ADDITIONAL INFORMATION

The following is a list of useful SAE International Aerospace Recommended Practices (ARPS) and other documents.

3. AIR 4844C—Composites and Metal Bonding Glossary
4. ARP 4916—Masking and Cleaning of Epoxy and Polyester Matrix Thermosetting Composite Materials
5. AIR 4938—Composite and Bonded Structure Technician/Specialist Training Document
6. ARP 4977—Drying of Thermosetting Composite Materials
7. ARP 4991—Core Restoration of Thermosetting Composite Components
8. ARP 5089—Composite Repair NDT/NDI Handbook
9. ARP 5143—Vacuum Bagging Techniques of Thermosetting Composite Repairs
10. ARP 5144—Heat Application for Thermosetting Resin Curing
11. ARP 5256—Mixing Resins, Adhesives, and Potting Compounds
12. AIR 5278—Composite and Bonded Structure Engineers: Training Document
13. AIR 5279—Composite and Bonded Structure Inspector: Training Document
14. ARP 5319—Impregnation of Dry Fabric and Ply Lay-Up
15. AIR 5367—Machining of Epoxy and Polyester Matrix Thermosetting Composite Structures
16. ARP 5412—Aircraft Lightning Environment and Related Test Waveforms
17. ARP 5413—Certification of Aircraft Electrical/Electronic Systems for the Indirect Effects of Lightning
18. ARP 5414—Aircraft Lightning Zoning
19. AIR 5416—Maintenance Life Cycle Cost
20. AIR 5431—Tooling for Composite Repair
21. AIR 5496—Design and Application of Composite Repairs for Thermosetting Composites

22. ARP 5605—Solid Composite Laminate NDI Reference Standards

23. ARP 5606—Composite Honeycomb NDI Reference Standards

24. Advisory Circular No. 145-6—Repair Station for Composite and Bonded Aircraft Structures (published as a collaborative effort between IATA, ATA, and SAE)

SAE Aerospace Material Specifications

1. AMS 2960—Glass Fabric with Epoxy Resin Wet Lay-Up Repair Material
2. AMS 2960/1—Glass Fabric with Epoxy Resin Wet Lay-Up Repair Material. Part 1
3. AMS 2960/2—Glass Fabric with Epoxy Resin Wet Lay-Up Repair Material. Part 2
4. AMS 2960/3—Glass Fabric with Epoxy Resin Wet Lay-Up Repair Material. Part 3
5. AMS 2960/4—Glass Fabric with Epoxy Resin Wet Lay-Up Repair Material. Part 4
6. AMS 2960/4—Glass Fabric with Epoxy Resin Wet Lay-Up Repair Material. Part 5
12. AMS 3970—Carbon Fiber Repair Pre-Preg, 125°C Vacuum Curing
13. AMS 3970/1—Carbon Fiber Fabric Repair Pre-Preg, 125°C Vacuum Curing. Part 1—General Requirements
14. AMS 3970/2—Carbon Fiber Repair Pre-Preg, 125°C Vacuum Curing. Part 2—Qualification Program
15. AMS 3970/3—Carbon Fiber Repair Pre-Preg, 125°C Vacuum Curing. Part 3—Purchasing Specification for Epoxy Pre-Preg
16. AMS 3970/4—Carbon Fiber Repair Pre-Preg, 125°C Vacuum Curing. Part 4—Purchasing Specification for Film Adhesive

For additional information on these documents or a complete list, contact SAE International at 400 Commonwealth Drive, Warrendale, PA 15096-0001, U.S.A.; phone 724-776-4970; fax 724-776-0790; e-mail CustomerService@sae.org; website http://store.sae.org.
INDEX

“A” curing stage, 319
“A” glass, manufacture of, 22
“A” post-curing procedure, 427
“A” stage resins, 61
Abrading, 281
Abrasion, 254
Abrasive cleaning, 442, 444
Access panels, 466, 484–485
Acetone, 267
Acids, 160
t fumes and splash from, 190–191
Acoustic panel, damage from inadequate water drainage, 466, 489
Acrylic adhesives, 55, 68
Adherend, 72f
effects on adhesive in bonded joints, 563–567
failure of, in bonded joints, 547
Adherend modulus, 173
Adherend thickness, 173
Adhesion
 principles of, 436–441
 theory of, 436–439
Adhesive bonding
 in bonded joints, 582, 583
design issue regarding, 491–492
physical and chemical forces in, 437t
Adhesive failure, 73f
Adhesive layer thickness, 173
Adhesive modulus, 173
Adhesives
 acrylic, 68
 behavior in bonded joints, 549–570
carriers for, 71f
chemical properties required of, 57–59
chlorine content in, 433–434
damage prevention for, 111–112
displacement in bonded joints, 570–581
elastic and plastic behavior in bonded joints, 551–560
environmental durability of, 431, 439–440
epoxy, 59–61, 69–70, 435
failure of, 548, 549f
 fillers for, 71f, 92–93
foaming, 68
hazards associated with, 184t
history of, 431–435
identification of, 113
liquid, 66–68
mechanical properties required of, 59
moisture damage prevention for, 112
peel stress in bonded joints, 570–581
pH control in, 433–435
phenolic, 68
physical properties required of, 57–59
polyester, 68
polyurethane, 68
release notes and approved certificates, 116
requirements for, 431–435
solubility parameters of, 77t, 78t
storage of, 111–113, 116
storage temperature requirements for, 108–109
surface tension of various, 445t
See also Film adhesives; Paste adhesives
Advisory Circulars (ACs), 248
Aerodynamic smoothness, 176, 258
repair design considerations for, 520
Aerospatiale aircraft, composites in, 6
Aging, damage from, 141
assessing, 235
Air compressors, 409–411
Air Transport Association of America ATA 100 System, 249
Airbus aircraft, composite use in, 6
Aircraft Maintenance Manual (AMM), 249
AirCraft
 early, composites in, 5
 modern, composites in, 6–7
Airworthiness Directives (ADs), 249
Airworthiness Notices, 249
Alkaline detergent cleaners, 269
Allowable damage, 251, 255
Allowable damage limits (ADLs), 503
Alloys, galvanic series of, 161t
Alochrom 1200, 442, 448–450
Alodine, 442, 448–450
Alternative materials procedures, 245
Alternative parts procedures, 245
Alumina fibers, 35
 properties of, 21t
Alumina/boria/silica fibers, 35–36
 properties of, 21t
Alumina/silica fibers, 35
Aluminum
 boron repair to, 265
 carbon repair to, 265–266
 glass repair to, 265
 coatings for, flame-sprayed, 101
Aluminum alloy honeycomb, 85–86, 89
 cleaning of, 86
 design issue regarding, 492
 disbanding, 229
 impact resistance, 467
 moisture ingress, 480
 vapor degreasing, 270
Aluminum-coated fiber, repair design considerations for, 515
Aluminum foil, repair design considerations for, 517
American Military Standards, for fasteners, 339
Amino silane A.1100, 50
Amorphous thermoplastic resins, 52
Analysis techniques
 laminate, for repair design, 522–535
 simplified, 522–524
Anodizing
 chromic acid, 442, 451
 phosphoric acid, 442, 451–456
 phosphoric acid non-tank (PANTA), 452, 454–456
Anti-static coatings, 101–102
 repair design considerations for, 518, 519f
Approved certificates, 114–116
Aramid, properties of, 21t
Aramid components, impact damage to, 466, 473, 476–478
Aramid fabric, 33
 elastic modulus of, 527f
 in-plane shear modulus analysis, 535, 537f
 in-plane shear strength analysis, 538, 540f
 normalized strength of, 527f

