Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAI</td>
<td>Air-assisted injector (or injection)</td>
</tr>
<tr>
<td>AAM</td>
<td>Alliance of Automobile Manufacturers</td>
</tr>
<tr>
<td>AAPFI</td>
<td>Air-assisted port fuel injection</td>
</tr>
<tr>
<td>A/F</td>
<td>Air/fuel (ratio)</td>
</tr>
<tr>
<td>AFI</td>
<td>Air-forced injector (or injection)</td>
</tr>
<tr>
<td>AFPFI</td>
<td>Air-forced port fuel injection</td>
</tr>
<tr>
<td>AIGER</td>
<td>American Industry/Government Emissions Research</td>
</tr>
<tr>
<td>ALO$_4$</td>
<td>Aluminum tetraoxide</td>
</tr>
<tr>
<td>AQIRP</td>
<td>Auto/Oil Air Quality Improvement Research Program</td>
</tr>
<tr>
<td>ATDC</td>
<td>After or above top dead center (of piston travel)</td>
</tr>
<tr>
<td>ATPZEV</td>
<td>Advanced technology partial zero emissions vehicle (Toyota)</td>
</tr>
<tr>
<td>BDC</td>
<td>Bottom dead center (of piston travel)</td>
</tr>
<tr>
<td>BMD</td>
<td>Bag mini-diluter</td>
</tr>
<tr>
<td>BMEP</td>
<td>Brake mean effective pressure</td>
</tr>
<tr>
<td>BTDC</td>
<td>Before or below top dead center (of piston travel)</td>
</tr>
<tr>
<td>CAD</td>
<td>Crank angle degree</td>
</tr>
<tr>
<td>CARB</td>
<td>California Air Resources Board</td>
</tr>
<tr>
<td>CAT</td>
<td>Catalyst</td>
</tr>
<tr>
<td>CC</td>
<td>Close-coupled (catalyst)</td>
</tr>
<tr>
<td>CCD</td>
<td>Charge-coupled device</td>
</tr>
<tr>
<td>CCM</td>
<td>Comprehensive component monitor</td>
</tr>
<tr>
<td>CE</td>
<td>Conversion efficiency (of hydrocarbon)</td>
</tr>
<tr>
<td>CEC</td>
<td>Coordinating European Council</td>
</tr>
<tr>
<td>CFI</td>
<td>Central fuel injection</td>
</tr>
<tr>
<td>CFO</td>
<td>Critical flow orifice</td>
</tr>
<tr>
<td>CFR</td>
<td>U.S. Code of Federal Regulations; also Corporate Fuels Research</td>
</tr>
<tr>
<td>CFV</td>
<td>Critical flow venturi</td>
</tr>
<tr>
<td>CHSS</td>
<td>Coolant heat storage system</td>
</tr>
</tbody>
</table>
Near-Zero-Emission Gasoline-Powered Vehicles

