Index

Abe, M., 385-386
Allison, J.A., 237-238
Aluminum/aluminum alloys
 biaxial Mode I crack growth (types 2024, 7075), 237-238
 Mode II growth rates (7075-T6), 244-245
 nonproportional hardening factors (type 6061), 290, 292
Anticlastic bending
 in multiaxial testing, 107-109
Applications, multiaxial fatigue theory
 introduction to, 411-412
 automobile crankshaft, high-cycle fatigue of, 427-432
 handlebar system, bicycle, 432-438
 heavy-duty axle housing, 438-444
 summary discussion of, 444-445
 See also Multiaxial loading
\sqrt{Area}
 distribution of pore size in flawed cast drum, 403-405
 and fatigue limit stress (tension/torsion), 407
 as measure of flaw size, 380-384
ASME Boiler and Pressure Vessel Code
 numerical example, typical, 312
 problems with ASME methodology, 313
 strain-based method, strain components in, 311-312
 stress-based method, computational steps in, 310-311
 stress-strain range extremes, use of, 312
Automobile crankshaft, fatigue assessment of, 427-430
Awaji, H., 122
Axial fatigue See Fatigue
Axle housing, heavy-duty, 438-444
Multiaxial Fatigue

Bannantine, J.A., 58
 cycle counting and strain range identification, 315
 failure planes (variable amplitude multiaxial loading), 303-304
 load history (variable amplitude multiaxial loading), 301-303
 tensile and shear hysteresis loops (nonproportional multiaxial loading), 301-303

Barkey, M.E., 372-375

Barthelemy, B.M., 252, 253, 270

Bending
 anticlastic (in multiaxial testing), 107-109
 bending moments (notched shafts, nonproportional loading), 352-354
 fatigue in combined torsion-bending stress (Gough), 129-131, 132-134
 fatigue in combined torsion-bending stress (Sines), 134-138
 fatigue strength ratios (bending to torsion), 133
 mean bending stress vs. hydrostatic/normal stress (Sines), 150
 mean stress in cyclic torsion with static bending (shaft), 419-421
 multiaxial pressure with cyclic bending (pipe), 420-421
 notched shafts in combined tension/bending (Gough), 356-357
 reverse bending fatigue and static torsion, 135-136
 stress concentrations in bending, torsion (notched shafts), 342-343, 344
See also High-cycle fatigue models; Testing, multiaxial

Bentham, J.P., 257

Biaxial loading
 biaxial strain ratio vs. fatigue life (shear damage parameter), 418
 biaxial strain ratio vs. fatigue life (SWT damage parameter), 416-417
 biaxial tensile loading, proportionality of, 280-281
 equi-biaxial tension loading, stress/strain relationships for, 15-16
 Mohr’s circle representation of, 15
 stress/strain response (fixed principal axes), 421, 422
 tensile crack loading, stress field for, 233-235
 in tension/tension-torsion, 277-288
See also Biaxial strain ratio; Multiaxial loading

Biaxial strain ratio
 causing errors in visualizing nonproportionality, 423
 vs. fatigue life (shear damage parameter), 418
 vs. fatigue life (SWT damage parameter), 416-417

Biaxial stress factor
 and cracks emanating from a hole, 379-380

Biaxial stress ratio
 elastic shear stress contours (plastic zone size, Mode I), 235
 in-plane biaxial crack loading (Mode I, Mode II, and mixed-mode), 233-235
 Mode I crack growth (Brown-Miller), 235, 237
 stress, strain concentration factors as functions of, 425-426
Boehler, J.P., 113
Bonnen, J.F., 195-196, 201, 228-229
Brose, W.R., 361-364
Brown, M.W.
 biaxial stress and Mode I crack growth, 237
 Case A/Case B fatigue cracks, 183-184
 constant life curves (on \(\Gamma \) plane), 182-183
 critical plane model, 182-186, 317-318, 330-333
 cycle counting and relative equivalent strain, 304-310
 damage parameters/fatigue life (four strain paths), 333
 low-cycle fatigue models, 182-186, 199
 nonproportionality rotation factor (F), 288-289
 normal strain coefficient (S), 184-186, 199, 201, 210-211
 normal strain vs. fatigue life (critical plane model), 182, 199
 stress ratio and mixed-mode loading thresholds (316 stainless), 247-248
 stress-based model, summary of (Case A cracks), 227
Buczynski, A., 368-370

Cailletaud, G.
 damage in multiaxial low-cycle fatigue, 323
 multiaxial damage model D(\(\theta \)), 324-325
Case A/Case B fatigue cracks
 aspect ratios of, 98
 Brown-Miller analysis of, 183-184, 227
 growth of, 82
 See also Crack nucleation/growth
Casting flaws, notched drum, 403-405
Chambers, A.C., 123
Chu, C.-C.
 anisotropic hardening model, 58
 critical plane model (maximum damage parameter), 317-318
 fatigue damage assessment (critical plane parameters), 316
 fatigue life using maximum stress, 223, 224
 multiaxial stress-strain model (fatigue life), 195-196, 201, 228-229
 Neuber’s rule approximate solution, 370-372
Coffin and Manson
 plastic strain vs. fatigue life, low-cycle, 171
Complementary strain energy, 43
Compression loading
 cyclic torsion with static tension/compression, 136-137
Compression loading (continued)
 static, effect on material failure in shear/tension, 205, 206, 208
 static compression with static hoop tension, 207
Conle, F.A., 195-196, 201, 228-229
Constant life curves
 on Γ plane (Brown-Miller), 182-183
Contact stress
 discussion and examples of, 412-414
Coordinate systems
 principal stresses/principal axes, 8-9
 three-dimensional stress, 6-7, 31-32
 two-dimensional stress, 3-4
Crack closure
 cyclic plastic zone, 84
 loading/unloading, stress fields in, 84
 mean stress, effect of (Mode I and Mode II loading), 203-204
 mechanisms of, 86
 in Mode II loading, 90
 monotonic plastic zone, 84
 oxide-induced closure, 86
 plasticity-induced closure, 86
 residual compressive stresses in, 85, 86
 roughness-induced closure, 86
 in test specimen (Sehitoglu), 85
See also Crack nucleation/growth
Crack nucleation/growth
 aluminum, small crack growth in, 88, 89
 √area as measure of flaw size, 380-385
 Case A/Case B fatigue cracks (Brown-Miller), 183-184
 in case-hardened shafts, 412, 413
 crack alignment (biaxial loading, Mode I, Mode II), 235
 crack face rubbing (Mode II growth), 90
 crack growth analysis, notched shaft (tension-torsion loading), 397-402, 403
 crack growth direction (mixed-mode loading), 245-246
 crack growth modes (mixed-mode loading), 246-247
 crack orientation at 25% and 90% of fatigue life (1045 steel), 323-324
 crack sliding mechanisms, friction/rubbing in, 240-241
 cracking behavior (1045 steel), 94-97
 cracks emanating from a hole, 379-380
 critical resolved shear stress, plastic deformation at, 79
 and cyclic plasticity energy analysis (Morrow, Feltner, Halford), 174-176
 and fatigue model selection, 411-412
Crack nucleation/growth (continued)
growth processes, Stage I and Stage II, 81-82, 98
growth rate and crack length (Mode III), 244
growth rate models, mixed-mode: equivalent strain intensity models, 252-255
growth rate models, mixed-mode: strain energy density models, 250-252
growth rate models, mixed-mode: stress intensity models, 249-250
growth rates, Mode II (SNCM 8 steel, 7075-T6 aluminum), 244-245
growth rates in torsion, 241-245
growth thresholds, typical data for, 88, 90
growth/closure: small vs. long cracks, 87-88, 90
inclusions, stress concentration at, 80
influence of mean stress on, 187-188
in-plane shear loads (torsion, Mode II), 80-81
J-integral analysis of, 255-256
large cracks—growth in tension, 416
load history, effect of (Socie-Shield), 187-188
Mode I growth (biaxial loading), 236-238
Mode I microcrack growth (SWT model), 200
Mode I vs. Mode II crack growth, 269
in notched drum with casting flaws, 403-405
opening loads (tension, Mode I), 80-81
out-of-plane shear loads (torsion, Mode III), 80-81
perpendicularity to applied stress, 83
in polycrystalline metals, 79
residual stresses, effect of, 84
saddle joint analysis, 262-265
shear band model, 83
shear crack growth rate (mixed-mode, 1045 steel), 253-254
shear cracks, Case A/Case B, 82, 98
shear mechanisms—Mode II growth, 90-91
short cracks, propagation of, 265-267
slip band formation (extrusion/intrusion), 79-80
slip bands, nucleation of, 78-79
small cracks, nucleation and growth of, 87-90, 98
strain energy density factor and angled crack growth, 250-252, 253, 270
stress intensity factors, surface crack analyses using, 258-262
summary discussion of, 98
surface striations, formation of, 83-84
tensile mechanisms—Mode I growth, 82-84
in tension/torsion overload, 241-243
in torsion, example of (at 20% of fatigue life), 385-386
in torsion loading (notched shaft), 357-358
Crack nucleation/growth (continued)
in torsion (thumbnail crack, Mode II and Mode III growth), 238
See also Crack closure; Critical plane models; Damage maps; Failure; Fatigue; Fractures