Poisson’s ratio of, 533f, 534
 release notes and approved certificates, 115
 shelf life/out time, 116
 strength analyses of, 529, 531f
Aramid fibers, 32–34
 bandsaw considerations, 409
 chemical properties of, 33–34
 comparison with carbon fiber, 31t
 creep properties of, 33
 design considerations for, 32
 finishes for, 51–52
 mechanical properties of, 20t
 respirable, 186
 storage temperature requirements for, 108
 use in repairs, 33
 water absorption of, 34
Astrocoat, 103
Attachments, 171–176
Autoclave bonding, 131–135
Autoclave cure, 425–426
Axial strain, 498

“B” curing stage, 319
“B” post-curing procedure, 427
“B” stage resins, 61
BAE Systems Regional Aircraft, composites in, 6, 8f
Bag side, 298
Bagging
 definition of, 298
 final procedure for, 425
 lay-up of, 419f
 materials for, use in repairs, 297
 sequence for, 304
Bagging film sealant tape, definition of, 298
Balance, 176, 258
 recording of, 397
 and symmetry, 152, 153f
Balanced laminate, 152, 153f
Balsa wood, 79–80
Bandsaws, 408–409
Barely visible impact damage, 506
Barrier creams, 415
Bases, 160
Bearing damage, assessing, 235
Bearing failure, 585, 586f
Bending loads, 540–541
Benzyl alcohol, 16
Bismaleimides (BMIs), 56
Bits, drill, selection of, 399–400
Blade selection, for bandsaws, 408–409
Bleeder cloth
 definition of, 298
 selection criteria for, 302
Bleed-out fabric, definition of, 298
Bleed-out film, 300
Blind bolts
 installation of, 369–371
 specialty, 350–353
Blind fasteners
 removal of, 371–372
 damage when drilling out, 466, 472–473
Blind repairs, 291, 292–294
Blind rivets, 341–342
 installation of, 367, 368
Boegel EPII sol-gel process, 442, 450
Boeing aircraft, composites in, 6, 8
Bolt holes, assessing damage to, 235
Bolt inserts, 353, 356, 357
Bolted doublers, 259–260
Bolted joints, design issue regarding, 491
Bolts
 blind, 350–353, 369–371
 hex drive, 350
 lockbolts, 346–349, 369
 robotic installation of, 371
 special, 343, 345
 standard, installation of, 367–369
Bond durability, 459
Bond failures, assessing, 235
Bond performance, 459
Bond testers, 223–224
Bonded doublers, 259–260
Bonded fasteners, 372–374
 applications of, 373
 installation of, 373
 removal of, 374
Bonded joints, 172–175
 adhesive behavior in, 549–570
 adhesive displacement in, 570–581
 adhesive peel stress in, 570–581
 design issue regarding, 491
 durability of, 581–582
 efficiency of, 548
 failure modes of, 547–549
 recommended joint overlaps, 568–570
 repair design considerations, 545–584
 repair design recommendations, 583–584
 types of, 545–547
Bonding
 metal-to-metal, 296
 workshop conditions for, 184–186
Boron fibers, 34
 mechanical properties of, 20
 properties of, 21
Boron repair to aluminum, 265
Breather cloth
 definition of, 298
 selection criteria for, 302
Bridging, definition of, 298–299
Buff joint, 73
Burned, 254

"C" curing stage, 320
"C" glass, manufacture of, 22
"C" stage resins, 61
Calibration History Card, 393
Calibration records, 393–394
Calibration standards, 218
Carbon fabric, 31
 elastic modulus of, 526
 in-plane modulus analysis, 535, 536
 in-plane shear modulus analysis, 538, 539
 normalized strength of, 526
 Poisson's ratio of, 532, 534
 release notes and approved certificates, 115
 shelf life/out time, 116
 strength analyses of, 529, 530
Carbon fibers, 17–18, 25–31
 comparison with other common fibers, 31
 finishes for, 50–51
 future development of, 25–26
 high modulus, 30
 high strain, 30
 high strength, 30
 intermediate modulus, 30
 manufacture of, 25
 from PAN, 26
 mechanical properties of, 20
Carbon fibers (continued)

- properties of, 21f
- against heat treatment, 27f
- respirable, 186
- schematic of, 27f
- storage temperature requirements for, 108
- types of, 28–29
- ultrahigh modulus, 30

Carbon repair to aluminum, 265–266

Carbon tape, 31
- elastic modulus of, 525f
- in-plane shear modulus analysis, 535, 536f
- in-plane shear strength analysis, 538
- normalized strength of, 525f
- Poisson’s ratio of, 532f, 534
- strength analyses of, 529, 530f

Casein glues, 431, 432

Cast cutters, 407

Category One repairs, 506

Category Three repairs, 506–507

Category Two repairs, 506

Caul plates, 418, 419f
- use of, 314–315

Certificates of Conformance, 395

Certification load capacity, 500–505

Chamfers, 173

Charring, 254

Chart recorders, 392, 394

Chemical attack, 254

Chemical damage, 231
- assessing, 238

Chemical heat packs, 412

Chemical spills, emergency actions, 201–202

Cherry lockbolts, 346

Cherry MaxiBolt blind bolts, 350

Chlorinated solvents, vapors from, 189

Chlorine content in adhesives, 433–434

Chopped strand mats, 45
- manufacture of, 24f

Chromic acid anodizing, 442, 451

Ciba Laser Pretreatment (CLP), 457

Citrus-based cleaners, 268

Clamping, temporary, 362–365

Class/zone system, 137, 138f, 139f

Classical laminated plate theory (CLPT) analysis, 522, 523, 525f, 526f, 527f
- of elastic modulus, 528f, 529f
- of in-plane shear modulus, 536f, 537f

of in-plane shear strength, 538f, 539f, 540f
- of Poisson’s ratio, 532f, 533f
- of strength, 530f, 531f

Clean room, temperature and humidity control, 185f
- reports of, 392

Cleaning
- abrasive, 442, 444
- agents for, 267–270
- brushes for, 269
- cloths for, 269

Cleavage peel, 73f

Cleavage-tension failure, 586–587

Climbing drum peel test, 330, 331f
- reporting results of, 392

Coatings
- conductive, 101–102
- erosion-resistant, 102–103
- neoprene, 102–103
- polyurethane, 102–103
- protective, 93–104
- vapors from, 190

Co-cured doublers, 260–261

Coefficient of thermal expansion, 492
- of tooling materials, 135f

Cohesive failure, 73f
- of bonded joints, 547

Cold water wash equipment, 270

Color samples, for checking primer thickness, 462

Commercial Aircraft Composite Repair Committee (CACRC), 1
- survey of problems, 465