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICT</td>
<td>Color imaging capturing technique</td>
</tr>
<tr>
<td>CLA</td>
<td>Chemiluminescence analyzer (or detector)</td>
</tr>
<tr>
<td>CMCV</td>
<td>Charge motion control valve</td>
</tr>
<tr>
<td>COP</td>
<td>Crossover point (NOx)</td>
</tr>
<tr>
<td>COV</td>
<td>Coefficient of variation</td>
</tr>
<tr>
<td>CP2-RFG</td>
<td>California Phase II reformulated gasoline</td>
</tr>
<tr>
<td>CRC</td>
<td>Coordinating Research Council</td>
</tr>
<tr>
<td>CVI</td>
<td>Closed-valve injection</td>
</tr>
<tr>
<td>CVS</td>
<td>Constant volume sampler</td>
</tr>
<tr>
<td>CV-SCV</td>
<td>Continuously variable swirl control valve</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Letter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Diffusion coefficient (cm²/sec)</td>
</tr>
<tr>
<td>DAR</td>
<td>Dilution air refinement (system)</td>
</tr>
<tr>
<td>DF</td>
<td>Dilution factor</td>
</tr>
<tr>
<td>DI</td>
<td>Driveability index; (DI = 1.5 \times T_{10} + 3 \times T_{50} + T_{90}); temperatures in degrees Fahrenheit (°F); \textit{also} Direct injection</td>
</tr>
<tr>
<td>DISI</td>
<td>Direct injection spark ignition</td>
</tr>
<tr>
<td>DVE</td>
<td>Direct vehicle exhaust</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECM</td>
<td>Engine control module</td>
</tr>
<tr>
<td>ECU</td>
<td>Engine control unit</td>
</tr>
<tr>
<td>EDI</td>
<td>Evaporation driveability index</td>
</tr>
<tr>
<td>EGI</td>
<td>Exhaust gas ignition</td>
</tr>
<tr>
<td>EGR</td>
<td>Exhaust gas recirculation</td>
</tr>
<tr>
<td>EHC</td>
<td>Electrically heated catalyst</td>
</tr>
<tr>
<td>EOBD</td>
<td>European onboard diagnostics (standards)</td>
</tr>
<tr>
<td>EPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>ETBE</td>
<td>Ethyl-tertiary butyl ether</td>
</tr>
<tr>
<td>EVC</td>
<td>Exhaust valve closing (timing)</td>
</tr>
<tr>
<td>EVO</td>
<td>Exhaust valve opening (timing)</td>
</tr>
<tr>
<td>E_{XX}</td>
<td>Percent evaporated at temperature XX</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFID</td>
<td>Fast-response flame ionization detector; \textit{also} FRFID</td>
</tr>
<tr>
<td>FIA</td>
<td>Flame ionization analyzer</td>
</tr>
<tr>
<td>FID</td>
<td>Flame ionization detection (or detector)</td>
</tr>
<tr>
<td>FKM</td>
<td>Fluorocarbon elastomer</td>
</tr>
<tr>
<td>FTP</td>
<td>U.S. Federal Test Procedure; \textit{also} FTP-75</td>
</tr>
<tr>
<td>Acronyms</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>GC</td>
<td>Gas chromatography</td>
</tr>
<tr>
<td>GDI</td>
<td>Gasoline direct injection (engine)</td>
</tr>
<tr>
<td>GIMEP</td>
<td>Gross indicated mean effective pressure</td>
</tr>
<tr>
<td>GRNN</td>
<td>Generalized regression neutral network</td>
</tr>
<tr>
<td>GSA</td>
<td>Geometric surface area</td>
</tr>
<tr>
<td>H</td>
<td>Henry’s constant (kPa)</td>
</tr>
<tr>
<td>H/C</td>
<td>Hydrogen-to-oxygen ratio (of fuel)</td>
</tr>
<tr>
<td>HDPE</td>
<td>High-density polyethylene</td>
</tr>
<tr>
<td>HEGO</td>
<td>Heated exhaust gas oxygen (sensor)</td>
</tr>
<tr>
<td>HEV</td>
<td>Hybrid electric vehicle</td>
</tr>
<tr>
<td>HPIV</td>
<td>Holographic particle image velocimetry</td>
</tr>
<tr>
<td>I4</td>
<td>Inline four-cylinder (engine)</td>
</tr>
<tr>
<td>IACV</td>
<td>Intake air control valve</td>
</tr>
<tr>
<td>ICV</td>
<td>Inlet check valve</td>
</tr>
<tr>
<td>ILIDS</td>
<td>Interferometric laser imaging for drop sizing</td>
</tr>
<tr>
<td>I_m</td>
<td>Mixing index</td>
</tr>
<tr>
<td>I/M</td>
<td>Inspection/maintenance (station)</td>
</tr>
<tr>
<td>IMEP</td>
<td>Indicated mean effective pressure (kPa)</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>ISHC</td>
<td>Indicated specific hydrocarbon (emissions)</td>
</tr>
<tr>
<td>IVC</td>
<td>Intake valve closing (or closed)</td>
</tr>
<tr>
<td>IVO</td>
<td>Intake valve opening (or open)</td>
</tr>
<tr>
<td>JOBD</td>
<td>Japanese onboard diagnostics (standards)</td>
</tr>
<tr>
<td>L/D</td>
<td>Length-to-diameter (ratio)</td>
</tr>
<tr>
<td>LDPE</td>
<td>Low-density polyethylene</td>
</tr>
<tr>
<td>LDV</td>
<td>Laser Doppler velocity (or velocimetry)</td>
</tr>
<tr>
<td>LEA</td>
<td>Laser extinction and absorption</td>
</tr>
<tr>
<td>LEV</td>
<td>Low emissions vehicle; also LEV II</td>
</tr>
<tr>
<td>LIEF</td>
<td>Laser-induced exciplex fluorescence</td>
</tr>
<tr>
<td>LIF</td>
<td>Laser-induced fluorescence</td>
</tr>
<tr>
<td>LPG</td>
<td>Liquefied petroleum gas</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MAF</td>
<td>Mass airflow (sensor)</td>
</tr>
<tr>
<td>MAP</td>
<td>(Intake) manifold absolute pressure (kPa)</td>
</tr>
<tr>
<td>MBT</td>
<td>Minimum spark advance for best torque</td>
</tr>
<tr>
<td>MFB</td>
<td>Mass fraction burned</td>
</tr>
<tr>
<td>MFC</td>
<td>Mass flow controller</td>
</tr>
<tr>
<td>MIL</td>
<td>Malfunction indicator light</td>
</tr>
<tr>
<td>MMT</td>
<td>Methylcyclopentadienyl manganese tricarbonyl</td>
</tr>
<tr>
<td>MON</td>
<td>Motor Octane Number</td>
</tr>
<tr>
<td>MPI</td>
<td>Multipoint injection</td>
</tr>
<tr>
<td>MTBE</td>
<td>Methyl-tertiary butyl ether</td>
</tr>
<tr>
<td>NDIR</td>
<td>Nondispersive infrared</td>
</tr>
<tr>
<td>NGV</td>
<td>Natural gas vehicle</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>NMEP</td>
<td>Net mean effective pressure</td>
</tr>
<tr>
<td>NMHC</td>
<td>Nonmethane hydrocarbon</td>
</tr>
<tr>
<td>NMOG</td>
<td>Nonmethane organic gas</td>
</tr>
<tr>
<td>NOx</td>
<td>Oxides of nitrogen, or nitrogen oxides</td>
</tr>
<tr>
<td>NTC</td>
<td>Negative temperature coefficient</td>
</tr>
<tr>
<td>OBD</td>
<td>Onboard diagnostics; also OBD II</td>
</tr>
<tr>
<td>OBDS</td>
<td>Onboard distillation system</td>
</tr>
<tr>
<td>OFP</td>
<td>Ozone-forming potential</td>
</tr>
<tr>
<td>ORVR</td>
<td>Onboard refueling vapor recovery</td>
</tr>
<tr>
<td>OSC</td>
<td>Oxygen storage material component; also Oxygen catalyst storage content; also Oxygen storage capacity</td>
</tr>
<tr>
<td>OVI</td>
<td>Open-valve injection</td>
</tr>
<tr>
<td>OXSW</td>
<td>Oxidation switch</td>
</tr>
<tr>
<td>PAS</td>
<td>Proportional ambient sampling</td>
</tr>
<tr>
<td>PCM</td>
<td>Programmable control module</td>
</tr>
<tr>
<td>PCV</td>
<td>Positive crankcase ventilation</td>
</tr>
<tr>
<td>PDA</td>
<td>Phase Doppler anemometry</td>
</tr>
<tr>
<td>p_F</td>
<td>Partial pressure (of fuel) (kPa)</td>
</tr>
<tr>
<td>PFI</td>
<td>Port fuel injection (or injected)</td>
</tr>
<tr>
<td>PGM</td>
<td>Platinum group metals</td>
</tr>
<tr>
<td>Acronyms</td>
<td>Full Form</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>PIV</td>
<td>Particle image velocity (or velocimetry)</td>
</tr>
<tr>
<td>PLIEF</td>
<td>Planar laser-induced exciplex fluorescence</td>
</tr>
<tr>
<td>PLIF</td>
<td>Planar laser-induced fluorescence</td>
</tr>
<tr>
<td>POM</td>
<td>Acetal copolymer</td>
</tr>
<tr>
<td>POx</td>
<td>Partial oxidation reforming (or reactor)</td>
</tr>
<tr>
<td>ppm C<sub>1</sub></td>
<td>HC mole fraction in parts per million (ppm); based on HC as C<sub>1</sub>H<sub>x</sub></td>
</tr>
<tr>
<td>Pt</td>
<td>Platinum</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse width modulation</td>
</tr>
<tr>
<td>PZEV</td>
<td>Partial zero emissions vehicle</td>
</tr>
<tr>
<td>QWS</td>
<td>Quick warm-up system</td>
</tr>
<tr>
<td>R&D</td>
<td>Research and development</td>
</tr>
<tr>
<td>RACV</td>
<td>Rotary air control valve</td>
</tr>
<tr>
<td>Reg-Neg</td>
<td>(Reformulated gasoline) Regulation–Negotiation Agreement</td>
</tr>
<tr>
<td>RFG</td>
<td>Reformulated gasoline</td>
</tr>
<tr>
<td>RMS</td>
<td>Root mean square</td>
</tr>
<tr>
<td>RMT</td>
<td>Remote mix tee</td>
</tr>
<tr>
<td>RON</td>
<td>Research Octane Number</td>
</tr>
<tr>
<td>ROV</td>
<td>Rollover valve</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>RVP</td>
<td>Reid vapor pressure</td>
</tr>
<tr>
<td>SAIR</td>
<td>Secondary air system (monitor)</td>
</tr>
<tr>
<td>SAO</td>
<td>Smooth approach orifice</td>
</tr>
<tr>
<td>S/C</td>
<td>Steam-to-fuel ratio (in reformer)</td>
</tr>
<tr>
<td>SCV</td>
<td>Swirl control valve</td>
</tr>
<tr>
<td>SDIMEP</td>
<td>Standard deviation of indicated mean effective pressure</td>
</tr>
<tr>
<td>SHED</td>
<td>Sealed housing for evaporative determination</td>
</tr>
<tr>
<td>SI</td>
<td>Spark ignition (engine)</td>
</tr>
<tr>
<td>SMD</td>
<td>Sauter mean diameter</td>
</tr>
<tr>
<td>S<sub>p</sub></td>
<td>Mean piston speed (m/sec)</td>
</tr>
<tr>
<td>SULEV</td>
<td>Super ultra-low emissions vehicle; also SULEV II</td>
</tr>
<tr>
<td>SUV</td>
<td>Sport utility vehicle</td>
</tr>
</tbody>
</table>
Near-Zero-Emission Gasoline-Powered Vehicles

T_{10}, T_{50}, T_{90} Temperatures at 10, 50, and 90% distillation points, respectively
TAME Tertiary amyl butyl ether
TBA Tertiary-butanol; also t-butanol
TDC Top dead center (of piston travel)
TE Trapping efficiency (of hydrocarbon)
THC Total hydrocarbon
TLEV Transitional low emissions vehicle
TWC Three-way catalyst
TWD Total weighted demerits
T_{XX} Temperature for XX% evaporation of the fuel

U' Turbulence intensity (m/sec)
UEGO Universal exhaust gas oxygen (sensor)
UFC Underfloor catalyst
ULEV Ultra-low emissions vehicle; also ULEV II

VOC Volatile organic compound
VTEC Variable valve timing and lift electronic control
VVA Variable valve actuation
VVT Variable valve timing/control monitor
VVT/L Variable valve timing and lift (system)

WOT Wide open throttle
WRAF Wide-range air/fuel (sensor)
WRO$_2$ Wide-range oxygen (sensor)
WWMP World Wide Mapping Point (Ford)

X_F Fuel mole fraction

Y Hydrogen-to-carbon ratio (of fuel)

ZEV Zero emissions vehicle

440
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>Boundary layer thickness (millimeters)</td>
</tr>
<tr>
<td>λ</td>
<td>Fuel/air equivalence ratio</td>
</tr>
<tr>
<td>τ</td>
<td>Characteristic diffusion time (milliseconds)</td>
</tr>
<tr>
<td>Φ</td>
<td>Fuel/air equivalence ratio</td>
</tr>
</tbody>
</table>
Index

Numbers followed by \textit{f} or \textit{t} denote figures or tables, respectively.

