Tires
 fuel economy and, 120–122, 123
 tilting three-wheelers (TTWs), 339–340
Toroidal variator, 167, 168
Torotrak transmission, 167–169, 170, 171
Torque, 164
Total fuel consumed, 112
Town Car (Quincy-Lynn), 283

Toyota
- lean-burn system, 188
- Prius, 295–296
- RAV4-EV, 96, 276

Traction drive, 164, 167

Traffic accidents. See Accident statistics; Collisions; Crash dynamics; Crash protection; Safety

Traffic congestion, 20–26
- population growth and, 20–22
- traffic signals and, 22
- vehicle size, impact of on, 47–49

Traffic fatalities, 370, 371
- restraint systems, 384–385, 388–394
- United States, 372–378
 see also Accident statistics

Traffic management center, 415

Traffic signals, traffic congestion and, 22

Trains. See Rail travel

Transglide 2000 (Bicycle Transportation Systems), 63–64, 65

Transistor chopper, 243

Transit Innovations, Project 32 Slalom, 89, 91, 349–352

Transit systems, in Europe, 462–464

Transmission, 162–169
- automatic-shift manual transmission, 297
- automatic transmission, 163
- battery-electric vehicles (BEVs), 237
- continuously variable transmission (CVT), 163–169, 245
- manual transmission, 163

Transmission efficiency, 164, 165

Transmission shift schedule, 111

Transportation
- auto emissions and global warming, 29–32
- cars as subsystem of total transportation system, 100–104
- environmental issues, 28
- in Europe, 459–465
- global warming and climate change, 29–32
- higher fuel costs, 26–28
- large-scale vehicles as outmoded concept, 104
- travel, breakdown by mode of transportation, 17–19
- urban traffic, 20–26
- vehicle occupancy rates, 43–45
Transportation energy use, 13–16
 in developed countries, 16–19
 minimum fuel consumption, 110
 overweight and oversize cars, 45
 travel, breakdown by mode of transportation, 17–19
 underutilization of vehicles, 43–45
 U.S. energy consumption, by method of transportation, 14
 world total energy use, by source, 13–16
Trapezoidal acceleration profile, 440
Tri-Magnum (Quincy-Lynn), 78, 81, 315, 320, 327–329
Trihawk, 320, 325–326, 409
Trimuter (Quincy-Lynn), 78, 118, 119, 164, 315, 318
Trinity Flywheel Power, 274
Tripping, 314
TTWs. See Tilting three-wheelers
Turbine engine, hybrid/electric vehicles, 289
Turbocharger, 156, 157
TurboPhantom, 320, 321–322, 323
12-volt electrical system, 113–114
Two-cycle engine, 137
Two-place seating layout, 76
Two-pole motors, 241
Two-stroke cycle engine, 158–161
Two tilting wheel vehicles, 335
Ultra-low-mass (ULM) vehicles, 51–66, 171
 aesthetic appeal, 73
 battery-electric vehicles. See Battery-electric vehicles
 crash management strategies for, 396–405
 commuter cars, 51, 53–56, 279, 380
 compared with conventional auto, 45–47
 design
 flexible/plastic body panels, 84–85
 ingress and egress, 78–83
 modular design, 83–84
 occupant zone, 74–75
 seating layout, 75–78
 vehicle theme, 72–74
 energy consumption, 230
 in Europe, 450–467
 “man-wide vehicles” (MWVs), 58
 market in Europe, 450–467
 narrow-lane vehicles, 51, 56–58
plastic components, 84–85
potential market for, 92–94
road load graph, 118, 119
safety, 368–410
station cars, 101–103
sub-cars, 61–66
urban cars, 51, 59–60
vehicle emissions. See Vehicle emissions
Ultracapacitors, 287–288
Ultralite (General Motors), 51–53, 79, 80, 84
Understeering, three-wheel vehicles, 315
Unified lateral control system, 442
United Kingdom
 bubble car, 450
car tax rates in, 462
diesel engine in, 156
fleet-average fuel economy, 230
gasoline prices in, 28
LPG motor fuel, 191
rail transportation in, 463, 464
Reliant Robin, 89, 457, 458
road and rail infrastructure in, 463
traffic congestion in, 25
travel, breakdown by mode of transportation in, 17
vehicle leasing in, 461
vehicle ownership in, 17, 459, 460–462
United Nations Fund for Population Activities (UNFPA), 15
United States
 accident statistics, 369, 372–378
 air pollution in, 29
curb weight of vehicles, 42–43
fleet-average fuel economy, 230
gasoline prices in, 28
hybrid/electric vehicles, 296
LPG vehicles in, 190
natural gas reserves, 195
natural gas vehicles in, 193, 197
oil import trends, 11–12
oil production in, 11
passenger car population, 15
population growth and traffic congestion in, 21
rail transportation in, 463, 464
road and rail infrastructure in, 463
United States (continued)
traffic congestion in, 20–23
transportation energy use, 13, 14
travel, breakdown by mode of transportation in, 17
urban population growth in, 24
vehicle miles traveled, 92, 93
vehicle occupancy rates, 43–45, 459
vehicle ownership in, 17, 459
University of New South Wales, 267
Urbacar (Quincy-Lynn), 76, 164
Urban driving, accident statistics, 376–377
Urban driving cycle, 50
cold-running characteristics, 114
ETV-1, 236
fuel economy and, 112–116
idle shut-off systems, 113–114
warm-up period, 114
Urban traffic, 20–26
auto emissions and global warming, 29–32
driving modes and, 50, 112–116
EPA's Urban Driving Cycle, 50
vehicle size, impact of on, 48–49
U.S. Advanced Battery Consortium (USABC), 248, 250
U.S. Office of Technology Assessment (OTA), 13, 181–182, 381