Company specifications, 246

Component Additional Worksheet, 378, 380f

Component documentation, 396–397

Component identification, 253

Component Maintenance Manual (CMM), 249–250

Component Master Worksheet, 378, 379f, 397

Component Record Card, 378, 382f, 396, 397

Composi-Lok blind bolts, installation of, 369–371

Composite fasteners, 374–375

Composite laminate, Poisson’s ratio for, 499

Composite materials, selection of, for repairs, 521–522
Composite parts
avoidance of damage in, 13–16
care of, 7, 11–16
chemical damage to, 11
damage removal from, 277
design guide for, 465–493
deterioration of, in normal service, 12
disbanding, 274
handling of, 11
moisture ingress in, 466, 478–479
overheat damage, 11
oversized, 466, 484–485
paint stripping of, 99–100
physical damage to, 10–11
reduction of deterioration in service, 13–16
repair recommendations for, 521
rigging of, 14–15
sources of damage to, 10–12, 141–142
testing of, 492
thermal distortion of, 329–330
types of, 142–148
Composite patches, 259–260, 261f
Composite repairs to metals, 265–266
Composites
advantages of, 2–3
applications of, 5–7
definition of, 1–2
disadvantages of, 3
handling of, 107–119
history of, 2
impact damage to, 76
manufacturing techniques for, 121–135
problems in service, 465–490
projected use of, 6f
surface preparation of, for repairs, 280–283
survey regarding problems in service,
465–490
Compression loads, 495–496
Compressors, air, 409–411
Conductive coatings, 101–102, 518, 519f
Consumables, storage of, 110, 112
Contaminants, 156
Contamination, removal of, 279–280
Continuous strand (filament) mats, 45
Control of Substances Hazardous to Health
(COSHH), 181
Cooling, 401
Core materials, 76–90, 144
care of, 119
cell size of, 544
density of, 544
fluted, 90
foam, 80–81
general mechanical properties of, 543f
honeycomb, 82–90
removal of damaged, 277–278
syntactic, 90
wood, 79–80
Core splice adhesive, 146
Cores
effect of thickness on structural efficiency,
541f
function of, 540–545
honeycomb, geometric direction of, 542f
loading of, 540–545
orientation of, 154–155
repair design considerations, 540–545
repair design recommendations, 544–545
Corrosion-inhibiting adhesive primers
(CIAP), 459
Corrosion prevention, 162
Corrosion resistance, of fasteners, 603
Cotton swabs, 269
Countersunk holes, metal edges to accommo-
date, 471, 473f
Coupon test, 330
reporting results of, 392
Coveralls, 415
Cowlings, damage from slamming, 466, 483
Cracks, 230, 254
methods for assessing, 234f
Creep, 170–171
in bonded joints, 581–582
Critical areas for damage, 255
Critical damage threshold (CDT), 503
Crowfoot satin, 41f
Curing
charting, 377–378
deinition of, 65
elevated-temperature, 320
low-temperature, 320
of primers, 461
stages of, 61–63, 319–330
definitions for, 319–320
temperatures for, 319–330
Cutters, cast, 407
Cutting tools, selection of, 399–400
Cutting utensils, 404–405
Cutting wheels, 403
Cyanate ester, 56

“D” glass, manufacture of, 22
Dam fabrication, 419–420
Damage
 from abrasion, 254
to acoustic panel, 466, 489
from aging, 141
allowable, 251, 255
avoidance of, 13–16
bearing, assessing, 235
chemical, 11, 76, 231, 254
 assessing, 238
classification of, 254–258
to composite parts, sources of 10–12, 141–142
from cowlings being slammed, 466, 483
delamination, 141
disassembly, 232
from drilling out blind fasteners, 466, 472–473
erosion, 141, 232, 255
 assessing, 239
 of leading edge of panels, 465, 468
 at fastener holes, 466, 470–471, 472
fatigue, 231
from flexure under load, 466, 489
heat, 230–231
 assessing, 235–238
from hot exhaust air, 466, 488
impact, 76, 232, 255
 in aramid components, 466, 473, 476–478
 assessing, 235
barely visible (BVID), 506
to honeycomb panels in service, 465, 466–467
mechanical, 141
at latch positions, 465, 468, 470
from inadequate water drainage, 466, 489
from lightning, 141, 466, 485–488
mapping of, 233
 mechanical, sources of, 232–233
 methods for assessing, 234
 moisture, 141, 231, 466, 473, 476–482
 assessing, 238–239
 prevention of, to stored materials, 112–113
 negligible, 255
overheat, 11, 141
physical, to composite parts, 10–11
 prevention of, in storage, 110–113
 removal of, 274–279
repairable, 256, 257
repair assessment for, 209–239
 significance of, assessing, 233–239
from tape used inappropriately, 466, 488
terminology for, 254–255
from thermal expansion mismatch, 466, 490
tolerance capability, proof of, 504–505
tolerance of, 169–170
 definition of, 140
types of, 226–231
wear, assessing, 239

Dams, use of, 315
Data strip, 377–378
Debagging precautions and typical problems, 318–319
Debulking, 318
 definition of, 299
 procedure for, 424–425
Deflection temperature under load (DTUL), 63
Delamination, 141, 229–230, 254, 586f, 588
 assessing, 234
Denier, definition of, 46
Deoxidine, 457
Dermatitis, 199–201