A/F. \textit{See} Air/fuel

Acronyms list, 435–440

Air injection. \textit{See} Secondary air injection

Air pump, 195, 245

Air-assist injector (AAI), 44–46, 47, 61, 68, 132

Air-forced injector (AFI), 44–46, 68, 132

Air/fuel (A/F) ratio, 52, 85, 175f
 calibration in PFI engine, 9–10
 controlling, 193–195
 during steady-state conditions, 100
 lean, to improve hydrocarbon
 oxidation, 159–160, 163
 mixture distribution diagnostics,
 123t, 134, 135
 monitoring, 196–197
 onboard fuel reformers, 224, 225
 at PFI engine startup, 9
 and swirl, 58f

Air/fuel sweep conversions, 253f, 254f

Alcohol-fueled vehicles, 228–229

Alcohols, 208

Alkylperoxy radicals (RO₂), 105

Alliance of Automobile Manufacturers
 (AAM), 219

Alumina, 246, 249

Aromatics, 214t

ASTM distillation curve, 208, 210, 212, 232f

ATPZEV (Advanced Technology
 PZEV), Toyota, 431, 432f

Auto/Oil Air Quality Improvement
 Research Program (AQIRP), 218–219

Autothermal reforming, 225

Bag mini-diluter (BMD), 384–398

Bag sampling, 376–383

Benzene, 209t, 214t

BMW, 410–411

Calibration, catalyst light-off, 157–160

California, 208, 214, 241, 333, 336, 347, 354, 370, 371

California Air Resources Board
 (CARB), 333, 334, 356, 385

California Phase II reformulated
 gasoline (CP2-RFG), 12, 38, 40, 208, 209t, 214t, 217, 229, 336

Cam phasing, 61, 68

Camshaft position, 6

Canister (fuel system), 342–344

Canister bleed emissions, 344

Canister bypass system, 246

Carbon dioxide (CO₂), 105, 219, 380f, 381f

Carbon formation, 221–222

Carbon monoxide (CO), 105, 219, 348–349, 407

Catalyst, 221
 close-coupled (CC), 243, 246, 256, 257–259
Catalyst (continued)
conversion efficiency, 1
hydrocarbon trap, 269–281
desorption rate, 273–274
two-stage trap system, 279–281
underfloor, 255
zeolite, 270–272
oxygen storage content, 352–354
underbody, 259, 260
see also Three-way catalyst
Catalyst deactivation, 298–299
Catalyst light-off, 61, 228
calibration
air/fuel ratio, 159–160
idle engine speed, 158
spark retard, 159–160
Catalyst system
PZEV standards, 255–264
rapid warm-up designs, 242–246
three-way catalyst, 241–242,
246–255
Catalyst system monitor, 351–354,
366t
Catalyst temperature, 5, 5f
rapid warm-up designs, 242–246,
262f
Catalyst washcoat, 243, 246, 247,
249, 253, 255, 258, 259f
Catalytic converter, 173–174
three-way system modeling,
283–317
Catalytic oxidation, 178–181
Central fuel injection (CFI) engine
engine startup, 41–42
comparison with PFI engine,
95, 96f, 97f
Ceramic substrate, 244
Ceria-zirconia, 246, 249
CFI. See Central fuel injection
Charge inhomogeneity, 43
Charge motion control valve
(CMCSV), 167, 168f
Charge motion control valves, 56–57
Chemical reactions, three-way
catalytic converter system, 289–298,
300, 301
Chrysler, 167
Cinematography, for fuel spray
analysis, 124
Clean Air Act Amendments (1990),
214
Close-coupled (CC) catalysts, 243,
246, 256, 257–259
Closed-valve injection (CVI), 14,
35–36, 53
targeting, 52
timing, 14, 45, 47–51
CMCSV (charge motion control valve),
167, 168f
Coking, 222
Cold engine processes, diagnostics
combustion, 142–145
fuel delivery into cylinder, 130–134
fuel spray characteristics, 121–127
mixture distribution, 134–142
wall wetting, 123f, 127–130
Cold start, 31, 83, 178f
alcohol-fueled vehicles, 228–229
cylinder pressure, 82–83
PFI engine behavior, 80–86
and POx fuel reformer, 226–227
unaccounted fuel during, 84–86
see also Engine startup
Cold-idle revolutions, 158
Cold-start emissions reduction control
strategy monitor, 354–355
Cold-weather driveability, gasoline,
211–213
Combustion
diagnostic techniques, 142–145
port fuel injected engine, during
engine startup, 7f, 20–22
Combustion chamber
crevices, and hydrocarbon emissions, 88–90
liquid fuel impingement, 36–40

Comprehensive component monitoring (CCM), 354

Compression rings, 88, 89
Connectors, fuel system, 338
Conservation of mass equation, 306
Conservation of momentum equation, 306

Constant volume sampler (CVS), 369, 373f
bag sampling, 376–383
compared with bag mini-diluter, 385–387, 389f, 390, 394
dilution air, 372–375
dilution ratio optimization, 376, 377f, 378f
exhaust dilution, 375–376

Coolant temperature
after PFI engine shutdown, 5f
during PFI engine startup, 5, 10, 11f, 17, 18f, 34f
steady-state operation, 48, 49f, 91

Coordinating European Council (CEC), 215

Coordinating Research Council (CRC), 12, 212, 213

CP2-RFG (California Phase II reformulated gasoline), 38, 40, 336

Crank angle degrees (CAD)
during PFI engine startup, 15–17, 82f, 104f
IVO timing during PFI engine startup, 15–17
warm engine, 102f

Crankcase, 39
Cranking speed, 55, 57, 81–82
CRC (Coordinating Research Council), 212, 213
CVI. See Closed-valve injection

Cylinder, 35, 82–83, 103
Cylinder blowby levels, 88–89, 91
Cylinder head gasket, 88

DaimlerChrysler, 61
Delphi, 63
Desorption rate (hydrocarbon trap), 273–274, 276–277

DI. See Driveability index

Diagnostic techniques, cold engine processes
combustion, 142–145
fuel delivery into cylinder, 130–134
fuel spray characteristics, 121–127
mixture distribution, 134–142
wall wetting, 123t, 127–130

Diffusion coefficients, hydrocarbon fuels, 98
Diffusion time, hydrocarbon fuels, 98
Dilution air, 372–375
Dilution ratio optimization, 376, 377f, 378f

2,2 Dimethyl heptane, 209f
2,3 Dimethyl pentane, 209f

Diode laser, 136, 138f

Direct injection spark ignition (DISI) engine startup, 22–26
Distillation curve, gasoline, 208–211
Distillation temperatures

T_{10}, 11–12, 210
T_{50}, 12, 46, 56, 210, 211, 212, 214t
T_{90}, 12, 46, 210, 214t

Driveability index (DI)
and A/F ratio, 216
calculations for, 12, 212–213
and hydrocarbon emissions, 217, 218f
importance to engine calibrator, 33