Crack tip displacement
 equivalent stress intensity (Tanaka), 249, 270-271
 in saddle joint analysis, 263

Critical plane models
 introduction to, 181
 critical plane, defined, 138
 critical plane, Findley analyses of, 138-141
 critical plane damage parameters (typical), 24
 critical plane definition *vis-à-vis* maximum damage, 316-317
 growth of Mode I microcracks in (SWT model), 200
 maximum damage parameter (various models), 317-318, 330-333
 mean stress analysis (Fatemi-Socie), 186-190, 199-200
 mean stress effects, modeling of, 202-209
 normal strain *vs.* fatigue life (Brown-Miller), 182, 199
 SWT parameter for (Smith-Watson-Topper), 189-190
See also Critical plane/energy models (combined); Damage models; Energy models

Critical plane/energy models (combined)
 elastic/plastic strain energies (Liu), 192
 multiaxial stress-strain model (Chu, Conle, Bonnen), 195-196, 201
 strain intensity factors (Mode I, Mode II), 190-191
See also Critical plane models; Damage models; Energy models

Cycle counting
 in critical plane damage models, 335
 cycle identification (Wang-Brown), 315
 and relative equivalent strain (nonproportional loading, Wang-Brown), 304-310
 and shear strain (proportional loading, 30° plane), 314
 strain ranges identified by (Wang-Brown, Bannantine-Socie), 315

Cyclic deformation
 introduction to, 44
 cyclical creep (ratcheting), 48-49
 cyclical stability, materials reaching, 48
 isotropic hardening in, 45-46, 48
 kinematic hardening in, 46-48
 major components of, 73-74
 mean stress relaxation in, 49-50
 model for, 73
 nonproportional cyclic hardening, 50-53
 proportional/nonproportional loading in, 73
Cyclic deformation (continued)
See also Fatigue; Hardening; Plastic deformation/plasticity
Cyclic strength coefficient (K), 52-53, 293

Damage, fatigue See Applications, multiaxial fatigue theory; Crack nucleation/growth;
Critical plane models; Damage maps; Damage models; Fatigue; Fatigue life;
High-cycle fatigue models

Damage maps
introduction to, 92, 98
AISI 304 stainless steel, 92-94
crack growth modes (mixed-mode loading), 246-247
cracking behavior, categories of, 92
failure mechanisms, 97
Inconel 718, 94, 95
long lives, crack nucleation in, 97
microcracks, linking of, 97
SAE 1045 steel, 94-97
See also Damage models

Damage models
Brown-Miller (See Brown, M.W.)
critical plane, cycle counting in, 335
cyclic plasticity, typical parameters compared, 198
damage accumulation model (1045 steel), 321-323
damage parameters, calculation of (four strain paths), 330-333
Dang Van (See Dang Van, K.)
effective stress/strain models and nonproportional loading, 335
Fatemi-Socie (See Fatemi, A.; Socie, D.F.)
fatigue damage distribution (in-phase/out-of-phase, 1045 steel), 316-317
formulation in terms of maximum damage plane, 335
maximum damage models, various (nonproportional loading), 330
multiaxial damage model (Robillard-Cailletaud), 323-325
in proportional vs. nonproportional loading (discussion), 316
Smith-Watson-Topper (See Smith, R.N.)
strain-based, summary of, 226-229
See also Critical plane models; Critical plane/energy models (combined); Damage
maps; Energy models; Fatigue; Variable amplitude multiaxial loading

Dang Van, K.
elastic shakedown under multiaxial loading, 144-145
fatigue limit criteria, Papadopoulos modification to, 298-299
fatigue limit criterion (critical volume microstress), 143, 145-146

453
Dang Van, K. (continued)
High-cycle fatigue model microstress criterion, 143-146, 158-161
macroscopic/microscopic scales, 143-144
nonproportional loading, shaft numerical examples, 164-166
nonproportional loading and Dang Van criteria, 297-298
proportional loading damage criterion (fuel injector numerical example), 158-161
shear and hydrostatic stresses, importance of, 299
Tresca criterion and microscopic shear stress (Dang Van), 145
Davis, D.C., 107
de Villiers, J.W.R., 111
Deformation, axial
with applied torsional loading, 56
Deformation, plastic See Plastic deformation
Demmerle, S., 113
Deviatoric (π) plane, 41-42
Deviatoric stress, 20-21
Distortion criterion (von Mises) See von Mises distortion energy criterion
Dittmer, D.F., 237-238
Dowling, N.E., 361-364
Downing, S.D, 103
Drucker, D.C.
normality postulate, 54
Ductility
axial fatigue ductility/shear fatigue ductility, 172
Iosipescu specimen (ductile shear test), 123

Effective strain
in energy and critical plane models, 198-201
Eftis, J., 235-236
Elastic shakedown (Dang Van), 144-145
Elasticity
complementary strain energy, 43
elasticity tensor, 39-40
plastic work, defining expression for, 43
strain energy, 42-43
stress/elastic strain relationships, 37
stress/strain elasticity matrix, 35-37
Yield surfaces (octahedral π-plane), 42-43
Yield surfaces (plane stress), 40-41
See also Cyclic deformation
Ellyin, F.
 elastic work and fatigue life, 217-218
 elastic work model, summary of, 227
Ellyin model, nondirectionality of, 204
plastic/elastic strain analysis, 178-181
triaxiality factor, 199
Endo, T.
damage accumulation model (nonproportional loading, 1045 steel), 322-323
effects of small defects on fatigue strength, 380-385
Energy models
effective strain in, 198-201
Morrow cyclic plasticity analysis, 173-176
plastic work per cycle/accumulated plastic work (Garud), 176-178
plastic/elastic strain analysis (Ellyin), 178-181
See also Critical plane models; Critical plane/energy models (combined); Damage models
Equivalent strain
 1% equivalent strain and hollow cylinder yield (tension/torsion/combined), 70-72
correlation with tension/torsion tests (Yokobori), 172, 173
equivalent strain intensity and crack growth, 252-254, 267-268
equivalent strain models, basics of, 226-227
 relative, and cycle counting (nonproportional loading, Wang-Brown), 304-310
Equivalent stress intensity, basis for
 crack tip displacement (Tanaka), 249, 270-271
 strain energy density (Sih), 271
 strain energy release rate, 271
Ewing, J.A., 77-78
Extensometers See Testing, multiaxial

Failure
 in carburized/case hardened shafts, 412, 413
 failure criterion (Ellyin plastic/elastic strain analysis), 179-181
 failure mechanisms (damage maps), 92-97
 failure planes (variable amplitude multiaxial loading), 303-304
 notched shaft fracture surfaces (torsion tests), 359
 octahedral strain vs. cycles to failure, 173
 under pressure loading, 413, 414
 shear failure in torsion loading (static mean stresses) (Inconel 718), 207-208
 static compression loading and material failure in shear/tension, 205, 206, 208
Multiaxial Fatigue

Failure (continued)
torsion, failure modes in, 238-241
See also Crack nucleation/growth; Fatigue

Fatemi, A.
critical plane fracture analysis, 186-189, 199-200
critical plane model, 186-189, 319-320, 330-333
damage parameters/fatigue life (four strain paths), 333
fatigue life (combined tension/torsion), 219-220
friction/rubbing and fatigue life, 186
maximum damage parameter (critical plane model), 319
mean stress modification to critical plane analysis, 202, 228
sensitivity factor (k), 188, 212, 213
shear crack growth (multiaxial fatigue), 253