Design
 of adhesive bonding, 491–492
 of aluminum alloy honeycomb, 492
 of aluminum alloy parts, 492
 of aramid fibers, considerations for, 32
 of composite parts, guide for, 465–493
 of engine cowlings, 490
fail-safe, 168–169
 of flap structure, 475f
 of glass fiber fabrics, 48f
 of honeycomb panels, 490–491
Design (continued)
of joints, 72f, 172, 175, 491
of latch position, proposed alternative, 471f
original, criteria for, 137–177
of panel edges, 490
of radomes, 491
of repairs, 495–609
requirements for, 500–507
of resin matrices, 490
of trailing edge, 474f
Design Deviation Authorizations, 245
Design load limit (DLL), 500–504
Design ultimate load (DUL), 500, 503
Desothane HS topcoat, 100
Destructive inspection, reports of, 392
Diamond wheel trimmers, 404
Die grinder kit, 403f
Diffusion coefficient, 492
Diffusion theory, 436
Direct heating, 321
Disassembly damage, 232
Disbond, 228–229, 254
methods for assessing, 234f
Disbonding, methods for, 270–274
Displacement, of adhesives in bonded joints, 570–581
Diverter strips, repair design considerations for, 515, 516f
Documentation, 377–398
internal, 245
source, 241–252
Double overlap joint, 72f
Double-Flex, 83f, 88
Doubler material, removal of, 276
Drainage holes, replacement of, 258
Drawing Change Notes (DCNs), 243
Drawing number systems, 242–245
Drilling, 357–360
blind fasteners, damage from, 466, 472–473
Drills, 399–401
Dry fabrics, storage temperature requirements for, 108
Durability, 440–441
Dust, 186–188
sanding, 187–188
“E” glass, 23
manufacture of, 22
mechanical properties of, 20f
Ear protection, 415
Ebonite (Hycar), 80
Echo amplitude measurements at normal incidence, 217–219
Eddy current inspection, 221–222
Edge band repairs, 285–286, 287f, 288–289f
Edge bleed-out method, 316–317
Edge distance, 361, 362f
Edge sealing, moisture ingress due to, 466, 479–480
Edges, handling by, 443f
Effectivity codes, 242
Eight shaft satin, 41f
Elastic modulus, analysis of, 524–529
Electrical appliances, safety requirements for, 204–205
Electrical requirements, 166
Electrolytes, 160
Electromagnetic interference, 163
Electrostatic discharge, 163–164
Electrostatic protection, repair design considerations for, 512–520
Electrostatic theory, 436
Elevated-temperature cure, 320
Emulsion-type cleaners, 268
End, definition of, 46
Engine cowlings, design issue regarding, 490
Engine manual, 252
Engineering Instructions, 245
Envelope bagging, 303–304
Environment, 181–206
Environmental effects and protection, 511–520
on bonded joints, 581–582
Environmental management standards, ISO, 205–206
Epoxy, 55, 67
adhesives, 435
film, 69–70
curing stages of, 61–63
resins, 57
mixing and mix ratios for, 63–65
silane Z.6040, 50
Erosion, 156–157, 255
 damage from, 141
 of leading edge of panels, 465, 468
 assessing, 239
Erosion-resistant coatings, 102–103
Exhaust, hot, damage from, 466, 488
Exothermic reactions, 195–196
Expanded foil mesh, repair design considerations for, 513–515
Expiration Date/Error Card, 393f
Explosion, risk of, 202
Exposure limits, 191
Extension cables, 329
Eye contamination, emergency first-aid procedures, 197
Eye protection, 415
F565-4000 group intermediate coat, 100
FAA Form 1, 385, 386f
Fabrics, 38–47
 care of, 118
 recertification, 118
 damage prevention for, 110, 111f
 identification of, 113
 storage temperature requirements for, 108
 lay-up methods for, 123–125
 new, sizing and finishes for, 52
 noncrimp, 43
 nonwoven randomly oriented mats, 43, 45
 pre-preg, shelf life/out time, 116
 woven, 38, 39f, 40, 41f
 effect of weave styles, 42
 terminology for, 40
 See also Aramid fabric; Carbon fabric;
 Glass fabric
Fail-safe, definition of, 140
Fail-safe design, 168–169
Failure, consequences of, 142
Failure modes, of fastened laminate, 585–588
Fastener holes
 damage at, 466, 470–471, 472f
 loaded, 592–594
 moisture ingress through, 466, 480–482
Fastener pitch, 361, 362f
Fastener pull-through, 586f, 587
 bending of, 602, 603f
 compatibility considerations, 605f
 compatibility of, 339–340
 composite, 374–375
 corrosion resistance of, 603
 failure modes of, 588, 589f
 installation of, 362–371, 602–603, 604f
 length determination for, 365–366
 load distribution and joint geometry, 594–596, 597f, 598f
 pull-through strength of, 602
 removal of, 371–371
 repair recommendations for, 608–609
 rotation of, 602, 603f
 selection of, 601–604
 specialty, 343, 345f
 standards for, 339
 substitution for, 372
 symbols and their interpretations, 338f
 types of, 338–343
 See also Blind fasteners; Bonded fasteners
Fatigue, 167–169, 231
 in bonded joints, 581–582
 of mechanically fastened joints, 600–601
Fatigue capability, proof of, 504
Federal Aviation Regulations (FARs), 241, 248
 FAR 145, 378–391
Federal specifications, 246
Fiber finish, 47, 49–52
Fiber reinforcement, 17–37
Fiber sizing, 47, 49–52
Fiberglass
 for honeycomb cores, 87
 respirable fibers, 186
 products, manufacturing process for, 24f
 See also Glass fibers
Fibers
 advanced composite, mechanical properties of, 20f
 alumina, 21f, 35
 alumina/boria/silica, 21f, 35–36
 alumina/silica, 35
 boron, 20f, 21f, 34
 in contact with skin, 192
 definition of, 45
 graphite, 26–31, 186
 high-performance, 17–19
Fibers

(continued)
new, 34–37
polyacrylonitrile (PAN), 25, 26f, 30f
polybenzimidazole (PBI), 37
polyethylene, 36
properties of, 21t
quartz, 21t, 36
respirable, 186–188
silicon carbide, 20t, 21t
SiO, 21t
Si₃NₓCᵧ, 21t
single, 17
Vectran HS, 37
See also Aramid fibers; Carbon fibers; Glass fibers
Filament winding, 121–123
circumferential, 121f
polar, 121f
Filament-wound parts, repair difficulties, 466, 488–489
Filaments, definition of, 45
Fillers
 cracking in, 466, 483
 materials for, 92–93
 use of, in surface restoration, 334
Fillets, 73f, 74f, 173f
Film adhesives, 69–71
care of, 119
curing stages of, 61–63
recertification, 118
shelf life/out time, 116–117
storage of, 108–109, 111–114, 116
terms applicable to, 72–73f
vinyl phenolic, 70–71
Finishes, 99–100
 fiber, 47, 49–52
 protective, repair recommendations for, 522
Fire prevention, 203
Fire resistance, 158–159
Fires, emergency first-aid procedures, 197
First-aid procedures, 197
Flame spray, repair design considerations for, 513
Flap structure, design of, 475f
Flex-Core, 83f, 88, 89
Flexural strength, 166–167
Flexure under load, damage from, 466, 489
Flight control balance moment, repair design considerations for, 520
Flow, 72f
Fluorinated polymers, 299
Foam cores, 80–81
Foam density, 81
Foam materials, 81
Foaming adhesives, 68
Foil mesh coatings, expanded, 101
Fokker aircraft, composites in, 6
Four shaft satin, 41f
FPL etch, 442, 450–451
Fracture, 255
Freezer log, 395
Fuel, vapors from, 190
Fume cupboards, 416
Fumes, 188–191
Fuselage ice protection plates, 466, 484

Galvanic corrosion, 159–163
Gaps, in mechanically fastened joints, effects of, 601
Gel, definition of, 62
Gel point, definition of, 62
Gelation, 320
Gelation time, definition of, 62
Glass, manufacture of, 22–23
Glass fabric
design of, 48f
elastic modulus of, 527f
in-plane shear modulus analysis, 535, 537f
in-plane shear strength analysis, 538, 539f
nomenclature for, 48f
normalized strength of, 527f
Poisson’s ratio of, 533f, 534
shelf life/out time, 116
strength analyses of, 529, 531f
textile glass details, 49f
used in aircraft repairs, 25f
Glass fibers, 19–20, 22–25
comparison with carbon fiber, 31f
fabric design, 48f
finishes for, 47, 49–50
manufacture of, 23f, 23–25
nomenclature for, 48f, 50f
release notes and approved certificates, 114
CARE AND REPAIR OF ADVANCED COMPOSITES

Glass-reinforced plastics (GRPs), 2
Glass repair to aluminum, 265
Glass transition temperature, 62–63
effect of moisture on, 76
operational, 511–512
Gloves, 415
selection of, 193–194
Glue-line thickness control, 71, 72f, 74–75
Graphite fibers, 26–31
manufacture of, 29f
respirable, 186
Graphite honeycomb, 87–88
Grinders, high-speed, 401–404
Grit blast, 442, 448
Grommets, 353, 356f, 357