Droplet evaporation, 42–43
Droplet flow, 13–14
Droplet size, 12, 22, 55, 206
and swirl, 57–58
closed valve injection vs. open
valve injection, 35–36, 50
diagnostic techniques, 123t, 124–
127, 132
fuel injector types, 44–47, 62, 68
Dual cone fuel injector, 47
Dual-wall exhaust manifold, 244

E85 fuel, 231
EDI (evaporation driveability index),
213
Elastic scattering, 134
Electrically heated catalyst (EHC),
245, 255
Emissions research obstacles, 113
Engine acceleration, cold start, 81–82
Engine misfire monitor, 355–356
Engine process measurement
combustion, 142–145
fuel delivery into cylinder, 130–134
fuel spray characteristics, 121–127
mixture distribution, 134–142
wall wetting, 123t, 127–130
Engine shutdown, port fuel injected
engine
four-cylinder engine at idle, 3f
general engine behavior, 2–3
impact on hydrocarbon emissions,
3f, 4
role in emissions, 1–2
Engine speed, during a cold start,
81–83
Engine startup
central fuel injection (CFI) engine,
41–42
direct injection spark ignition
engine, 22–26
port fuel injected engine
combustion, 20, 21f

fuel mixture preparation, 10–20
general behavior, 6–10
impact on hydrocarbon
emissions, 22
initial conditions, 5–6
role in emissions, 1–2
see also Cold start

Equations
tailpipe emissions dilution factor,
370–371, 375–376
catalytic converter system
modeling
chemical reaction rates,
328–331
conservation of mass, 306
conservation of momentum,
306
gas phase energy, 285
gas phase species, 285
oxygen storage capacity, 286
surface energy, 286
surface species, 286

ETBE (ethyl-tertiary butyl ether), 208
Ethanol (EtOH), 208, 228–229
Ethers, 208, 211
Ethyl-tertiary butyl ether (ETBE), 208
Evaporation driveability index (EDI),
213
Evaporative emissions, 369
reducing, 336–345
standards, 333–334
testing, 334–336
types, 334
Evaporative system monitor, 356–360,
366t
Exhaust dilution, 375–376
Exhaust emissions
analyzer accuracy, 398–401
bag mini-diluter, 384–398
dilution factor equation, 370–371,
375–376
tailpipe emissions limits, 371
Exhaust gas composition, 174, 175
mixing, 3
temperature, with retarded ignition timing, 158f, 159, 160–162, 189–191
Exhaust gas ignition (EGI) system, 246
Exhaust gas recirculation (EGR) monitor, 360, 366
Exhaust manifold, 173–174
design, 112, 189, 190
 dual-wall, 244
Exhaust valve closing (EVC), 15–16
Expansion ratio, 162

Fast-response flame ionization detector (FFID), 4, 48, 51, 102, 103, 104f, 123
 combustion diagnostics, 143, 145
 fuel delivery diagnostics, 134–136
cold start, 31,79, 80–83, 85
 emissions, 256f, 262f, 264f
 onboard distillation system, 233, 334–335,
stages, 67–68, 81
 three-way catalysts, 247, 248f, 252f, 254f, 255f
FFID. See Fast-response flame ionization detector
Flame ionization detector (FID), 123f, 127, 135–136, 335, 395, 396f
Flame kernel growth rate, 59
Flame propagation speed, 59–60, 99
Flame quench, 32, 35, 96–98
Flame wrinkling, 59–60
Flow velocities in-cylinder, 56–60
Ford, 411–413

Fraunhofer diffraction, 125
FTP. See Federal Test Procedure
Fuel, liquid, 32–43
Fuel absorption, into oil layers, 90–91
Fuel accounting, 84–86
Fuel cells, 221
Fuel distillation systems, 206, 229–233, 234
Fuel equivalence ratio, 16f, 18f, 21f
Fuel evaporation, 10, 11–16, 42–43
Fuel ignition, 2, 3f, 7f
Fuel injection amount during cold start and warm-up, 33
determining fuel spray characteristics, 122–126
droplet diameters, 12, 46, 47, 55
during engine startup closed-valve injection, 13–14
 intake valve timing, 15–20
 minimum for stable combustion, 19f, 84f
 open-valve injection, 13–14
at PFI engine startup, 6, 7f, 8, 12–14
see also Closed-valve injection;
Open-valve injection
Fuel injection targeting, 51–55, 66, 94
Fuel injection timing, 47–51, 92–93
Fuel injector, 206
Fuel injector heating, 55, 220
Fuel injectors air-assist injector, 44–46, 47, 61, 68, 132
 air-forced injector, 44–46, 68, 132
dual cone injector, 47
effect of timing on hydrocarbon emissions, 45
effect of type on hydrocarbon emissions, 44–47
 multi-hole injector, 47, 50, 55, 68
Near-Zero-Emission Gasoline-Powered Vehicles

<table>
<thead>
<tr>
<th>Fuel injectors (continued)</th>
<th>Fuel vapor/air ratio, 33, 53–55</th>
</tr>
</thead>
<tbody>
<tr>
<td>pencil stream injectors, 46</td>
<td>Fuel volatility, 11–12, 33, 36–37, 48–50, 50, 85, 216–218</td>
</tr>
<tr>
<td>pintle injector, 44–46, 55</td>
<td>Gas chromatography, 103</td>
</tr>
<tr>
<td>twelve-hole injector, 47</td>
<td>Gas phase energy equation, 285</td>
</tr>
<tr>
<td>Fuel location, 94</td>
<td>Gas phase species equation, 285</td>
</tr>
<tr>
<td>Fuel mixture preparation, 10–20, 31–69, 124f</td>
<td>Gasoline chemistry, 207–208</td>
</tr>
<tr>
<td>defined, 32</td>
<td>cold-weather driveability, 211–213</td>
</tr>
<tr>
<td>effects on hydrocarbon emissions, 32–43</td>
<td>distillation curve, 208–211</td>
</tr>
<tr>
<td>flow field effects, 14–20, 56–60</td>
<td>onboard fuel distillation, 229–231, 232</td>
</tr>
<tr>
<td>"fuel compensation," 33–35</td>
<td>reformulated gasoline (RFG), 214–215</td>
</tr>
<tr>
<td>and fuel injection, 12–14, 44–55</td>
<td>volatility, 208–211</td>
</tr>
<tr>
<td>fuel volatility, 11–12</td>
<td>see also Fuel</td>
</tr>
<tr>
<td>goals of, 32</td>
<td>Global consumption rate, 106–109</td>
</tr>
<tr>
<td>influenced by temperatures, 10–11</td>
<td>Heated exhaust gas oxygen (HEGO) sensor, 123t, 135, 414</td>
</tr>
<tr>
<td>strategies to improve, 60–64</td>
<td>Heavy aromatics, 40–41</td>
</tr>
<tr>
<td>Fuel noncombustion, causes</td>
<td>Heavy ends, gasoline, 42, 43</td>
</tr>
<tr>
<td>fuel absorption, 86–87, 90–92</td>
<td>HEGO (heated exhaust gas oxygen) sensor, 123t, 135, 414</td>
</tr>
<tr>
<td>fuel stored in crevices, 86–90</td>
<td>Henry’s law for a dilute system in equilibrium, 90</td>
</tr>
<tr>
<td>partial burns, 98–100</td>
<td>HEV (hybrid electric vehicle), 337</td>
</tr>
<tr>
<td>quenching, 96–98</td>
<td>High octane fuel, 229–231</td>
</tr>
<tr>
<td>too-rich liquid fuel, 92–96</td>
<td>High-boiling-point tracer, 43</td>
</tr>
<tr>
<td>Fuel rail properties, 11–12</td>
<td>High-cell-density substrate, 243</td>
</tr>
<tr>
<td>Fuel rail heating, 55</td>
<td>High-driveability-index (high-DI) gasoline, 33, 35</td>
</tr>
<tr>
<td>Fuel reformer systems, 206–207</td>
<td>Holography, for fuel spray analysis, 124, 125, 127</td>
</tr>
<tr>
<td>and alcohol-fueled vehicles, 228–229</td>
<td>Honda, 61, 167, 413–416, 417f, 418f</td>
</tr>
<tr>
<td>autothermal reforming, 225</td>
<td>Hybrid electric vehicle (HEV), 337</td>
</tr>
<tr>
<td>partial oxidation reforming (POx), 63, 223–224, 226–228, 229, 233</td>
<td>Hydrocarbon adsorber. See Hydrocarbon trap</td>
</tr>
<tr>
<td>steam reforming, 222–223</td>
<td>Hydrocarbon consumption, 106</td>
</tr>
<tr>
<td>Fuel system, 336–342</td>
<td></td>
</tr>
</tbody>
</table>
Index