Fatigue
axial fatigue strength and static tensile/compressive stress, 135
axial/shear fatigue ductility, 172
calculated vs. experimental K_f (Nisitani-Kawano), 357-358
combined bending/torsion stress (Gough), 129-131, 132-134
combined bending/torsion stress (Sines), 134-138
cyclic torsion with static tension, compression, 136-137
damage parameters, critical plane, 24
effects of small defects on fatigue strength (Murakami), 380-385
fatigue analysis, complexity of, 444
fatigue ductility coefficient, exponent, 188, 189
fatigue strength coefficient, exponent, 188, 189
fatigue strength ratios (bending to torsion), 133
Findley empirical constant k, determining/typical values, 140
McDiarmid shear-stress amplitude criterion, 142
Morrow cyclic plasticity analysis (energy model), 173-176
multiaxial, uniaxial hysteresis loop energy in (Garud), 176-178
multiaxial analysis methods, summary discussion of, 444-445
multiaxial low-cycle fatigue, damage from (Robillard-Cailletaud), 323
octahedral shear stress as fatigue criterion (Sines), 134-138
Papadopoulos modification to Dang Van criteria, 298-299
plastic/elastic strain analysis (Ellyin), 178-181
reverse bending fatigue, effect of static torsion, 135-136
Sines criterion for alternating tension/torsion, 137-138
static yield criteria, 171-173
test data, HSLA steel (strain-controlled tension, torsion), 209-210, 266
torsional fatigue strength, effect of static torsion, 135, 136
uniaxial to multiaxial, dangers in extrapolating, 21, 24
See also Cyclic deformation; Fatigue life; Hardening; High-cycle fatigue models
Fatigue damage models See Critical plane models; Critical plane/energy models (combined); Damage models; Energy models

Fatigue life

actual vs. predicted (HSLA steel), 209-210, 266
automobile crankshaft, fatigue assessment of, 427-432
calculated fatigue lives, summary of (various models), 225-226, 320
in combined tension/torsion (Fatemi-Socie), 219-220
dependence on stress concentration factor, 406
effect of nonproportional hardening on, 292-293
experimental, four strain paths (various models), 333
experimental vs. theoretical (1045 steel, Inconel 718), 255-256
handlebar system, prediction for, 436-438
hydrostatic stress in estimation of, 20

life fraction \(\frac{N}{N_f} \), 92, 93, 95, 96

and maximum (35° angle) strain range (Brown-Miller), 218-219
for nonproportional load histories (various), 282-284
with normal stress, maximum strain (SWT), 220-221
and plastic work (Garud), 176-178, 216-217
and positive elastic work (Ellyin), 217-218
using maximum stress (Chu), 223, 224
using VSE analysis (Liu), 222-223
virtual strain energy (VSE) fatigue life model (Liu), 192-195
vs. biaxial strain ratio (shear damage parameter), 418
vs. biaxial strain ratio (SWT damage parameter), 417
vs. maximum shear work (Glinka), 223-225
vs. normal strain (Brown-Miller), 182
vs. plastic strain, low-cycle (Coffin-Manson), 171
See also Fatigue; Neuber's rule; Strain (various)

Feltner, C.E., 174-176

Findley damage criterion

critical plane fatigue analysis, 138-141
empirical constant k, determining/typical values of, 140
nonproportional loading, shaft numerical examples, 162-163
proportional loading, fuel injector numerical examples, 156

Finite-element (FEA) model

of heavy-duty axle housing, 439, 440

Flow directionality, plastic

at maximum shear stress, 20

Flow rule

Drucker normality postulate, 54-56, 74
Multiaxial Fatigue

Flow rule (continued)
- normality flow rule, 63
- Ramberg-Osgood stress/strain curve (cyclic plasticity), 56

Fractures
- "factory roof" fractures (circumferentially notched shafts), 239-240
- fracture surfaces, notched shaft torsion tests, 359
- macroscopic fracture mechanism (0.4% carbon steel), 239

See also Crack nucleation/growth; Damage maps; Fatigue

Friction/rubbing
- and crack nucleation/growth (Mode II growth), 90
- in crack sliding mechanisms, 240-241
- and fatigue life (Fatemi-Socie), 186

Gao, H., 247-248
Garud, Y.S.
- multiaxial fatigue, uniaxial hysteresis loop energy in, 176-178
- plastic work and fatigue life, 176-178, 216-217
- plastic work model, summary of, 227
- shear energy weighting factor, 177-178, 199

Glinka, G
- fatigue life and maximum shear work, 223-225
- mean stress in multiaxial fatigue, 196-197, 204, 229
- Neuber's rule approximate solution, 368-370
- normal stress-strain in multiaxial fatigue, 201

Goodman diagram, 132, 135
Gough, H.J.
- combined torsion-bending stress, 129-131, 132-134
- Gough ellipse, 131
- notched shafts in combined tension/bending, 356-357
- typical test data, 132-134
Gross, J.H., 106

Halford, G.R., 174-176
Handlebar system, fatigue assessment of, 432-438
Harada, S., 322-323

Hardening
- cyclic strength coefficient (K), 52-53, 293
- hardening coefficients, nonproportional (typical), 52
Hardening (continued)

hardening rules, introduction to, 58
hardening rules, backstress, 63-64
hardening rules, kinematic, 74
isotropic, in cyclic deformation, 45-46, 48, 58-59, 74
kinematic, in cyclic deformation, 46-48, 59-61
Mróz hardening rules, 60-61
nonproportional cyclic, 50-53
nonproportional cyclic, unobservability of, 334
nonproportional hardening coefficient (α), 293-294, 334
nonproportional hardening factors, 290, 292
nonproportional (in incremental plasticity), 64-65
nonproportional strain hardening, 285-287
path dependence of hardening, 289
rule for (in incremental plasticity), 63-64
stainless steels, cyclic hardening of, 421-422
Ziegler hardening rules, 60

Hencky’s flow rule, 365, 367, 368

High-cycle fatigue models

introduction to, 129-130
combined torsion-bending stress (Gough), 129-131, 132-134
critical plane analysis (Findley), 138-141
fatigue strength ratios (bending to torsion), 133
Goodman diagram, 132, 135
McDiarmid shear-stress amplitude criterion, 142
microstress criterion (Dang Van), 143-146, 158-161
octahedral shear stress criterion (Sines), 134-138
Papadopoulos modification to Dang Van criteria, 298-299
shear stress models compared, 146-150
static yield criteria models, 131-134
summary and final commentary, 166-168
tensile hoop mean stress (El-Magd), 150-151

See also Nonproportional loading, numerical examples (shaft); Proportional loading, numerical examples (fuel injector)

History See Load history; Strain history; Stress history
Hoffmann, M., 364-367
Holes, stresses around See Notched plates/shells
Hooke’s Law, use of
in stress/strain determination, 35-37, 72
Hoop mean tensile stress
in low carbon steel tubular specimen (El-Magd), 150-151
Hoop tension
 static compression with static hoop tension, 207
Hua, C.T., 321-322
Humfrey, J.C., 77-78
Hurd, N.J., 242-244
Hyde, T.H., 123
Hydrostatic stress
 and Dang Van fatigue criterion, 145-146
defined, 20
 in fatigue life estimation, 20
 and hoop mean tensile stress (El-Magd), 150-151
in π-plane, 41-42
Hysteresis
 cyclic plasticity hysteresis energy analysis (Morrow, Feltner, Halford), 174-176
 hysteresis loops, proportional/nonproportional loading (304 stainless), 285-287
 multiaxial fatigue, uniaxial hysteresis loop energy in (Garud), 176-178
 plane stress/strain hysteresis loops (notched flat plate), 349
 tensile and shear hysteresis loops (nonproportional multiaxial loading), 301-303
 uniaxial hysteresis loop energy analysis (Garud), 176-178
See also Load history; Strain history