Hand tools and techniques, 399–408
Health, equipment for, 414–416
Heat damage, 230–231
assessing, 235–238
Heat deflection temperature, 63
Heat guns, 411
Heat lamps, 411
Heat shield, inadequate, 466, 482
Heat sinks, 327–328
Heat treatment, 27f
Heater blankets, 412
use of, 326–327
Heating devices, 411–412
Hex drive bolts, 350
Hexagonal cells, 83f, 88
HFT glass-reinforced phenolic honeycomb, 89
HFT-G graphite-reinforced honeycomb, 89
High modulus carbon fibers, 30
properties of, 20r
High strain carbon fibers, 30
High strength carbon fibers, 30
properties of, 20r
High-temperature cut-out, 394
Hi-Lite fasteners, 347, 348–349f
Hi-Loks, 347
Hole preparation, 357–362
Hole protection, 361–362
Hole sizes, 360–361
Hole tolerances, 360–361
Hollow end rivets, 343, 344f
Honeycomb
care of, 119
storage of, 111–114, 116
Honeycomb bond, 74f, 75f
Honeycomb cores, 82–90
cell shapes of, 84f, 88
cell sizes of, 88–90
configuration of, 83f
density of, 88–90
manufacturing process, 82f
material types for, 85–88
new materials for, 89–90
termiology of, 84f, 85
Honeycomb panels
design issue regarding, 490–491
erosion damage, to leading edge, 465, 468
impact damage in service, 465, 466–467
punctures due to pipe clips, 465, 467–468, 469f
sealing inside skins against Skydrol, 466, 482
Honeycomb structures, damage mapping of,
233
Hooke's law, 507
Hot air blowers, 411–412
Hot bonders, use of, 324–326
Hot-bonding considerations, 134f, 135f
Hot water wash equipment, 269–270
HP-Polyethylene, mechanical properties of,
20r
HPZ SiNC fibers, properties of, 21t
HRH honeycomb, 89
HRP honeycomb, 89
Huck ASP fastener, 357
Huck Ti-Matic blind bolt, 353
Huck UniMatic blind bolt, 353
HuckComp lockbolts, 346
HuckTite sleeved lockbolts, 346
Humidity, 156, 185, 186
effects in durability, 441
Hybrid, definition of, 46
Hybrid material application, 597, 599, 600f
Hybrid repairs, 286, 291
Hydrofluoric acid (HF) etching, 442, 446–448
Hygrothermal effects, 158

626
“I” beam, versus sandwich construction, 78
Ice protection plates, 466, 484
Illustrated Parts Catalog (IPC), 242, 250
Impact damage, 232, 255
 in aramid components, 466, 473, 476–478
 assessing, 235
 barely visible (BVID), 506
 to honeycomb panels in service, 465, 466–467
 methods for assessing, 234
Impact resistance, 169–170
Incident reports, 391–392
Indirect heating, 321
Ingestion, emergency first-aid procedures, 197
Inhalation, emergency first-aid procedures, 197
Injected repairs, 291
Injection molding, 128–130
In-plane shear modulus, analysis of, 534–535
In-plane shear strength, analysis of, 535, 538–540
Inserts
 at bolt positions, 471, 473
 to minimize water wicking, 476
 to prevent moisture ingress, 481
Inspection Report, 378, 383
Interferometry, 226, 227, 228
Interim repairs, 251
Intermediate modulus carbon fibers, 30
ISO environmental management standards, 205–206
ISO Specifications and Test Methods, 247
Isopropyl alcohol (IPA), 268
Isoscope, 461–462

JAA Form 1, 385, 386
Joint Airworthiness Requirements (JARs), 241, 248
JAR 145, 378–391
Joints, 171–176
 bolted joints, design issue regarding, 491
 design, 72
 efficiency of, 172
 riveted, 175–176
See also Bonded joints; Lap joints; Mechanically fastened joints

Kevlar, 32, 33, 34
 or honeycomb cores, 88
 mechanical properties of, 20
Kitting, 117–118
Knives, 405

Lagging thermocouple, 323
Laminates
 analysis techniques for repair design, 522–535
 balanced, 152, 153
 fastened, failure modes of, 585–588
 loading of, repair design for, 495–499
 quasi-isotropic, 153
 repair design considerations, 507–522
 repair design recommendations, 521–522
 symmetrical, 152, 153
Lap joints, 173, 174
 overlap length for, 72
 stepped, 283
 stress distributions across, 174
Lap shear test, 332
 reporting results of, 392
Latch position
 damage at, 465, 468, 470
 proposed alternative design, 471
Lateral strain, 498
Lay-up methods
 automated, 124–125
 for fabrics and tapes, 123–125
 hand, 123–124
 wet, 123–124
 elevated-temperature, 262
 room-temperature, 261–262
 orientation for mechanically fastened joints, 596–597, 599
 tooling for, 423–424
LCP fiber, properties of, 21
Leading edge
 erosion damage to, 465, 468
 protection of, 468, 470
Leading thermocouple, 323
Lightning
 damage from, 141, 466, 485–488
 energy dispersion of, 164–165
 repair design considerations for, 512–520
Limit loads, 167
Liquid and paste adhesives, 66–68
Lockbolts, 346–349
installation of, 369
Log book sign-offs, 392
Long carbon reinforcements, 375
Long glass reinforcements, 375
Long quartz reinforcements, 375
Low-temperature cure, 320
materials for, 430
Lubrication, 401

Maintenance Occurrence Reports (MORs), 392
Manufacturer certifications, 395
Maranyl (methylmethoxy nylon), 103
Masks, dust and vapor, 414
Material Safety Data Sheets (MSDSs), 195
Materials, 17–104
care of, 118–119
cleanliness of, 110–112
control records for, 395–396
cutting of, 119
damage prevention, 110–112
moisture damage prevention, 112–113
receiving of, 107
shipping of, 107
storage of, 108–116
temperature requirements for storage, 107, 108–110
See also Core materials
Materials Record Sheet, 378, 381f
Materials selection, for bonded joints, 584
Materials specifications, 245–247
Matrix crazing, assessing damage to, 235
Matrix systems, 52–66
Mats, nonwoven randomly oriented mats, 43, 45
Measuring devices, 412–413
Mechanical anchoring theory, 436, 436f
Mechanical clearance, 257–258
Mechanical damage, sources of, 232–233
Mechanical fastening systems, 337–375
Mechanical grade system, definition of, 138
Mechanical impact damage, 141

Mechanical properties
of advanced composite fibers, 20f
specific, 19f
Mechanical requirements, 166–171
Mechanically fastened joints, 175–176
effects of gaps in, 601
effects of shims in, 601
fatigue of, 600–601
lay-up orientation for, 596–597, 599f
loading of, 588–592
repair design considerations, 584–609
repair recommendations, 608–609
repairs in sandwich panels, 604, 606–608
Meg-ohm meter, 413
Melamine formaldehyde, 54
Metadalic/Sifco Selective Plating, 457
Metal bonding, 431–463
adhesive, 441–442
metal-to-metal, 296
Metal-coated fabric coatings, 101
Metal fittings, thermal expansion problem, 466, 490
Metal foil coatings, 101
Metal parts
disbonding, 270–273
removal of damage from, 274–275
Metallic foil mesh, repair design considerations for, 513–515
Metallic straps, repair design considerations for, 515, 516f
Metallic surface preparation, for repair, 285
Metals
comparison to fibers, 17–19
galvanic series of, 161f
surface tension of various, 445f
Microballoons, 93
Milled fiber fillers, 93
Mix ratios for epoxy wet resins, 63–65
Mixing of epoxy wet resins, 64–65
Mixing precautions, 196
Modifications, in-house, 245
Modified phenolic, 45
Modified phenolic resin pre-pregs, 54
Moisture
effects on adhesive in bonded joints, 560–563
removal of, 279–280
Moisture ingress, 231
 assessing damage from 238–239
 in composite parts, 466, 478–479
due to bad edge sealing, 466, 479–480
 through fastener holes, 466, 480–482
 methods for assessing, 234f
in radomes, 466, 478
 from rivet holes, damage from, 466, 473
 through tooling holes, 466, 482
 at trailing edge, 493
Moisture meters, 224–226
Mold making, 417–430
Mold release agent, definition of, 299
Monogram
 Composi-Lok blind bolts, 350
 MXP Performer bolt, 353, 355f
 OSI-Bolt, 352–353, 354f
 Radial-Lok (MRL) blind bolts, 351
 Radial-Lok (MRL) lockbolts, 346
 Radial-Lok, installation of, 371
Monolithic laminated structures, 142–143
Monolithic parts, damage mapping of, 233
Mosquito aircraft, 5, 432–433
Multiple load path, definition of, 140