Hydrocarbon conversion, 106
Hydrocarbon emission factors
 air/fuel ratio, 100, 163, 216
 ambient temperature, 215
 cold start and warm-up, 31, 35, 83,
 64–69, 132
 need for over-fueling, 31, 32–33,
 52–53, 83, 100, 205
 coolant temperature, 37
 driveability index (DI), 217, 218f
 exhaust manifold design, 189, 190f
 fuel, 35, 83, 140, 206, 215–219
 fuel absorption, 86–87, 90–92
 fuel injection targeting, 51–55, 132
 fuel injection timing, 37, 47–52
 fuel injector types, 44–47
 fuel stored in crevices, 86–90,
 134, 143
 liquid fuel, 31–43, 92–95
 partial burns, 98–100
 piston ring-pack crevices, 89–90,
 101
 quench layers, 96–98
 starting strategies, 40–41
 too-rich liquid fuel, 92–96
 vehicle design, 215
 wall wetting, 127
Hydrocarbon emissions, 407
 and closed-valve fuel injection, 14, 48
 at DISI engine startup, 22–25
 engine comparisons at startup
 CFI compared to PFI, 95, 96f,
 97f
 DISI compared to MPI, 23–25
 DISI compared to PFI, 22, 23f
 and OBDS, 231–233
 and open-valve fuel injection, 13, 36
 and partial oxidation reformer (POx), 226–228
at PFI engine cold start, 31, 79,
 178f
at PFI engine warm-up, 31
and secondary air injection, 174,
 175–176, 177, 178f, 181, 182f
at shutdown, 3f, 4
at startup, 7f, 8, 13, 14, 20, 22, 31
and variable valve time (VVT)
 system, 14
Hydrocarbon oxidation
 chemical formula, at high
 temperatures, 105
 and cold-idle engine speed, 158
 consumption rates
 global consumption rate,
 106–109
 post-flame, 109–112
 at low temperatures, 105
 and retarded ignition timing,
 159–160
 and secondary air injection,
 111–112
Hydrocarbon storage
 absorption into oil layers, 90–92
 in combustion chamber crevices, 88–90
Hydrocarbon transport
 cold engine, 103–104
 warm engine, 101–103
Hydrocarbon trap, 245, 269–281
 desorption rate, 273–274, 276–277
 two-stage trap system, 279–281
 underfloor, 255
 zeolite, 270–272
Hydrogen, 220, 225, 228
Hydrogen conversion, 187–188
Hydrogen peroxide (H₂O₂), 105
Hydroperoxyl radicals (HO₂), 105
Hydroxyl radicals (OH), 110
Near-Zero-Emission Gasoline-Powered Vehicles

IACV (intake air control valve), 164–167
Idle engine speed, 158
Ignition timing, retarded. See Spark retard
Imaging, fuel droplets, 122–127
IMEP. See Indicated mean effective pressure
In-cylinder λ, during cold start, 53–55, 57, 67
In-cylinder equivalence ratio, ϕ, during cold start, 54–55, 57, 67
Indicated mean effective pressure (IMEP), 15, 20, 41, 60, 61, 99, 140 and spark retard, 160–162, 167, 168f
Indolene, 39, 48–49, 51
Infrared imaging, 130, 136, 137f
Innova infrared detector, 335
Intake air control valve (IACV), 164–167
Intake manifold pressure, at engine shutdown, 3, 4, 8–9
Intake port wetting, 39–40, 94–95
Intake valve, 206
Intake valve closing (IVC), timing, 17
Intake valve opening (IVO), timing, 14–20
Intake valve temperature, during engine startup, 10–11, 34–35
In-use monitor performance ratio tracking, 348
Iso-butyl benzene, 209t
Iso-hexane, 209t
Iso-pentane, 48, 49f, 90, 91, 209t, 232f
Iso-propanol (IPA), 208
Iso-propyl benzene, 209t
IVC (intake valve closing), timing, 17
IVO (intake valve opening), timing, 14–20

Japan, 372, 399

Lanthanum, 250
Laser diagnostics, for fuel spray analysis, 123f, 124–127
Laser Doppler velocimetry (LDV), 123t, 126, 142
Laser extinction and absorption (LEA), 123t, 132
Laser-induced exciplex fluorescence (LIEF), 134, 140
Laser-induced fluorescence (LIF), 43, 46, 57, 110, 123t combustion diagnostics, 142–143 fuel delivery diagnostics, 132, 134 mixture distribution diagnostics, 138, 139–140 wall wetting diagnostics, 128–130, 131f
LDV (laser Doppler velocimetry), 123t, 126, 142
LEA (laser extinction and absorption), 123t, 132
Leak detection, 358–360
Leidenfrost effect, 38
LEV (low emissions vehicle), 163, 164f, 219, 228, 349
LEV II standards, 333, 339, 348, 349, 352, 361, 365, 370
LIEF (laser-induced exciplex fluorescence), 134, 140
LIF. See Laser-induced fluorescence
Light alkanes, 40–41
Lincoln Navigator, 63–64, 65f
Liquefied petroleum gas (LPG), 36, 38–39
Low-boiling-point tracer, 43
Index

LPG (liquefied petroleum gas), 36, 38–39

MAF (mass airflow sensor), 196
Malfunction indicator light (MIL), 347, 349, 356
Manifold absolute pressure (MAP), 9, 54–55, 68, 81–83
Mass airflow sensor (MAF), 196
Mass flow controller, 378, 383, 397
Mathematical modeling, three-way catalytic converter system, 283–317
Mathematical nomenclature, 317–320
Methane, 97, 98, 110, 222
Methanol (MeOH), 11, 97, 208, 211, 228–229
Methylbenzene, 93, 209t
Methylcyclopentadienyl manganese tricarbonyl (MMT), 219
Methyl-tertiary butyl ether (MTBE), 208, 209t, 211, 215
Mid-boiling-point tracer, 43
Mie scattering, 123t, 134
Misfire, 40, 99
Mixture preparation. See Fuel mixture preparation
MMT (Methylcyclopentadienyl manganese tricarbonyl), 219
Modeling, three-way catalytic converter system
catalyst behavior, 309–312, 313f, 314f, 315f, 316f
chemical reactions, 289–298, 300, 301
equations
chemical reaction rates, 328–331
conservation of mass, 306
conservation of momentum, 306
gas phase energy, 285

gas phase species, 285
oxygen storage capacity, 286
surface energy, 286
surface species, 286
flow distribution, 304–309
heat transfer, 302–304
inlet flow distribution, 304–309
mass transfer, 302–304
multi-dimensional modeling, 286–289
one-dimensional modeling, 284–286
oxygen storage mechanism, 299–302
Molecular diffusion coefficients, hydrocarbon fuels, 98
MPI. See Multipoint injection
MTBE (methyl-tertiary butyl ether), 208, 209t, 211, 215
Multi-hole fuel injector, 47, 50, 55, 68
Multipoint injection (MPI) engine startup, compared to DISI engine, 23–25