Inclusions/imhomogenieties
 \(\sqrt{\text{area}} \) as measure of flaw size, 380-385
effects on fatigue strength (Murakami, et al.), 380-385
Incremental plasticity
 introduction to, 61-62
 flow rules for, 54-56, 63, 74
 hardening rules for, 63-64, 74
 nonproportional hardening in, 64-65
 strain history, importance of, 61, 335
 strain history and computed stresses, 65-67
 yield function, von Mises, 62
Invariants
 for deviatoric stresses, 21
 for principal stresses, 10
Iosipescu, N., 123
Irving, P.E., 242-244
Ito, H., 385-386
Itoh, T.
 nonproportional hardening factors (6061 aluminum), 290, 292
Itoh, T. (continued)
 path dependence of hardening, 289
 stress distribution for cruciform specimen, 113, 114

Jenkin, C.F., 35
J-integral
 in crack growth analysis, 255-256
 in strain energy release model, 249-250

Kanazawa, K., 288-289
Kawano, K.
 calculated vs. experimental K_f, 357-358
 fracture surfaces, notched shaft torsion tests, 359
 notch radius vs. stress concentration factor (notched shaft), 357-358
Kimura, M., 244-245
Kodama, S., 380-385
Koettgen, V.B., 372-375
Koiter, W.T., 257
Konuma, S., 380-385

Lamba, H.S., 58
Lee, J.D., 235-236
Liebowitz, H., 235-236
Lihua, M., 239
Liu, A.F., 237-238
Liu, K.C.
 fatigue life using VSE analysis, 222-223
 mean stress factor in fracture analysis, 203
 virtual strain energy (VSE) fatigue life model, 192-195, 228
Load history
 bicycle handlebar system, 433-435
 effect on crack nucleation/growth (Socie-Shield), 187-188
 fatigue load path, rolled/nonrolled crankshaft, 187-188
 heavy-duty axle housing, edited loading histories for, 442-444
 nonproportional (various paths), 282-284
 of rolled automobile crankshaft, 428-429
Multiaxial Fatigue

Load history (continued)
variable amplitude, nonproportional (Bannantine-Socie), 300-303
variable amplitude multiaxial loading (Socie), 301-303
in visualizing nonproportional stressing, 421-422
See also Hysteresis; Strain history

Loading, in-phase/out-of-phase
biaxial loading (tension/tension-torsion), 277-288
principal shear strain in, 274-276
strain history in (tension/tension-torsion), 274-275
summary discussion of, 334
See also Cyclic deformation; Fatigue; Nonproportional loading; Proportional
loading; Tension loading; Torsion loading

Low-cycle fatigue models
critical plane analysis (Brown-Miller), 182-186, 199
critical plane analysis (Fatemi-Socie), 186-189, 199-200, 319-320, 330
plastic strain vs. fatigue life (Coffin-Manson), 171
plastic strain vs. fatigue life (SWT), 189-190, 200-201
small notched specimens, low-cycle fatigue life tests on (Abe), 385-386
See also Critical plane models; Critical plane/energy models (combined); Damage
maps; Damage models; Energy models; Low-cycle fatigue

Marquis, G., 117
Masing behavior, 174-175, 180
Material properties See Steel/steel alloys
Matsuoka, S., 244-245
Mattavi, J.L., 109
McClintock, F.A., 241-243
McDiarmid damage criterion
 nonproportional loading, shaft numerical examples, 163-164
 for proportional loading (fuel injector example), 158
 for proportional loading (theory), 152-153
 shear-stress amplitude fatigue criterion, 142
McDowell, D.L.
 flow rules, nonproportional cyclic plasticity, 58
 nonproportionality factor (F), 293
Mean stress
 in critical plane analysis (Fatemi-Socie), 186-189, 199-200
 in cyclic torsion with static bending, 419-421
 effect on crack closure (Mode I and Mode II loading), 203
 incorporating effects of (maximum normal/shear stress), 229

462
Mean stress (continued)
 influence on crack growth, 187-188
 low carbon steel tests (El-Magd-Mielke), 150-151
 Morrow correction for, 229
 relaxation of (in cyclic deformation), 49-50
 See also Critical plane models; Critical plane/energy models (combined); Damage maps; Damage models; Energy models

Microcracks, linking of, 97

Microstress
 microstress criterion, high-cycle fatigue model (Dang Van), 143-146, 158-161
 Tresca criterion and microscopic shear stress (Dang Van), 145

Miller, K.J.
 biaxial stress and Mode I crack growth, 237
 critical plane model, 182-186, 317-318, 330-333
 damage parameters/fatigue life (four strain paths), 333
 low-cycle fatigue test fixture (disk specimen), 110
 nonproportionality rotation factor (F), 288-289
 stress ratio and mixed-mode loading thresholds (316 stainless), 247-248

Misumi, M.
 crack orientation at 25% and 90% of fatigue life (1045 steel), 323-324
 fatigue damage distribution, 1045 steel (in-phase, out-of-phase), 316-317

Miyaa, T., 246-247

Mode I, Mode II, and Mode III loading
 biaxial loading, plastic zone size for (Mode I, Mode II), 235-236
 crack closure in (Mode II), 90
 crack face rubbing in (Mode II), 90
 crack length and Mode III growth rate, 244-247
 crack opening loads (tension, Mode I), 80-81
 in-plane shear loads (torsion, Mode II), 80-81
 mixed-mode growth rate models: equivalent strain intensity models, 252-255
 mixed-mode growth rate models: strain energy density models, 250-252
 mixed-mode growth rate models: stress intensity models, 249-250
 Mode I and Mode III growth rates (4340 steel), 242-244
 Mode I vs. Mode II crack growth, 269
 Mode II growth rates (SNCM 8 steel, 7075-T6 aluminum), 244-245
 Mohr’s circle representation of (VSE parameters), 194-195
 multiaxial stress-strain model (Chu, Conle, Bonnen), 195-196
 out-of-plane shear loads (torsion, Mode III), 80-81
 in saddle joint analysis, 264
 shear mechanisms—Mode II growth, 90-91
 shear-based models and Mode I cracking, 201
 strain energy density factor (mixed-mode loading), 250-252, 253, 270
Mode I, Mode II, and Mode III loading (continued)

strain intensity factors (Mode I, Mode II), 190-191
stress intensity factors, Mode I (cracks emanating from a hole), 379
stress ratio and mixed-mode loading thresholds (316 stainless), 247-248
tensile mechanisms—Mode I growth, 82-84
torsional fatigue damage in (Mode II), 204-205, 208
when cycling in tension, 199

Models/modeling See Damage maps; High-cycle fatigue models
Moftakhar, A., 368-370

Mohr’s circle representations

equi-biaxial tension loading, 15
Mode I VSE parameter, 194
Mode II VSE parameter, 194, 195
nonproportional multiaxial shaft loading, 23
proportional multiaxial shaft loading, 22
proportional strain history (drum pulley shaft), 281
shear stresses around hole edge, 347-348
tension and torsional loading, 47
tension loading, 12, 147, 199, 200
three-dimensional stress state, 9-10
torsion loading, 13, 14, 147, 199, 200

Mori, K., 246-247

Moriwaki, M.

crack orientation at 25% and 90% of fatigue life (1045 steel), 323-324
fatigue damage distribution, 1045 steel (in-phase, out-of-phase), 316-317

Morrow, J.

Masing behavior, 174-175, 180
mean stress approach to fatigue strength coefficient, 185, 229
Morrow cyclic plasticity analysis (energy model), 173-176

Mróz, Z.

incremental plasticity (nonproportional loading notch model), 378
kinematic hardening rules, 60-61
nested yield surfaces, use of, 56, 58

Multiaxial loading

contact stress, introduction to, 412-414
critical plane/energy models, combined (Chu, Conle, Bonnen), 195-196, 201
cyclic torsion with static bending (shaft), 419-420
elastic shakedown under multiaxial loading (Dang Van), 144-145
internal pressure with cyclic bending (pipe), 420-421
model selection, guidelines for, 412
multiaxial life prediction, importance of histories in, 335
nonproportional multiaxial shaft loading, Mohr’s circle representation, 23
Multiaxial loading (continued)
 nonproportional stressing, recognizing/visualizing, 422-424
 nonproportional stressing with rotating principal axes, 421-422
 nonproportional stressing/loading, 415
 plastic zones in, 233-236
 pressure loading failure, 414-415
 proportional multiaxial shaft loading, Mohr’s circle for, 22
 shear crack growth in multiaxial fatigue (Fatemi-Reddy), 253
 stress/strain concentration factors, 424-425
 uniaxial-to-multiaxial fatigue, dangers in extrapolating, 21, 24
 See also Applications, multiaxial fatigue theory; Biaxial loading; Testing, multiaxial;
 Variable amplitude multiaxial loading
Murakami, Y.
 effects of small defects on fatigue strength, 380-385
 small notched specimens, low-cycle fatigue life tests on (Abe, *et al*.), 385-386