Value-added tax (VAT), car ownership and, 461
Van Doorne, 164, 166
Van Valkenburg, Dr. Paul, 310
Vanadium redox flow battery, 267–268
Vandenrink, Carver TTW, 58, 349, 362–364
Variable cam phasing (VCP) system, 149
Variable compression ratio, 146–148
Variable timing camshaft system, 150
Variable valve actuation (VVA), 148–153
Variator, 166
VARTA, batteries by, 263
VCP system. See Variable cam phasing (VCP) system
Vehicle aerodynamics. See Aerodynamics
Vehicle design. See Design
Vehicle downsizing, 171
battery-electric vehicles (BEVs), 274–275
Vehicle electronics, 85–88
Vehicle emissions, 28–29
 battery-electric vehicles (BEVs), 232–233
 compression ratio and, 146
 diesel engine and, 154–155
 ethanol as fuel, 186, 198
 fuel consumption and, 50
 global warming and, 29–32
 hybrid/electric vehicles, 291–292
 hydrogen/methane blends, 209
 from liquefied petroleum gases (LPGs), 191–192
 methanol as fuel, 184–186, 198
 from natural gas, 197–198
 in various driving modes, 50, 114–115
 vehicle mass, impact of on, 49–50
Vehicle heat gain, 116
Vehicle height, 132
Vehicle leasing, in Europe, 461
Vehicle mass, impact of on emissions, 49–50
Vehicle-miles traveled (vmt), 92, 93
Vehicle occupancy rates, United States, 43–45
Vehicle ownership, 23
 by businesses, 460–461
 in Europe, 451, 457–458, 459–460
 gross domestic product and auto ownership, 16–17
 tax policies and, 461
 use trends and, 92
 world motor vehicle population, 15
Vehicle safety. See Safety
Vehicle size
 downsizing, 171
 fatality risk and, 372–373
 impact on of traffic congestion, 47–49
 mass/size relationship, 33, 42, 45
Vehicle theme, 72–74
Vehicle underutilization, 45
Vehicle weight, fuel consumption and, 137–138
Video camera method, intelligent vehicles, 419, 420, 435, 439–440
“Virtual” wheel, 340, 341
Visual guidance system, 420–421, 438
vmt. See Vehicle-miles traveled
Volatile organic compounds, contribution to U.S. emissions, 29
Volkswagen
 Scooter, 79, 320
 VCR engine, 146–147
VTEC engines, 150
VVA. See Variable valve actuation
VW Scooter, 79, 320

Wang, Quanlu, 228, 229
Wasielewski, Paul, 48, 374, 375
Water pump, power required for, 116, 117
Watercraft. See Personal watercraft
Wave local area network (LAN) antenna, 421
West Germany
 rail and road transportation, 464
 travel, breakdown by mode of transportation in, 17
 vehicle ownership in, 17, 460
Wide-open throttle (WOT), power and fuel consumption at, 137
Will, Ron, 320, 321
Williams, A.F., 191
Williams, Jerry, 72, 361
Windows
 aerodynamic drag of, 127
 fuel economy and, 116
Windshield wipers, drag and, 130
Wipers, drag and, 130
WOT. See Wide-open throttle
Wright brothers, combustion engine and, 134

XR3 tilting three-wheel vehicle, 89, 336
XRS (Ground Hugger), 71

Yanov, Antanas Kirov, 82–83
Yaw-rate sensor, 419, 441
Yaw-rate-tracking controller, 442
Yaw response time, 310

“Z” car (Nissan), 95
Zinc-air batteries, 252, 267, 269–271
Zinc-bromine batteries, 249, 252, 271
Zytek Electric Vehicles, Ltd., 240–241
Robert Q. Riley is an industrial designer and a mechanical engineer with design and engineering successes in a wide range of product categories. His automotive experience includes vehicle styling, layout, packaging, and powertrain design, focusing on low-energy-demand passenger cars. He is widely recognized for designing high-performance three-wheel road vehicles, electric and hybrid cars, and fuel-efficient internal combustion engine (ICE) automobiles of up to 128-mpg fuel economy. Nonautomotive designs range from high-performance watercraft and hovercraft to fitness equipment and medical products.

He is also known as the “Father of the Modern Bent” for his pioneering work in modern recumbent bicycle design. He recently set new standards of excellence in recumbent design with the release of his Ground Hugger XR2 carbon fiber machine. A solar-assist version of the Ground Hugger XR2 took first place in Category B (unfaired recumbents) in the 2001 Australian World Solar Cycle Challenge.

Mr. Riley consults on new product design and product strategies. He promotes environmentally friendly technologies and writes and speaks on the subject of alternative automobile design. He has led conference workshops and speaks at industry, scientific, and academic events. He consulted on the Different Roads automobile exhibit at New York's Museum of Modern Art, and he was the lead speaker at the museum's daylong symposium on the future of the automobile. He was one of two U.S. technical consultants selected by Delcan Corporation to contribute to Transport Canada's Sustainable Transportation Technology Forecast.

Mr. Riley is a member of the Society of Automotive Engineers, the Industrial Designers Society of America, the Intelligent Transportation Society—Arizona, and the Marine Technology Society. His website is located at www.rqriley.com.