National Institute of Standards and Technology (NIST), 399
Natural gas, 222
N-butane, 209t
N-decane, 209t
N-dodecane, 209t
Negative temperature coefficient (NTC), 105
New York Department of Environmental Conservation, 375
N-heptane, 108–109
Nissan, 62, 269–270, 416, 418f, 419–424
Nitrogen, 224
Nitrogen oxides (NOx), 175–176, 219, 291, 348–349, 407
NMHC (nonmethane hydrocarbon), 14, 62, 397
NMOG (nonmethane organic gas) emissions, 40, 64, 233, 348–349
Nonmethane hydrocarbon (NMHC), 14, 62, 397
Nonmethane organic gas (NMOG) emissions, 40, 64, 233, 348–349
N-pentane, 48, 232
NTC (negative temperature coefficient), 105
N-undecane, 209

OBD II (onboard diagnostics II) regulations, 196, 347
OBD II system, 196, 347, 348
catalyst system monitor, 351–354, 366
cold-start emissions reduction control strategy monitor, 354–355
comprehensive component monitoring (CCM), 354
diagnostic failure, 350–351
diagnosis, 350–351
evaporative system monitor, 356–360, 366
exhaust gas recirculation monitor, 360, 366
fuel system monitor, 360–362
in-use performance tracking, 365–366
oxygen sensor monitor, 363–364, 366
secondary air system monitor, 364, 366
VVT control system monitor, 364–365, 366
OBDS (onboard distillation system), 63–64, 65f, 68, 231–233

Octane, 207–208, 219
high octane fuel, 229–231
Oil film sources, 35
Oil layer absorption, of hydrocarbons, 90–92
Oil temperature, 11f, 34f
Olefins, 105, 214
Onboard diagnostics, 196–197
Onboard distillation system (OBDS), 63–64, 65f, 68, 231–233
Onboard fuel distillation, 229–233, 234
Onboard fuel reformers, 224, 225
Onboard refueling vapor recover (ORVR) system, 343, 344
Open-valve injection (OVI), 35–36, 53
and hydrocarbon emissions, 13–14, 36, 45, 93
targeting, 52
timing, 47–51
ORVR (onboard refueling vapor recover) system, 343, 344
Over-fueling, 32–33, 52–53, 83, 100
OVI. See Open-valve injection
Oxidation. See Catalytic oxidation;
Hydrocarbon oxidation; Thermal oxidation
Oxygen, 214
Oxygen interference, 394–395
Oxygen sensor monitor, 363–364, 366
Oxygen sensor signal, 352
Oxygen storage capacity equation, 286
Oxygen storage content (catalyst), 352–354
Oxygenates, 207–208, 211, 213, 214, 215
Ozone-forming potential, 40
Palladium, 241, 246–258
Partial oxidation reformer (POx), 63, 223–224, 226–228, 229, 233
Particle image velocimetry (PIV), 123t, 132, 141, 142f
PDA (phase Doppler anemometry), 123t, 125–126, 133
Pencil stream fuel injector, 46
PFI. See Port fuel injected
Phase Doppler anemometry (PDA), 123t, 125–126, 133
Pintle fuel injector, 44–46, 55
Piston
 fuel evaporation from, 14, 37–39, 94
 position at engine stop, 6, 57
 ring-pack crevices, 88, 89, 101
Piston strokes, 101–104
Piston wetting
 at engine startup, 14
 effect on hydrocarbon emissions, 37–39
 multihole injectors compared, 50
PIV (particle image velocimetry), 123t, 132, 141, 142f
Planar laser-induced fluorescence (PLIF)
 combustion diagnostics, 143, 144f
 fuel delivery diagnostics, 133, 134
 mixture distribution diagnostics, 140
Platinum, 241, 246, 247, 248f
Platinum group metals (PGM), 241, 243, 246–258
PLIF. See Planar laser-induced fluorescence
Port film, 46, 50
Port flow velocity, during engine startup, 14–15
Port fuel injected (PFI) engine
 behavior during a cold start, 80–86
 engine shutdown process, 2–4
 engine startup process, 5–22
Port wall film model, 33
Port wall temperature, during engine startup, 10, 11f, 34–35
POx (partial oxidation reformer), 63, 223–224, 226–228, 229, 233
Pressure, intake manifold, 3, 4, 8–9, 15
Prevaporized fueling, 41–42, 43, 46
Prevaporizer system, 220
Propane, 111
Pump module seal, 338
PZEV (partial zero emissions vehicle), 62, 68, 211, 242, 334, 339, 349
BMW, 410–411
catalyst system design, 255–264
Ford, 411–413
hydrocarbon trap, 269–281
Nissan, 269–270, 416, 418f,
 419–424
system requirements, 407–410
Toyota, 61–62, 63f, 424–428
Quench layers, 96–98, 113
Quenching distance, methane/air flames, 98
Raman scattering, 123t, 138–139
Rayleigh scattering, 123t, 138–139
Reformulated gasoline (RFG), 214–215
Reid vapor pressure (RVP), 11, 208–211, 214t
Remote mix tee (RMT), 378, 379f
Retarded ignition. See Spark retard
RFG (reformulated gasoline), 214–215
RFG Reg-Neg, 214–215
Rhodium, 241, 246, 247, 252–253, 259f
Near-Zero-Emission Gasoline-Powered Vehicles

RVP (Reid vapor pressure), 11, 208–211, 214f

Sauter mean diameter (SMD), 12, 126
Sealed housing for evaporative determination (SHED), 335, 336f
Seals, fuel system, 339
Secondary air injection controlling quality, 193–195
and engine fueling enrichment, 191
and hydrocarbon oxidation, 111–112
monitoring, 196–197
principles of, 174–181
quantity, 191–193
temperature and mixing, 181–188
turbocharged engines, 198–199
vee engines, 197–198
Secondary air injection system, 176–177, 199
Secondary air system monitor, 364, 366f
SHED (sealed housing for evaporative determination), 335, 336f
SMD (Sauter mean diameter), 12, 126
Sparger-type design, 112, 186, 187f
Spark ignition, dual, 167, 168f
Spark plug threads, 88
Spark retard, 40–41, 51, 56, 60, 63–64, 65f, 67, 68, 145
to decrease cold-start emissions, 158f, 159–160
effect on engine operation, 160–163
enhancements, 163–167
to raise exhaust gas temperatures, 56, 189–191
Speed flare, 7, 8–9 (speed surge in the startup process)
Steam reforming, 222–223

Honda, 413–416, 417f, 418f
Toyota, 428–432
SULEV II, 22, 349
Sulfur, 214f, 249–250, 251f
Surface energy equation, 286
Surface oxygen storage capacity equation, 286
Surface species equation, 286
Swirl, 57–58, 61, 62, 68
Swirl control valves, 163, 164f, 165f