Nakata, T., 290, 292
Nayeb-Hashemi, H., 241-243
Neuber’s rule
 Chu approximate solution, 370-372
 Dowling-Brose-Wilson approximate solution, 361-364
 Hoffmann-Seeger approximate solution, 364-367
 illustration of, 369-370
 Koettgen-Barkey-Socie approximate solution, 372-375
 Mofftakhar-Buczynski-Glinka approximate solution, 368-370
 notch models compared, 375-378
 for notch strains in plastic region, 360-361
 in strain-life analysis of notched shaft, 395-397
Nisitani, H.
 calculated vs. experimental K_F, 357-358
 fracture surfaces, notched shaft torsion tests, 359
 notch radius vs. stress concentration factor (notched shaft), 357-358
Nonproportional loading
 90° out-of-phase, 23-24, 51, 53
 in cyclic hardening, 50-53
 damage accumulation model (1045 steel), 322-323
 damage parameters, calculation of (four strain paths), 330-333
 defined, 22, 33, 50, 273-274, 334
 degree of nonproportionality, determining, 282-283
 effective stress/strain damage models, inapplicability to, 335
Nonproportional loading (continued)

- errors in applying Dang Van criteria to, 297-298
- example: repeating strain history, 212-214
- fatigue life estimates for (various patterns), 282-284
- importance in determining highest stresses, 406
- maximum damage models, various, 330
- multiaxial shaft loading, 22-23
- nonproportional strain hardening, 285-287
- nonproportionality factor (F), 52-53, 293
- nonproportionality rotation factor (F), 288-289
- normal stress and strain in, 202
- in notch model analyses (various), 377
- notched plate with, example of, 387-390
- and polycrystalline metals, 273-274
- stress-strain response curves (various cases), 290-292
- summary discussion of, 334-335
- time histories for (various patterns), 282-283
- tubular shaft, numerical example of, 29-31
- vs. nonproportional stressing, 351-352, 356, 415

See also Loading, in-phase/out-of-phase; Nonproportional loading, numerical examples (shaft); Notched shafts; Variable amplitude multiaxial loading

Nonproportional loading, numerical examples (shaft)

- Dang Van damage criterion, 164-166
- Findley damage criterion, 162-163
- McDiarmid damage criterion, 163-164
- Sines damage criterion, inapplicability of, 161

Nonproportional stressing

- with fixed principal axis, 421, 422
- visualizing, 422-424
- vs. nonproportional loading, 351-352, 356

Normal strain coefficient (Brown-Miller), 184-186, 199, 201, 210-211

Notched plates/shells

- casting flaws in notched drum, 403-405
- circumferential stresses around hole edge, 346-347
- compression strain, transverse (thin, thick plates), 347-348
- lateral flow, constraints to (thick, thin plates), 349-350
- maximum stress/strain, calculation of (flat plate), 350-351
- multiaxial stressed notches, strain-based approaches to (summary), 406-407
- notch models compared, 375-378
- for notch strains in plastic region, 360-361
- notched plate with nonproportional loading, example of, 387-390
- plane stress/strain hysteresis loops (flat plate), 349

466
Notched plates/shells (continued)
 plastic deformation in (thick, thin plates), 349
 shear stresses around hole edge, Mohr's circle for, 347-348
 shear stresses in torsion loading (round hole), 347
 small holes, low-cycle fatigue life tests of (Abe, et al.), 385-386
 stress concentration, plate with hole, 345-346
 SWT damage parameter, calculation of (flat plate), 351
 tensile strain, longitudinal (thin, thick plates), 347-348
 von Mises equivalent stress at notch root (two-dimensional stress), 357
See also Neuber's rule; Notched shafts

Notched shafts
 bending moments (nonproportional loading), 352-354
 calculated vs. experimental K_F (Nisitani-Kawano), 357-358
 circumferentially notched shaft, analysis of (Bentham), 257
 in combined tension/bending (Gough), 356-357
 crack growth analysis (tension-torsion loading), 390-392, 397-402, 403
 elastic stress/strain concentration factors, 344-345
 elastic surface strains in, 343-344
 fracture surfaces (torsion tests), 359
 loading and stress vectors for (basic, filleted shoulder), 342
 loading history (nonproportional loading), 352, 353
 notch models compared, 375-378
 in strain-life analysis of notched shaft, 395-397
 strain-life analysis (tension-torsion loading), 390-392, 394-397
 stress concentrations in bending, torsion, 342-343, 344
 stress-life analysis (tension-torsion loading), 390-394
 torsional moments, stresses (nonproportional loading), 354-355
 torsion/tension loading, damage from, 357-358
See also Neuber's rule; Notched plates/shells

Notches See Notched plates/shells; Notched shafts

Octahedral shear strain
 cycles to failure (1035 steel), 172, 173
 general expressions for, 18, 172
 octahedral shear strain theory, 226
See also Shear strain; Strain

Octahedral shear stress
 and cyclic loading, 24
 general expression for, 18
 nondirectionality of, 20
Octahedral shear stress (continued)
 octahedral (\(\pi\)) plane, 41-42
 octahedral/maximum stress ratio (vs. second principal stress), 147-148
 and Tresca criterion, 19-20, 33
 in tubular shaft, numerical example of, 28-29
 and von Mises (distortion) criterion, 17-19
 See also High-cycle fatigue models; Sines, G

Ohkawa, I.
 crack orientation at 25% and 90% of fatigue life (1045 steel), 323-324
 fatigue damage distribution, 1045 steel (in-phase, out-of-phase), 316-317

Ohnami, M.
 nonproportional hardening factors (6061 aluminum), 290, 292
 path dependence of hardening, 289
 stress distribution for cruciform specimen, 113, 114

Otsuka, A., 246-247

Out-of-phase loading
 periodic history definition of, 334
 tension-torsion histories: out-of-phase vs. in-phase, 334
 See also Loading, in-phase/out-of-phase; Nonproportional loading

Papadopoulos, I.V., 298-299
Pascoe, K.J., 111
Peterson, R.E., 357

\(\pi\) (octahedral) plane, 41-42

Plane stress
 coordinate transformations (three-dimensional), 6-7, 31-32
 coordinate transformations (two-dimensional), 3-4
 defined, 3
 on a plate, 3
 on a three-dimensional body, 4-5
 See also Principal stress; Shear stress; Strain; Stress

Plastic deformation/plasticity
 axial (with torsional load), 56
 cyclic deformation, major components of, 73-74
 cyclic plasticity, typical parameters for, 198
 cyclic plasticity energy analysis (Morrow-Feltner-Halford), 174-176
 cyclic plasticity models, components of, 53-54, 73
 and deviatoric vs. hydrostatic stress, 20-21
 elastic/plastic strain energies (Liu), 192
 flow rules for, 54-56, 63, 74
Plastic deformation/plasticity (continued)
 incremental (See Incremental plasticity)
 nested yield surfaces, modeling using, 56-58
 plastic strain vs. fatigue life, low-cycle (Coffin-Manson), 171
 plastic work, correlation with fatigue life (Garud), 176-178, 216-217
 plastic work, defining expression for, 43
 plastic zones in multiaxial loading, 233-236
 plastic/elastic strain analysis (Ellyin), 178-181
 and static yield criteria models, 131
 strain history, example of, 65-67
 strain history, importance of, 61, 335
 stress/strain curve (Ramberg-Osgood), 56
 tensors, manipulation of, 38-40
 and Tresca criterion, 19-20
 yield functions (von Mises, Tresca), 54, 74
 See also Cyclic deformation; Elasticity; Hardening; Neuber’s rule; Yield (various)
Plumtree, A., 196-197, 229
Poisson’s ratio
 effective, for elastic/plastic strain, 18-19
 in transverse compression strains (flat plates), 348-349
Polycrystalline metals
 crack nucleation/growth in, 79
 and definition of nonproportional loading, 273-274
Prandtl-Reuss equations
 in Neuber’s rule approximate solution, 368-369
Pressure loading, failure under, 413, 414
Pressure rolling See Automobile crankshaft, fatigue assessment of
Principal stress
 coordinate systems for, 8
 defining expressions for, 9
 Mohr’s circle representation of, 9-10
 notation for (conventional), 9
 principal axes, 9
 principal stress plane, shear stress on, 9
 stress invariants (coefficients), 10
 See also Shear stress
Proportional loading
 biaxial tensile loading, proportionality of, 280-281
 of a bracket, 279
 in cyclic deformation, 73
 cyclic torsion with static bending (shaft), 419-421
 damage accumulation model (Hua, Socie), 321-322
Proportional loading (continued)
 defined, 22, 33
 Findley damage criterion for, 152
 McDiarmid damage criterion for, 152-153
 multiaxial shaft loading, 22
 in notch model analyses (various), 377
 principal axes, orientation of, 279-280
 Sines damage criterion for, 151-152
 stress-strain response curves (various cases), 290-292
 See also Proportional loading, numerical examples (fuel injector)
Proportional loading, numerical examples (fuel injector)
 assumed triaxial stress history, 154-155
 Dang Van damage criterion, 158-161
 Findley damage criterion, 157-158
 McDiarmid damage criterion, 158
 Sines damage criterion, 155-156
 von Mises damage criterion, 156-157
Pseudo-stress
 in Neuber's rule approximate solution, 372-375