National Aerospace Standards (NAS), 246–247
 for fasteners, 339
Negligible damage, 255
Neoprene coatings, 102–103
Nesting laminate, 153–154
Net tension/compression failure, 585, 586f
Nextel, 35–36
Nicalon, 36
Nomex aramid honeycomb, 86–87
Non-corrosion-inhibiting adhesive primers, 459
Noncrimp fabrics (NCFs), 43, 44f
Nondestructive inspection (NDI)
 appropriate assessment methods, 234f
 requirements of, 330
 reports of, 392
Nonroutine work documents, 391–394
Offset failure, 586f, 587
Oil contamination, of compressed air lines, 409–411
Open-hole stress concentrations, 588, 590f
Operational environment, 155–159
Operational glass transition temperature, 511–512
Orbital sanders, 406
Original design criteria, 137–177
Original equipment manufacturer (OEM)
documents, 247–248
Oscillating saws, 407
Out time, definition of, 117
Out-Time Log, 396
Oven curing, 135
Overhaul Manual (OHM), 250
Overhaul or replace, 256
Overheat damage, 141
Overheat protection, 324
OX-Core, 83f, 88, 89
Oxides, surface tension of various, 445f
Pad-ups, 597, 599, 600f
Paint film thickness checker, 412
Paint removal, 270
Painting equipment, 408
Panel edges, design issue regarding, 490
Parting agent, definition of, 299
Parting film, 300
Parts integration, 7
Pasa-Jell, 442, 444
Paste adhesives, 66–68
 care of, 119
 identification of, 114
 recertification, 118
 shelf life/out time, 117
 storage temperature requirements for, 108–109
PBI fiber, properties of, 21f
PE fiber, properties of, 21f
Peel, 72f
Peel ply
 definition of, 299
 selection criteria for, 302

629
Peel stress, on adhesives in bonded joints, 570–581
Peel test, 332, 333f
Peelers, skin, 405
Perforated release film, definition of, 300
Permeability, 93–94
Personal safety precautions, 198–199
pH control in adhesives, 433–435
Phenol formaldehyde, 54
Phenolic adhesives, 68
Phenolic resins, 54–56, 57
 curing stages of, 61–63
Phosphoric acid anodizing, 442, 451–456
Phosphoric acid containment system (PACS), 452, 453f
Phosphoric acid non-tank anodizing (PANTA), 452, 454–456
Physical adsorption theory, 437
Pick, definition of, 46
Picture frames, repair design considerations for, 515
Pipe clips, incorrectly located, 465, 467–468, 469f
Pitch, 25, 26
Plain weave, 41f
Plastic welding, 296
Plastics
 glass-reinforced, 2
 solubility parameters of, 78t
 surface tension of various, 445t
Pleating, 304
Ply charts, 243
Ply compaction, 318
Ply determination, for repairs, 280–283
Ply orientation, 149–154
Poisson’s ratio, 498–499
 analysis of, 531–534
Polarized light test of anodic coating, 456f
Pollution, 182–184
Poly para phenylene terephthalamide, 32
Polyacrylonitrile (PAN) fibers, 25, 26f, 30f
Polybenzimidazole (PBI) fibers, 37
Polyester, 54–55
 adhesives, 68
 resins, 66
Polyethylene fibers, 36
Polyimide foams (Solimide), 81
Polyimides, 56
Polymethylmethacrylimide (Rohacell), 80–81
Polysulfides, storage temperature requirements for, 109–110
Polythioether sealants, 96–97
 storage temperature requirements for, 110
Polyurethane, 55, 80
 adhesives, 68
 coatings, 102–103
Polyvinyl chloride, 80
Polyvinyl formal phenolics, 54
Portable equipment, labeling, 205
Post-curing, for tooling, 426–427
Pot life, definition of, 65
Potted repairs, 296, 297f
Potting compounds, 90–93
 care of, 119
 filler materials for, 92–93
 recertification, 118
 repairs with, 259
 shelf life/out time, 117
 storage of, 114, 116
 storage temperature requirements for, 108–109
Pre-cured doublers, 260–261
Prepared surfaces, protection of, 462–463
Preplied piles, definition of, 46
Pre-pregs
 care of, 119
 curing stages, 61–63
 definition of, 46–47
 lay-up methods for, 123–124
 recertification, 118
 repairs with, 262–263
 room-temperature cooling, tooling for, 422–430
 storage of, 111–113, 116
 storage temperature requirements for, 108–109
Press molding, 130–131
Prestec enamel polyester paint, 103
Primary structures, 137–142
 definition of, 137, 140
Primers, 98
 agitation of, 460
 application of, 459–460
 care of, 119
 corrosion-inhibiting adhesive (CIAP), 459
Index