T₁₀, 11–12, 210
T₅₀, 12, 46, 56, 210, 211, 212, 214f
T₉₀, 12, 46, 210, 214f
Tailpipe emissions dilution factor, 370–371, 375–376, 377f
Tailpipe emissions limits, 371
Tailpipe exhaust temperatures, 388f
TAME (tertiary amyl butyl ether TAME), 208
T-butanol (TBA), 208
Temperature ambient, definition of cold start, 31
catalyst after PFI engine shutdown, 5f
rapid warm-up designs, 242–246, 262f
role in PFI engine startup process, 5
coolant after PFI engine shutdown, 5f
during PFI engine startup, 5, 10, 11f, 17, 18f, 34f
steady-state operation, 48, 49f, 91
exhaust gas during engine startup and warm-up, 34f
with retarded ignition timing, 158f, 159, 160–162, 189–191
fuel evaporation behavior, 11–12, 33
intake valve, 10–11, 34–35
oil, during PFI engine startup, 11f, 34f
port wall, during engine startup, 10, 11f, 34–35
Tertiary amyl butyl ether (TAME), 208
Thermal oxidation, 178–181
role of temperature and mixing, 181–191
Three-way catalyst, 241–242, 246, 269
platinum group metal loads, 247–255, 256, 257–258, 259
thermal durability, 251–252
Three-way catalytic converter, system modeling, 283–317
Toluene, 40, 209t
Top-land side clearances, 90
Total weighted demerits (TWD), 11
Toyota, 47, 63f, 228, 424–428, 428–432
Toyota hybrid ATPZEV system, 431, 432f
2,2,4 Trimethyl pentane, 209t
Tumble flow, 164, 165f
Turbocharged engines, secondary air injection, 198–199
Turbulence, in-cylinder, 32, 56, 57, 59, 83, 99, 101, 111
TWD (total weighted demerits), 11

RVP regulations, 209
ULEV (ultra-low emissions vehicle), 47, 64, 79, 160, 216, 217, 227, 243
ULEV II (ultra-low emissions vehicle II) standards, 333
Underbody catalyst, 259, 260f
Unical RF-A gasoline, 46
Vapor dome, 336, 337
Vapor fueling, 43, 60
Vapor/air ratio, 33, 53–55, 67
Vaporized fuel delivery, 41–42, 43, 46
Variable valve time (VVT) system, 14–15, 56, 61–62, 63f, 68
Variable valve timing and lift electronic control (VTEC) system, 163, 413
Vee engines, 197–198
Volatile organic compound (VOC) emissions, 211
VTEC (variable valve timing and lift electronic control) system, 163, 413
VVT (variable valve time) system, 14–15, 56, 61–62, 63f, 68
VVT control system monitor, 364–365, 366f
Wall wetting diagnostic techniques, 123f, 127–130
during engine warm-up, 94, 95
during steady-state operation, 50
effect on hydrocarbon emissions, 36–38, 51

U.S. Code of Federal Regulations (CFR), 335, 370, 372, 390, 400
U.S. Environmental Protection Agency (EPA), 217, 385
evaporative emissions standards, 333, 334
Wall wetting (continued)

- at engine startup, 12, 14, 50, 66, 68
- and swirl, 57–58

Washcoat (catalyst), 243, 246, 247, 249, 253, 255, 258, 259f

Water condensation, 378f

Water electrolysis, 228

Wide-range oxygen (WRO₂) sensor. See Universal exhaust gas oxygen (UEGO) sensor

Xylene, 93, 209f

Zeolite, 245, 270–272

Zero Emissions Vehicle (ZEV), 334
About the Contributing Authors

Dr. Michael Akard is an Analytical Product Specialist at Horiba Instruments, Inc. in Ann Arbor, Michigan. He earned his B.S. in Chemistry from the University of New Mexico in 1990 and his Ph.D. in Analytical Chemistry from the University of Michigan, Ann Arbor, in 1994. Dr. Akard is the author of 11 articles in journals ranging from *Analytical Chemistry* to the *Journal of Chromatographic Science*. He has made 18 presentations at PITTCON, SAE, and Anachem conferences, and he holds a U.S. patent for a method and a product in high-speed gas chromatography.

Dr. Paul Andersen is Technical Director of Johnson Matthey’s North American Technical Center. He earned his B.S. in Chemical Engineering from the University of Illinois—Urbana and his Ph.D. in Chemical Engineering from Northwestern University. Since joining Johnson Matthey in 1992, Dr. Andersen has worked on the development of various emissions control catalysts, including three-way catalysts, NOx adsorber catalysts, SCR catalysts, and oxidation catalysts.

Professor Choongsik Bae has worked in the Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST) since 1998. He received his B.S and M.S. degrees in Aerospace Engineering from Seoul National University in Korea. He received his Ph.D. in Mechanical Engineering from Imperial College, London, in 1993 and then worked as a Research Associate there. He later joined Chungnam National University and soon moved to KAIST. Professor Bae has been involved in various studies of experimental engine work and research on fuel spray, flow, and combustion in spark ignition and compression ignition engines. In 1997, he received the Arch T. Colwell Merit Award from SAE.

Dr. Todd Ballinger is a Staff Scientist in the Catalytic Systems Division of Johnson Matthey. He graduated from the University of Pittsburgh in 1993 with a Ph.D. in Physical Chemistry/Surface Science. After conducting post-doctoral
research in catalysis and surface science at Texas A&M University and the U.S. Naval Research Laboratory, he joined the Catalytic Systems Division of Johnson Matthey in 1995. There, he has been involved in the development of advanced three-way catalysts and hydrocarbon traps/catalysts for automotive catalytic converters, as well as the development of advanced catalyst systems for achieving very low emissions from vehicles.

Mark Borland is a Senior Engineering Specialist in the Advanced Engine Systems Development Group of DaimlerChrysler Corporation. In his 13 years there, he has worked on the development of emissions systems and control algorithms for both gasoline- and diesel-powered vehicles. Most recently, Mr. Borland was part of the team responsible for the development of software and hardware concepts to meet tailpipe emissions on DaimlerChrysler's first production PZEV vehicle. Mr. Borland earned his B.S. in Mechanical Engineering from the University of Wisconsin—Milwaukee and his M.S. in Applied Statistics from Oakland University in Rochester, Michigan.

Professor Wai K. Cheng is a Professor of Mechanical Engineering at Massachusetts Institute of Technology (MIT) and is the Associate Director of the Sloan Automotive Laboratory at MIT. His research interest lies in engine performance and emissions. Professor Cheng has made major contributions to the mixture preparation process in spark ignition engines, and he has authored more than 70 technical publications. He has received the Ralph R. Teetor Award in 1984, and the Oral Presentation Awards from SAE in 2002 and 2004. He is a Fellow of SAE.

Dr. James A. Eng is a Staff Research Engineer at General Motors Research and Development. He received his Ph.D. from Princeton University, working on hydrocarbon emissions and post-flame oxidation mechanisms from homogeneous charge spark ignition engines. During the past 10 years, Dr. Eng has worked in the areas of chemical kinetics, understanding the effects of fuels on engine performance and emissions, cold-start hydrocarbon emissions, and HCCI combustion.

Timothy Gernant is a Senior Product Development Engineer working on the calibration of onboard diagnostics at Ford Motor Company. He joined Ford in 1995 upon graduation from the University of Michigan, Ann Arbor, with a B.S. in Mechanical Engineering. Mr. Gernant continued his education at the University of Michigan, Ann Arbor, and received an M.S. in Automotive Engineering in 2000. He holds multiple patents relating to OBDII diagnostic systems.
Kathleen Grant has been an OBDII Calibration Engineer at Ford Motor Company for 10 years. She graduated from Wayne State University with a B.S. degree in Electrical Engineering and has worked with diagnostic systems and engine controls for more than 20 years. Ms. Grant has been awarded two U.S. patents relating to OBDII diagnostic systems. Previously, she was a project engineer at General Motors Corporation. Most recently, Ms. Grant has been calibrating OBD functionality on PZEV-emissions-level vehicles.

Christopher Hadre is the Core Design and Release Engineer for vapor canisters with the Evaporative Systems Group of DaimlerChrysler Corporation and has been a specialist in evaporative systems development for more than 5 years. He graduated with a B.A.Sc. in Mechanical Engineering from the University of Windsor in Canada in 1998.