Ramberg-Osgood stress/strain curve
 and cyclic plasticity flow rules, 56
Ratcheting (cyclical creep), 48-49
Reddy, S.C., 253
Ritchie, R.O.
 oxide-, roughness-induced crack closure, 86
 tensile, torsion overload effects (Mode I, Mode III), 241-243
Robillard, M.
 damage in multiaxial low-cycle fatigue, 323
 multiaxial damage model D(θ), 324-325
Rooke, D.P., 258
Rotation factors, nonproportional (Kanazawa), 288-289
Rovtel, F., 117-118

Sakane, M.
 nonproportional hardening factors (6061 aluminum), 290, 292
 path dependence of hardening, 289
 stress distribution for cruciform specimen, 113, 114
Sato, S., 122
Seeger, T., 364-367
Sehitoglu, H.
 crack opening/closure levels, 85
 multiaxial plasticity model, 62
Sensitivity factor (k) (Fatemi), 188, 212, 213
Shafts/shaft loading
 case-hardened, crack nucleation/growth, 412, 413
 crack testing: circumferentially notched/cracked shaft, 124-125
 in cyclic torsion with static bending, 419-421
 “factory roof” fractures (circumferentially notched shaft), 239-240
 Mohr’s circle for (nonproportional multiaxial loading), 23
 Mohr’s circle for (proportional multiaxial loading), 22
 multiaxial, proportional/nonproportional, 22-23
 nonproportional loading, numerical example (Dang Van), 164-166
 nonproportional loading, numerical example (Findley damage criterion), 162-163
 with radial edge crack, stress intensity factor analysis, 258
 Sines damage criterion, inapplicability of, 161
 tubular, nonproportional loading (numerical example), 29-31
 tubular, octahedral/maximum stresses in (numerical example), 28-29
 tubular, plane stresses in (numerical example), 24-28
 tubular, torsional stress and stresses on a plane, 24-28
See also Notched shafts
Shear energy weighting factor (Garud), 177-178, 199
Shear strain
 equivalent shear strain amplitude (Brown-Miller), 184-185
 fatigue life vs. biaxial strain ratio (shear damage parameter), 418
 maximum shear strain, expression for, 172
 octahedral, expressions for, 18, 172
 principal (in out-of-phase, in-phase loading), 274-276
 vs. normal shear (drum pulley shaft load history), 281-282
See also Octahedral shear strain; Strain
Shear stress
 in 90° out-of-phase loading, 148, 149
 of a cubic element, 7-8
 cyclical, on different material planes, 148-149
 elastic, contours for (biaxial Mode I loading), 235
 high-cycle fatigue models compared, 146-150
 in-plane (variable amplitude multiaxial loading), 294-296
 maximum, numerical example of (tubular shaft), 28-29
 maximum, planes of, 9, 32
 maximum, plastic flow directionality in, 20
Shear stress (continued)
maximum vs. applied tension, 19
methods for defining (variable amplitude multiaxial stress), 298-299
octahedral (See Octahedral shear stress)
principal, defining equations for, 9
principal, Mohr's circle representation of, 9-10
resolution of (cyclic torsion, static tension), 208-209
in tension/torsion, Mohr's circle representation of, 147, 199, 200
vs. shear strain, 7-8, 32
See also Notched plates/shells; Notched shafts; Stress; Stress and strain on planes (examples); Stress intensity factors; Stress-strain
Shuzhen, C., 239
Sidebottom, O.M., 58
Sih, G.C.
strain energy density, 270
strain energy density factor, S (mixed-mode loading), 250-252, 253, 270
Sines, G.
analyses of combined bending/torsion stress, 134-138
criterion for alternating tension, torsion, 137-138
mean bending stress vs. hydrostatic, normal stress, 150
nonproportional shaft loading, inapplicability of Sines criterion, 161
octahedral shear stress as fatigue criterion, 134
proportional loading damage criterion (analysis), 151-152
proportional loading damage criterion (fuel injector numerical examples), 155-156
Smith, R.N.
damage parameters/fatigue life (four strain paths), 333
fatigue life with normal stress, maximum strain, 220-221
maximum damage models, 189-190, 330-333
mean stress factor in critical plane fracture analysis, 203, 228
Mode I microcrack growth (SWT model), 200
stress-strain curves (tension/torsion), 200-201
SWT parameter (for critical plane), 189-190
See also SWT parameter
Socie, D.F.
critical plane fracture analysis, 186-189, 199-200
critical plane model, 186-189, 319-320, 330-333
cycle counting and strain range identification, 315
cyclic external pressure testing, 117-118
damage accumulation model (proportional loading), 321-322
damage parameters/fatigue life (four strain paths), 333
failure planes (variable amplitude multiaxial loading), 303-304
fatigue life (combined tension/torsion), 219-220
Socie, D.F. (continued)
load history, effect on crack nucleation/growth, 187-188
load history (variable amplitude multiaxial loading), 300-303
mean stress modification to critical plane analysis, 202, 228
Neuber’s rule approximate solution, 372-375
path dependence of hardening, 289
tensile and shear hysteresis loops (multiaxial loading), 301-303
Specimens, test
anticlastic bending, 107-109
compact mixed-mode, 123-124
cruciform, 111-114
disks (biaxial, spinning), 109-111, 122
extensometers, 119-121
Iosipescu, 123
notched beams, 106-107
notched shafts, 124-125
plates, biaxial, 104-106
three-point, four-point bending, 124
torsion bending, 103-104
tubular, 114-119
See also Shafts/shaft loading
Static yield criteria, 171-173
Steel/steel alloys
0.4% carbon steel: macroscopic fracture mechanism, 239
304 stainless: cracking behavior, 92-94
304 stainless: damage parameters, experimental fatigue life, 333
304 stainless: hysteresis loops (proportional/nonproportional loading), 285-287
304 stainless: normal strain effects coefficient (S), 185
304 stainless: tubular specimen stress-strain histories, 325-329
316 stainless: biaxial stress and Mode I crack growth, 237
316 stainless: stress ratio and mixed-mode loading thresholds, 247-248
1035 steel: cycles to failure (octahedral shear strain), 172, 173
1045 steel: crack orientation at 25% and 90% of fatigue life, 323-324
1045 steel: cracking behavior, 94-97
1045 steel: damage accumulation model (nonproportional loading), 322-323
1045 steel: fatigue damage distribution, in-phase, out-of-phase, 316-317
1045 steel: fatigue life, experimental vs. theoretical, 255-256
1045 steel: shear failure with torsion, static mean stress, 207-208
1045 steel: tension loading of notched shaft, 390-392
4340 steel: Mode I and Mode III growth rates, 242-244
Cr-Mo-V: fatigue damage distribution, 316-317
Cr-Mo-V: normal strain effects coefficient (S), 185

473
Multiaxial Fatigue

Steel/steel alloys (continued)