Primer (continued)
curing of, 461
handling of, 462–463
measuring thickness of, 460, 461–462
method of application, 460
non-corrosion-inhibiting adhesive, 459
reasons for using, 458–459
shelf life/out time, 117
storage of, 116
storage temperature requirements for, 108–109
thickness of, 460
verification of, 460, 461–462
types of, 459
water-based corrosion-inhibiting, 459
Principal structural elements, 137–142, 506
definition of, 140
Process control documents, 377–392
Process specifications, 245–247
Production drawings, 242–243
Protective coatings, 93–104
Protective finishes, repair recommendations for, 522
Pultrusion, 125, 126f
Pumps, vacuum, venturi-type, 409, 410f
Quality Control Form, 385, 387–388f
Quartz fibers, 36
properties of, 21f
Quasi-isotropic laminate, 153f
“R” glass, manufacture of, 22
Radar transmissivity, 165–166
Radomes
design issue regarding, 491
moisture ingress in, 466, 478
radar transmissivity of, 165–166
Ramp rates, 321, 322f
Rayon, 25
Receiving, inspection records for, 395
Recertification, 118
Redux 775, 433–434
Regulatory documents, 248–249
Reinforced concrete, 1
Reinforcements, 375
fiber, 17–37
forms of, 37–47
Reject Note, 385, 390f
Release agents, 420–421
definition of, 300
Release fabric, definition of, 300
Release films, 300, 301–302
Release notes, 114–116
Release priming, 429–430
Repair drawings, 243
Repair schemes, 243, 245
Repairable damage, 251–252, 256, 257f
Repairs
aramid fibers used in, 33
assessment for, 209–239
blind, 291, 292–294f
categorization of, 505–507
component identification, 253
composite, to metals, 265–266
to core and both skins, 286, 290f
to core and one skin, 286
damage classification, 254–258
damage terminology, 254–255
design of, 495–609
ege band, 285–286, 287f, 288–289f
existing, removal of, 273f
glass fabrics used in, 25f
hybrid, 286, 291
injected, 291
inspection of, 330–333
interim, 251
mechanically fastened, in sandwich panels, 604, 606–608
methods for, 258–266
philosophy of, and design requirements, 500–507
potted, 296, 297f
preparation for, 267–285
pre-preg, 262–263
sanding for, 280–283
scarf joints, 263–264, 265f
to solid laminates, 295
stepped lap joints, 264
techniques for, 267–335
temporary, 251
typical, 285–296
Residual strength curve, 500–501
Resin injection molding (RIM), 126–127
Resin matrices, design issue regarding, 490
Resin sealing, 259
Resin systems, 52–66
Resin transfer molding (RTM), 126–127
Resins
93°C (200°F) cure temperature, 60, 61
120°C (250°F) cure temperature, 60
177°C (350°F) cure temperature, 59, 60
applicators for, 408
chemical damage to, 76
in contact with skin, 192–193
epoxy, 57, 59–61
filler materials for, 92–93
fumes from, 188–189
in-service effects on, 76
mechanical properties required of, 59
phenolic, 57
physical and chemical properties required of, 57–59
physical properties of, 492
polyester, 66
release notes and approved certificates, 116
room-temperature cure, 60, 61
shelf life/out time, 117
thermoplastic, 52–53
thermosetting, 53–57
Resonant frequencies, 166
Resorcinol phenol, formaldehyde, 54
Respiratory protection, 414
Reticulate, 72f
Return to service sign-offs, 392
Revision systems, 241–242
Rivet holes, damage from water wicking, 466, 473
Riveted joints, 175–176
Rivets, 340–343
blind, installation of, 367, 368f
solid
installation of, 366, 367f
removal of, 371
Routers, hand, 405–406
Routine work documents, 378–391
Roving, definition of, 46
“S” glass
manufacture of, 23
mechanical properties of, 20t
properties of, 21t
SAE Aerospace Material Specifications, 614–615
SAE International Aerospace Recommended Practices documents, 613–614
SAE Specifications, 247
Safe fatigue life, 168–169
Safe-life, definition of, 140
Safety, 181–206
equipment, 414–416
precautions, with primers, 462
procedures, 197–201
Salts, 160
Sanders, orbital, 406
Sanding
discs for, 402–403
dust from, 187–188
for repairs, 280–283
Sandwich panels, 145f
inserts for, 146–148
mechanically fastened repairs in, 604, 606–608
tooling for, 422
Sandwich structures, 76–79, 143–148
history of use in aerospace, 79
versus “I” beam construction, 78f
Sardine-can openers, 405
Saws
bandsaws, 408–409
oscillating, 407
Scarf joints, 263–264, 265f
design issue regarding, 491
taper sanded, 283f
Scarfing, 281–282
Scissors, 404
Scoring, 255
Scratch, 255
Sealants, 93–98
polythioether, 96–97
silicone, 97
release notes and approved certificates, 116
specifications, 95–96
storage temperature requirements for,
109–110
Index

Sealants (continued)
 Thiokol, 96
 vapors from, 190
 Viton rubber, 98
Secondary structures, 137–142
Selvage, 31, 40, 42f
Semi-crystalline thermoplastic resins, 52
Separator, definition of, 300
Service Bulletins, 12, 247–248
Service Newsletters, 248
Shear modulus, in-plane, analysis of, 534–535
Shear strain, 497–498
Shear strength, in-plane, analysis of, 535, 538–540
Shear stress, 497
 on adhesive in bonded joints, 549–550
Shearography, 226, 228f, 229f
Shear-out, 585–586, 587f
Shears, hand, 404–405
Sheet metals
 specifications of, 115f
 damage prevention, 112
 identification of, 114, 115f
 release notes and approved certificates, 116
Shelf life/out time, 116–117
Shims, in mechanically fastened joints, effects of, 601
Shipping of composites, 107
Shop equipment, 408–416
Short carbon reinforcements, 375
Short glass reinforcements, 375
Silane, 442, 448
Silica fillers, 93
Silicon carbide fibers, 20f, 21f
Silicone, 55
 sealants, 97
 storage temperature requirements for, 110
Single load path, definition of, 140
Single overlap joint, 72f
SiO fibers, properties of, 21f
Si$_x$N$_y$C$_z$ fibers, properties of, 21f
Size, definition of, 47
Sizing, fiber, 47, 49–52
Skin contact, emergency first-aid procedures, 197
Skin creams, 194–195
Skin, removal of, 276, 277f
 peelers for, 405
Soak cycles, 321, 322f
Sol-gel process, Boegel EPII, 442, 450
Solid laminates, 142–143
 damage mapping of, 233
 repairs to, 295, 337
 tooling for, 421
Solid rivets, 340–341
 installation of, 366, 367f
 removal of, 371
Solubility coefficient, 492
Solvents, 267–268
 in contact with skin, 193
 solubility parameters of, 77t
 vapors from, 189
Source documents, 241–252
Spacers, 353, 356f, 357
Specific mechanical properties, 19f
Specific tensile modulus, 18f
Specific tensile strength, 18f
Specifications, materials and process, 245–247
Spectra, 36
Speed and feed rates, 400–401
Speed, of bandsaws, 408–409
Speedtape, 259
Spitfire aircraft, 5
Splash molds, 420, 421f
Squeeze-out method, 316–317
Stability, repair design considerations for, 511
Stacking, 154
Static capability, proof of, 503
Static discharge prevention, 202–203
Static loads, 166–167
Steam cleaning equipment, 269
Step sanding, 282, 283f
Stepped lap joints, 264, 283f
Stiffness, 167
 imbalance, effects on bonded joints, 563–567
 repair design considerations for, 507–510
Stock Record Card, 385, 391f
Storage Life Card, 396f
Storage of composites, 14, 107–119
Storage of materials, 108–116
 temperature requirements for, 108–110
Strain, 496–498, 507–508
 on adhesive in bonded joints, 549–550
Strength
analysis of, 529–531
repair design considerations for, 510–511
shear, in-plane, analysis of, 535, 538–540
Strength-strain, 496–498, 507–508
Structural efficiency, 144
Structural Repair Manual (SRM), 251
repair method selection, 253–266
Structural ultimate load (SUL), 503
Structurally significant item (SSI), 139
Styrofoam, 81
Suppliers of Advanced Composite Materials Association (SACMA), 182–183
Support structures, for tooling, 427–428
Surface bagging, 303
Surface corrosion, removal of, 278–279
Surface preparation, 94
effects on durability, 440f
methods for, 442–458
Surface restoration, 333–335
Surface scratches, assessing, 234
Survey of composite problems in service, 465–490
Symmetrical laminate, 152, 153f
Syntactic foams, 90–93

"T"-peel, 332, 333f
reporting results of, 392
Tap test, 213–215, 330
Taper sanding, 281–282, 283f
Tapes, 37, 39f
damage from inappropriate use, 466, 488
lay-up methods for, 123–125
shelf life/out time, 116
Technical Instruction Form, 385, 389f
Technora T-220, 32, 34f
Telex Authority, 248
Temperature
control and monitoring of, 321, 323
control problems with, 324
controllers for, 394
effects on adhesive in bonded joints, 560–563
effects on durability, 440
in service, 155–156
profile of, 323
requirements for materials storage, 107, 108–110
Templates, 406
Temporary repairs, 251
Temporary Revisions (TRs), 242
Tensile strength, 166–167
Tension loads, 495–496
TEX, definition of, 46
Thermal mismatch, effects on bonded joints, 563–567
Thermal runaway protection, 324
Thermal stresses, 158
Thermocouples, 328–329
placement of, 323
Thermography, 222–223
Thermoplastic composite braided tubing, 123
Thermoplastic resins, 52–53
composites of, 4–5
Thermoset resins, 53–57
composites of, 3–4
Thickness gauge, for paints and primers, 460, 461–462
Thiokol sealants, 96
Three-Part Serviceable Label, 385, 390f
Threshold limit values (TLVs), 191
Time/cycle history, 396397
Time limits, tooling, 426
Tinnerman washers, 470, 471, 472f
Titanium-based fibers, properties of, 21f
Tooling, 417–430
choice of, 417–418
egg-crate, 428f
pre-preg, 422–430
room-temperature, 421–422
Tooling holes, moisture ingress through, 466, 482
Tow, 31
definition of, 46
placement of, 130
TPC fiberglass-reinforced thermoplastic honeycomb, 89
Trailing edge
design of, 474f
moisture ingress at, 493
Training records, 397, 398f
Transaminar cracking, assessing, 234–235
Transmissivity tester, 412–413
Treated surface protection, 458
1,1,1-Trichloroethane, 267–268
Tube-Core, 83f
Twaron T-1000, 32, 34t
Twill weave, 41f
Type “J” thermocouples, 328
Type “K” thermocouples, 328