Professor Matthew J. Hall is with the Department of Mechanical Engineering at the University of Texas—Austin, and he has more than 20 years of experience in automotive and vehicle research. He received his B.S. and M.S. in Mechanical Engineering from the University of Wisconsin—Madison and his Ph.D. from Princeton University. Professor Hall was a Post-Doctoral Fellow at the Combustion Research Facility of Sandia National Laboratories and at the University of California—Berkeley. His primary research interests center around combustion processes, with an emphasis on internal combustion engines. Professor Hall’s focus is on experimental measurements studying engine performance, emissions, and flows, with a specialization in optical diagnostic techniques and sensors. He has received several awards from SAE, including the Ralph R. Teetor Award in 1993, the Arch T. Colwell Merit Award in 1985, the Horning Award in 1987, and the Myers Award in 1998.

Dr. David Lafyatis is a Technical Program Manager at Johnson Matthey. He earned his Ph.D. in Chemical Engineering from the University of Delaware and then completed a Post-Doctoral Fellowship at the Rijksuniversiteit Gent in Belgium, studying reaction kinetics in a transient reactor. For the past 9 years, Dr. Lafyatis has worked at Johnson Matthey in the area of exhaust aftertreatment technology.

Professor Ronald D. Matthews obtained his B.S. in Mechanical Engineering from the University of Texas, Austin, followed by three graduate degrees from the University of California—Berkeley, culminating in 1977 with a Ph.D. with a specialization in combustion. He joined the faculty of the Department of Mechanical Engineering at the University of Texas, Austin, in 1980, where he established its combustion and engine research program. Professor Matthews
Near-Zero-Emission Gasoline-Powered Vehicles

is Head of the General Motors Foundation Combustion Sciences and Automotive Research Laboratories on the University of Texas, Austin, campus. In 1980, he founded the SAE student chapter at the University of Texas, Austin, and has served as Faculty Advisor to the chapter since then. For more than 25 years, he has been involved in research in the areas of combustion, engines, emissions, and alternative fuels. Professor Matthews’ research activities also include experimental work and numerical modeling of both fundamental combustion processes and combustion within engines. His present research focuses primarily on controlling hydrocarbon emissions from PFI spark ignition engines, the spark ignition process, engine friction, and alternative diesel fuels. Professor Matthews has received several SAE awards, including the Ralph R. Teetor Award in 1979, the Arch T. Colwell Merit Award in 1992, the Excellence in Engineering Education (Triple E) Award in 2002, the Phil Myers Award in 2002, and the Faculty Advisor Award in 1990, 1997, and 2002. In 1996 and again in 1998, the University of Texas, Austin, body of work on fractal engine modeling was nominated for the ComputerWorld Award and was selected for inclusion in the Smithsonian National Museum of American History, Permanent Research Collection on Information, Technology, and Society. Professor Matthews was elected a Fellow of SAE in 2002.

Kimiyoshi Nishizawa is a Senior Manager of the Powertrain Advanced Engineering Department No. 2 at Nissan Motor Co., Ltd. He graduated from Tokyo University in Japan and received his B.S. in Mechanical Engineering. His first job at Nissan was to design and develop components for gasoline engines. Later, he became an engine systems engineer, focusing on emissions reduction. Mr. Nishizawa’s recent work has focused on developing the PZEV system for the Nissan Sentra CA for the U.S. market, which was launched in February 2000; a ULEV system for the Nissan Bluebird Sylphy for the Japanese market, which was launched in August 2000; and developing emissions systems to meet Japan ULEV standards and applying them to more than 80% of Nissan vehicles sold in Japan in March 2003.

Dr. Stephen Russ is a Technical Leader for Engine Combustion in the V-Engine Engineering Division of Ford Motor Company. He joined Ford after receiving his Ph.D. in Mechanical Engineering from the University of Minnesota, Minneapolis/Twin Cities, in 1993. Dr. Russ worked in the Ford Research Laboratory for six years, conducting research on engine combustion, emissions formation, and advanced diagnostics. For the past five years, he has led the development of several Ford V-engine programs. Dr. Russ has authored 20 SAE technical papers and has organized and chaired SAE technical sessions on engine
combustion and emissions. He also has been awarded 11 U.S. patents for various engine technologies. Dr. Russ was selected to participate in the 1999–2000 SAE Industrial Lectureship Program and has given invited lectures at several universities.

Professor Tariq Shamim is an Associate Professor of Mechanical Engineering at the University of Michigan—Dearborn. He is a graduate of the University of Michigan—Ann Arbor, where he received both his Ph.D. in Mechanical Engineering and his M.S. in Aerospace Engineering. Professor Shamim received another M.S. in Mechanical Engineering from the University of Windsor in Canada and a B.S. in Mechanical Engineering from the NED University of Engineering and Technology in Karachi, Pakistan. His research and teaching interests are in the area of computational thermo-fluids, with major emphasis on combustion, emissions control, fuel cells, and thermal spray. Professor Shamim’s research is supported by the National Science Foundation, U.S. Department of Energy, U.S. Department of Defense, and the automotive industry. He is actively involved with several professional organizations, including SAE, American Society of Mechanical Engineers (ASME), and the Combustion Institute. In 2004, he received the Ralph R. Teetor Award from SAE.

Jenny Spravsow has been employed by DaimlerChrysler since 1998 and currently holds the position of Product Development Engineer in the Advanced Evaporative Systems Group. She earned her B.S. in Mechanical Engineering from Lawrence Technological University in Southfield, Michigan, and her M.S. in Mechanical Engineering from Oakland University in Rochester, Michigan.

Glenn Zimlich is an OBD Calibration Technical Expert at Ford Motor Company. He joined Ford in 1990, after completing his Bachelor of Mechanical Engineering at the University of Detroit. He completed his Master of Mechanical Engineering from the University of Detroit in 1993. Mr. Zimlich has received multiple U.S. patents relating to onboard diagnostics.
About the Editor

Dr. Fuquan (Frank) Zhao currently is the Vice President of Product Engineering, and General Manager for the R&D Center at Brilliance Jinbei Automobile Corporation in Shenyang, China. In this position, Dr. Zhao is responsible for all activities related to vehicle product development.

Prior to this position, he was a Research Executive of Technical Affairs at Daimler-Chrysler Corporation. In this position, he was responsible for providing technical guidance and advice to all product team managers and engineers within DaimlerChrysler Corporation relating to engine development issues and advanced powertrain technologies. He represented the Chrysler Group in various consortium activities and served as a technical spokesman.

Dr. Zhao’s other experience includes time as an Assistant Professor in Mechanical Engineering at Wayne State University, a Research Fellow at the Imperial College of Science, Technology, and Medicine in the United Kingdom, and a Postdoctoral Fellow at Wayne State University and the University of Hiroshima. Dr. Zhao received his B.S. in Mechanical Engineering from Jilin University of Technology (China) in 1985. He obtained his M.S. in Mechanical Engineering from the University of Hiroshima (Japan) in 1989 and his Ph.D. there in 1992.

Dr. Zhao is the principal author of more than 100 technical research papers on various subjects. He is the principal author of the book, Automotive Gasoline Direct-Injection Engines, published by SAE in 2002, and he is the leading editor of the book, Homogeneous Charge Compression Ignition (HCCI) Engines, published by SAE in 2003. Dr. Zhao also is the leading editor of the books...
Near-Zero-Emission Gasoline-Powered Vehicles

Direct Fuel Injection for Gasoline Engines and Advanced Development in Ultra-Clean Gasoline-Powered Vehicles published by SAE in 2000 and 2004, respectively. He has received several prestigious awards to recognize his technical achievements and his leadership in professional societies, including the 2002 SAE Forest R. McFarland Award. He served as the chair of the Combustion Committee for the SAE Fuels and Lubricants activity from 2002 to 2004. He is a Fellow of SAE. Currently, Dr. Zhao holds an honorary professorship from several leading Chinese Universities.