En15R steel (0.4% C): normal strain effects coefficient (S), 185
HSLA steel: axial fatigue test data, 209-210, 266
HSLA steel: material properties, 209-210
Inconel 718: cracking behavior, 94, 95, 187-188
Inconel 718: fatigue life, experimental vs. theoretical, 255-256
Inconel 718: shear failure with torsion/static mean stress, 207-208
low-carbon steel: crack growth modes in mixed-mode loading, 246-247
low-carbon steel: mean stress tests (El-Magd-Mielke), 150-151
shear crack growth rate (mixed-mode, 1045 steel), 253-254
SNCM 8 steel: Mode II growth rates, 244-245
stainless steels, cyclic hardening of, 421-422

Stiffness tensor, 39, 40

Strain

1% equivalent strain and hollow cylinder yield (tension/torsion/combined), 70-72
complementary strain energy, 43
cycle counting and relative equivalent strain (Wang-Brown), 304-310
cyclic stress/strain curve (proportional/nonproportional loading), 50-51
distribution of (vs. inclination of plane), 11
effective, in energy and critical plane models, 198-201
effective octahedral, defining expressions for, 18, 32-33
effective octahedral, Tresca criterion for, 19-20, 33
elastic/plastic strain energies (Liu), 192
multiaxial stressed notches, strain-based approaches to (summary), 406-407
nonproportional, additional cyclic hardening from, 334
normal strain coefficient (Brown-Miller), 184-186, 199, 201, 210-211
plane, two-dimensional equivalent for, 16-17
principal strain, calculation of, 9
Ramberg-Osgood stress/strain curve, 56
shear strain vs. shear stress, 7-8, 32
strain concentration factors (stepped shaft), 344-345
strain intensity factors (Mode I, Mode II), 190-191
strain range identification and cycle counting, 315
strain range vs. strain plane angle, 218-219
See also Damage models; Notched plates/shells; Notched shafts; Octahedral shear
strain; Shear strain; Strain energy density; Strain history; Stress and strain on
planes (examples)

Strain concentration factor
defined, 425
as function of biaxial stress ratio, 425-426

Strain energy density
in saddle joint analysis, 263-265
strain energy density factor (S) and angled crack growth, 250-252, 253, 270

474
Strain energy density (continued)
 strain energy density models for crack nucleation/growth, 250-252
 strain energy density (Sih), 250-252, 270
 strain intensity equivalent, for crack nucleation/growth, 252-255
Strain energy release rate
 and equivalent stress intensity, 249-250, 270
Strain history
 example: repeating strain history (nonproportional loading), 212-214
 example of (Jiang-Sehitoglu), 65-67
 of heavy-duty axle housing (severe maneuvering), 440-442
 importance of, 61, 334, 335
 and incremental plasticity, 61-62, 65-67, 72
 and nonproportional hardening, 65-67, 72
 nonproportional rotation factors for (Kanazawa), 288-289
 in out-of-phase, in-phase loading, 274-275
 path dependence of hardening, 289
 proportional, in drum pulley shaft, 280-281
 stress-strain response curves (proportional/nonproportional), 290-292
See also Load history
Strain-based damage models See Damage models
Stress
 contact stress, discussion/examples of, 412-414
 coordinate transformation for (three-dimensional), 6-7, 31-32
 coordinate transformation for (two-dimensional), 3-4
 critical plane models, state of stress and strain in, 198-201
 deviatoric, 20-21
 distribution of (vs. inclination of plane), 11
 effective, defining expressions for, 19-20, 32-33
 effective, limitations of, 34
 hydrostatic, 20
 multiaxial, as consequence of uniaxial notch loading, 406
 multiaxial stressed notches, strain-based approaches to (summary), 406-407
 orthogonal components/notations of, 2-3
 plane, two-dimensional equivalent for, 16-17
 plane stress defined, 3
 plane stress on a plate, 3
 principal stresses (See Principal stress)
 pseudo-stress (in Neuber's rule approximate solution), 372-375
 on a three-dimensional plane, 4-5
See also Notched shafts; Shear stress; Stress and strain on planes (examples); Stress-strain
Stress and strain on planes (examples)
 plastic work, fatigue life (Garud), 176-178, 216-217
 stress and strain, table of, 215-216
 tubular specimen and volume, 215
Stress concentration factor
 defined, 425
 dependence of fatigue life on, 406
 determination by load superposition, 406
 as function of biaxial stress ratio, 425-426
 summary discussion of, 405
 vs. notch radius (notched shaft), 357-358
Stress history
 of heavy-duty axle housing (one location), 442-443
See also Load history
Stress intensity factors
 circumferentially notched/cracked shaft, 257
 cracks emanating from a hole (Mode I loading), 378
 saddle joint analysis, 262-265
 shaft with radial edge crack, 258
 surface cracks (semicircular, semi-elliptical), 258-262
Stress intensity models
 for crack nucleation/growth (mixed-mode loading), 249-250
Stress ratio (R)
 and mixed-mode loading thresholds (type 316 stainless), 247-248
Stress-based models See High-cycle fatigue models
Stress-strain
 cyclic stress/strain curve (proportional/nonproportional loading), 50-51
 effective octahedral stress/strain and Tresca criterion, 19-20, 33
 equi-biaxial tension loading, stress/strain relationships for, 15-16
 Hooke's Law, in stress/strain determination, 35-37, 72
 multiaxial, critical plane/energy models (Chu, Conle, Bonnen), 195-196, 201
 Ramberg-Osgood stress/strain curve, 56
 simple tension loading, stress/strain relationships for, 12-13
 stress/strain elasticity matrix, 35-37
See also Shear stress; Stress; Stress and strain on planes (examples)
Suresh, S., 86
SWT parameter
 biaxial strain ratio vs. fatigue life, 416-417
 in critical plane models, 190, 200
 and nonproportional loading (Mode I growth), 203
 for notched flat plates, 351
Index

SWT parameter (continued)
 in strain-based damage models (summary), 228
 See also Smith, R.N.

Takahashi, H.
 crack orientation at 25% and 90% of fatigue life (1045 steel), 323-324
 fatigue damage distribution, 1045 steel (in-phase, out-of-phase), 316-317
Tanaka, K.
 equivalent stress intensity and crack tip displacement, 249, 270-271
 Mode II growth rates (SNCM 8 steel), 244-245

Tension loading
 applied, and octahedral shear stress, 18
 in elastic deformation (typical calculation), 70-71
 equi-biaxial, stress/strain relationships for, 15-16
 Mohr’s circle representation of, 12, 199, 200
 notched shaft, crack growth analysis, 390-392, 397-402
 notched shaft, strain-life analysis, 390-392, 394-397
 notched shaft, stress-life analysis, 390-394
 octahedral strain vs. cycles to failure, 173
 simple, stress/strain relationships for, 12-13
 static, effect on material failure in shear/tension, 205, 206, 208
 static compression with static hoop tension, 207
 tensile and shear stresses, resolution of (cyclic torsion, static tension), 208-209
 tensile hoop mean stress (El-Magd), 150-151
 tension/tension-torsion loading (biaxial), 277-288
 See also Fatigue; Nonproportional loading; Notched plates/shells; Notched shafts;
 Proportional loading; Testing, multiaxial

Tensors, manipulation of, 38-39

Testing, multiaxial
 anticlastic bending plate, 107-108
 anticlastic bending stress, strain ratios, 108-109
 crack testing: circular disk, compressive loading, 122
 crack testing: compact tension (mixed-mode), 123-124
 crack testing: Iosipescu specimen (ductile shear test), 123
 crack testing: notched shafts/circumferential cracking, 124-125
 crack testing: three-point, four-point bending, 124, 125
 cruciform test specimens, mechanical loading system for, 111-112
 cruciform test specimens, stress distributions for, 113-114
 cruciform test specimens, typical configurations of, 112-113
Testing, multiaxial (continued)
- disks, mechanical loading/test fixture for, 110-111
- disks, spinning, stress analysis of, 109-110
- extensometers, external tension-torsion (flexure-type), 120-121
- extensometers, external tension-torsion (gimble-type), 119-120
- extensometers, internal, 119, 120
- notched bending beam test, 106-107
- plate specimen test fixture, 105-106
- plate specimens, biaxial, 105
- summary discussion, 125-126
- torsion-bending moments, 103-104
- torsion-bending stress/strain ratios, 104
- torsion-bending test configuration, 101-103
- tubular specimens, external pressure testing/chamber, 117-118
- tubular specimens, internal pressure loading/mandrels, 117, 118
- tubular specimens, low- vs. high-cycle fatigue in, 117
- tubular specimens, stress ratios/normalized stresses, 115-117
- tubular specimens, typical characteristics/configuration, 114-115