Vacuum bags, 300, 301
Vacuum bonding, 131, 305–306
Vacuum gauges, 394
Vacuum pressure
 application to plates and assemblies, 306–309
 practical techniques to ensure, 310–314
Vacuum principles, 304–314
Vacuum pumps, venturi-type, 409, 410f
Vacuum requirements, 304–314
Van der Waal’s forces, 437–438
Vapor degreasing equipment, 270
Vapors, 188–191
Vectran HS fibers, 37
Vertical bleed method, 316
Vinyl ester, 55
Vinyl phenolic film adhesives, 70–71
Vinyl silane, 49
Viscosity changes during cure, 63
Visual inspection, 210–212
 of repairs, 330
Viton rubber sealants, 98
Volan, 50

Volatiles organic compounds (VOCs), 189
Volatiles organic content (VOC), 189

Warm water treatment process, 458
Warp clock, 149, 151–152
Warp, definition of, 38, 46
Warranty Investigation Report, 378, 384f
Washing, 269–270
 high-pressure, 15
Waste disposal, 196, 198
Water-based corrosion-inhibiting primers, 459
Water break test, 284–285
Water contamination, of compressed air lines, 409–411
Wear, assessing damage from, 239
Wedge test, 331
 reporting results of, 392
Weft, definition of, 46
Weighing of epoxy wet resins, 63–64
Weighing scale, 413
Weight, 176, 258
 recording of, 397
Whiskers, definition of, 46
Wire mesh coatings, 101
Wood cores, 79–80
Work documents, 378–392
Work life, definition of, 65
Woven fabric, 17

X-ray methods, 220–221

Yarns, definition of, 46

Zero-bleed method, 317–317
Zone, 138, 139f
ABOUT THE AUTHORS

The authors (from left to right): L. Graham Bevan, Keith B. Armstrong, and William F. Cole II

Dr. Keith Armstrong is well respected for his many years of experience in advanced composite aircraft structures. He is best known for his involvement at British Airways in the development of carbon fiber/Nomex honeycomb floor panels. These panels were the first carbon fiber composites to fly on commercial aircraft, and most flooring in modern commercial aircraft meets specifications that evolved from these early composite structures.

Dr. Armstrong earned an M.Sc. in 1978 and a Ph.D. in 1990 in adhesion science from The City University in London, England. His career began in 1948 at Vickers-Armstrongs (Aircraft) Ltd., Weybridge, as an aviation apprentice and then as a design draftsperson. He subsequently served as a technical officer in the Royal Air Force and later as an experimental officer at the National Physical Laboratory in Teddington.

Dr. Armstrong spent the next 24 years of his full-time career with British Airways. In addition to his work on carbon fiber/Nomex honeycomb floor panels, he developed many new methods during the infancy of the industry. For many years, he was responsible for all composite and bonded metal repairs and for all windows in the British Airways fleet. He later served as a consultant to Du Pont on composite repairs using Nomex honeycomb and Kevlar and then as a quality audit engineer for Aerobond U.K. and a composite repair specialist for Monarch Airlines.

From 1988 to 1991, Dr. Armstrong chaired the International Air Transport Association (IATA) Composite Repair Task Force, and he continues to participate in the Training Task Group of the SAE International (SAE), IATA, Air Transport Association (ATA) Commercial Aircraft Composite Repair Committee (CACRC). He is a member of SAE International, the Society for the Advancement of Material and Process Engineering (SAMPE), and
Dr. Armstrong has written more than 30 technical papers and compiled the Composites and Metal Bonding Glossary published by SAE. He has lectured part time at Brunel, Bristol, and Plymouth universities and at Brooklands College and East Surrey College. He continues to work part time at Kingston University. He held a private pilot’s license for 28 years, is keen on family history, and has been a member of the Methodist Church for more than 50 years.

Graham Bevan has worked in or been associated with the aircraft industry most of his working life. His involvement with composites started in 1969 when he joined Rolls-Royce Composite Materials (RRCM) as a materials engineer, from the Structural and Materials Test Laboratories of the then British Aircraft Corporation. During the past 35 years, he has maintained this involvement with composites with a number of companies and has acquired considerable knowledge on the subject.

Mr. Bevan joined the In-Service Support Department of Airbus (U.K.) Ltd. in 1991 as a composites specialist and has remained at Airbus to the present day. His work at Airbus is now involved with composite repairs and other in-service issues. He has many years of experience related to the manufacture of Airbus composite components.

Mr. Bevan is a past member of the Airbus Industrie (AI) Composite Repairs Task Group, and he was and still is involved with providing input to the Airbus Structural Repair Manuals (SRMs). He also was closely involved with the draft preparation of data for the Airbus Industrie composite repair courses for airline engineers.

Mr. Bevan is a member of the Repair Task Group of the SAE/IATA/ATA Commercial Aircraft Composite Repair Committee (CACRC). He has worked closely with Dr. Keith Armstrong on the development and subsequent production of carbon fiber/Nomex floor panels while at RRCM. This was recognized in 1994 when Dr. Armstrong and Mr. Bevan both received an award from Du Pont for their pioneering development work related to the application of Nomex honeycomb in aircraft flooring. Fibrelam floor panels (now from Hexcel) also were qualified to the British Airways specification raised as the result of this work, and “these are now qualified by every aircraft manufacturer currently operating in the Western world.” [Quote taken from the Hexcel booklet, “Composite Materials for the Aerospace Industry,” May 2003.] In addition, Mr. Bevan has written and presented a number of papers on the fatigue properties of carbon fiber composites.
William F. Cole II is the chairman of the Commercial Aircraft Composite Repair Committee, a group committed to the standardization of materials, design, testing, and repair for commercial aircraft composites, as well as education about them. He is a routine contributor to multiple industry and FAA-sponsored working groups to define the best uses and regulatory needs for commercial aircraft composite structures.

Mr. Cole is the director of engineering at a corporation specializing in commercial aircraft maintenance, and he previously managed a large composite manufacturing program for a military surveillance aircraft. He also has managed engineering teams supporting heavy aircraft maintenance, component maintenance, and line maintenance. Mr. Cole has advanced degrees in both mechanical and aerospace engineering, with years of hands-on experience as an engineer supporting aircraft operations.

Mr. Cole is a routine guest lecturer at various colleges and universities, speaking on the topic of composite structures, composite repair, and engineering analysis. He also is the author of several articles and the co-author of three textbooks on the subject of composite aircraft design and composite repair design.