See also Fatigue life; High-cycle fatigue models

Topper, T.H.
- critical plane model, 189-190, 330-333
- damage parameters/fatigue life (four strain paths), 333
- fatigue life with normal stress and maximum strain, 220-221
- mean stress factor in critical plane fracture analysis, 203, 228
- Mode I microcrack growth (SWT model), 200
- stress-strain curves (tension/torsion), 200-201
- SWT parameter (for critical plane), 189-190

See also SWT parameter

Torsion loading
- axial plastic deformation in, 56
- axial plastic deformation with torsional load, 56
- crack nucleation, example of (at 20% of fatigue life), 385-386
- cyclic torsion with static bending (shaft), 419-421
- extensometers, external tension-torsion (flexure-type), 120-121
- extensometers, external tension-torsion (gimble-type), 119-120
- failure modes in, 238-241
- Findley criterion for, 139
- growth rates in, 241-245
- and high-cycle fatigue (*See* High-cycle fatigue models)
- in-plane shear loads (torsion, Mode II), 80-81
- Mohr's circle for simple torsional loading, 13, 14, 199, 200
- Mohr's circle for tension/torsional loading, 147, 199, 200
Torsion loading (continued)

notched shaft, crack growth analysis, 390-392, 397-402, 403
notched shaft, strain-life analysis, 390-392, 394-397
notched shaft, stress-life analysis, 390-394
out-of-plane shear loads (torsion, Mode III), 80-81
with static mean stresses, shear failure (Inconel 718), 207-208
with static tension/compression, fatigue damage in, 205-206, 208
tensile and shear stresses, resolution of (cyclic torsion, static tension), 208-209
tension/torsion-torsion loading (biaxial), 277-288
vs. tension loading (notched shaft), 357-358

See also Bending; Fatigue; Nonproportional loading; Notched shafts; Proportional loading; Testing, multiaxial; Torsional stress

Torsional stress

in 90° out-of-phase loading, 23
alternating tension/torsion, criterion for (Sines), 137-138
calculation of in elastic deformation (typical calculation), 71
combined torsion-bending stress, analyses of (Sines), 134-138
and first yielding (tubular shaft), 68-70
in nonproportional loading (tubular shaft), 29-31
octahedral strain vs. cycles to failure, 173
simple, stress/strain relationships for, 13-14
in simple torsional loading, 13-14
and stresses on a plane (tubular shaft), 24-28

See also Bending; Fatigue; Nonproportional loading; Proportional loading; Testing, multiaxial; Torsion loading

Tresca criterion

in ASME Boiler and Pressure Vessel Code, 311
disadvantages of, 54
and effective octahedral stress/strain, 19-20, 33
and maximum, octahedral shear planes, 19
and microscopic shear stress (Dang Van), 145
and plastic yielding, 19-20
Tresca yield function, 54, 74
yield surface (plane stress), 40-41
Triaxiality factor (Ellyin), 199
Tschegg, E.K., 241-243
Tweed, J., 258

Variable amplitude multiaxial loading

cycle counting and relative equivalent strain (Wang-Brown), 304-310
damage models, discussion of, 296-297
Variable amplitude multiaxial loading (continued)
errors in applying Dang Van criteria to, 297-298
failure planes/critical failure plane, 303-304
in-plane shear stresses, 294-296
load history (Bannantine-Socie), 300-303
load interactions (nonproportional loading), 294-295
tensile and shear hysteresis loops for (various planes), 301-303
See also ASME Boiler and Pressure Vessel Code; Nonproportional loading
Virtual strain energy (VSE) model (Liu), 192-195
von Mises distortion energy criterion
advantages of, 54
equivalent stress at notch root (two-dimensional stress), 357
fatigue damage estimation using, 418
in octahedral shear stress, 17-19, 132
proportional loading, fuel injector numerical examples, 156-157
in typical yield calculations (tubular shaft), 68-70
yield function, defining expression for, 54
yield function in incremental plasticity, 62
yield surface (cylindrical), 41-42
yield surface (plane stress), 40-41

Wang, C.H.
cycle counting and relative equivalent strain, 304-310
mean stress in multiaxial fatigue, 196-197, 202, 229
Watson, P.
critical plane model, 189-190, 330-333
damage parameters/fatigue life (four strain paths), 333
fatigue life with normal stress and maximum strain, 220-221
mean stress factor in critical plane fracture analysis, 203, 228
Mode I microcrack growth (SWT model), 200
stress-strain curves (tension/torsion), 200-201
SWT parameter (for critical plane), 189-190
See also SWT parameter
Wilson, W.K., 361-364
Work
elastic work, fatigue life (Ellyin), 217-218
plastic work per cycle/accumulated plastic work (Garud), 176-178, 216-217
plastic/elastic strain analysis (Ellyin), 180-181
Yamamoto, S., 172, 173
Yamane, J.R., 237-238
Yamanouchi, H., 172, 173
Yield, hollow cylinder (numerical example)
 1% equivalent strain (tension/torsion/combined), 70-72
 combined loading (von Mises criterion), 69-70
 first yielding, calculation of, 68-69
 specimen physical parameters, 67
Yield criteria
 first yielding, calculation of (tubular specimen), 68-70
 Tresca (for plastic yielding), 19-20, 33
 Tresca yield function, expressions for, 54, 74
See also Plastic deformation; Yield surfaces
Yield functions
 Tresca, 54, 74
 von Mises, 54, 73
Yield surfaces
 nested, modeling using, 56-58
 plane stress, analysis of, 40-41
 three-dimensional, analysis of, 41-42
 Tresca (plane stress), 41
 von Mises (cylindrical), 42
 von Mises (plane stress), 41
Yokobori, Y., 172, 173

Zamrik, S.Y., 107
Zhizhong, H., 239
Ziegler hardening, 60
Zouani, A., 110
Darrell F. Socie is Professor of Mechanical Engineering at the University of Illinois at Urbana–Champaign. He worked as a consulting engineer for Structural Dynamics Research Corporation prior to joining the University of Illinois in 1978 and has remained active in industrial consulting on fatigue- and fracture-related problems. In 1982, Dr. Socie founded SoMat Corporation, a manufacturer of Data Acquisition Systems and Data Analysis Software.

Dr. Socie earned his B.S. and M.S. in Metallurgical Engineering from the University of Cincinnati. In 1977, he earned his Ph.D. in Theoretical and Applied Mechanics from the University of Illinois at Urbana–Champaign. His early research work at the University of Illinois involved the development of fatigue life estimation models for notched and cracked members subjected to variable amplitude loading. Dr. Socie was responsible for the development of ASTM Standard E-1049 Cycle Counting in Fatigue Analysis. This was followed by ten years of studying cyclic deformation of and fatigue of metals under multiaxial states of stress. Dr. Socie’s current research includes cyclic deformation and fatigue of ceramic materials at high temperatures, durability assessment of porous materials, and probabilistic fatigue and fracture design.

Dr. Socie has received numerous professional awards, including the ASTM Fatigue Achievement Award in 1992, the Society of Automotive Engineers Arch T. Colwell Award in 1996, and a Japan Society for the Promotion of Science
Since 1988, Gary B. Marquis has worked at the Technical Research Center of Finland, VTT Manufacturing Technology, where he is a senior research engineer in charge of experimental and analytical fatigue research. He is an active fatigue and durability consultant to many industries and institutes, and he has been involved in numerous international research projects on fatigue of on- and off-road vehicles, ocean-going ships, and energy production equipment. Dr. Marquis' current research interests include high-cycle variable amplitude and multiaxial fatigue, durability assessment of welded structures, and fatigue in high-temperature and aggressive environments.

Dr. Marquis received a B.S. in General Engineering and an M.S. in Mechanical Engineering from the University of Illinois at Urbana–Champaign. In 1995, he earned his Doctor of Technology Degree in Mechanical Engineering from the Helsinki University of Technology. Dr. Marquis has served as chairman for three international symposia on fatigue design and is a member of the European Structural Integrity Society.