Bibliography

References

1. Dobbie McInnes Ltd and Dobbie McInnes & Clyde Ltd, not dated, various editions. *The Engine Indicator: Diesel, Steam.* (With Specimen Diagrams Showing Engine Faults). Glasgow: Dobbie McInnes Ltd and Dobbie McInnes & Clyde Ltd.

References

References

Automotive Engineers.

Index

Abnormal combustion. See Cold start measurement; Combustion knock; Combustion noise Amplifiers, 112–113, 113f carrier-frequency amplifier, 122–124, 123f, 124f charge amplifiers basic function and operation, 113 cabling and interfaces to, 117 design, 113 drift and drift compensation, 116–117, 116f, 117f measurement procedure, 113–114 piezoelectric sensor, 113 time constant property, 115–116 intelligent amplifiers advantages, 125–126 analogue, 124 for combustion noise, 133–134 digital, 125, 125f IMEP (indicated mean effective pressure) meter, 135–136 knock meter, 134–135 PMax monitoring, 131–133, 133f, 134f, 135f properties, 124 SID (sensor identification), 130, 130f Transducer Electronic Data Sheet (TEDS), 126–129, 126f, 127f, 128f, 129f Analogue signals inputs and outputs, combustion measurement system hardware, 139–142, 140f mechanical operation, 118–119 types of signals, 119, 120f, 121 Analysis of diagrams measurement process, 12–13 mechanical operation, 13 planimeter, 12f, 13 Angle encoder basic function, 22 and combustion pressure curve definition, 23 influence of crank angle resolution on, 24f, 24t measurement process, 23–24 sampling frequency, 25 inductive system, 22–23 mounted on the front pulley, 22f optical system, 22 output signal, 25–26 measurement procedure, 25–26 mechanical procedure, 25 profile, typical, 26f principles, optical and inductive, 23f processing, 30–33 accuracy of, 33 and crank position sensor, 32f and crankshaft position information, 30 limitations, 32 measurement process, 32 stages of testing, 31 and toothed wheel, 30–31 waveform display, 31f resolution required, 23–25 types, 27–29 ASAM. See Association for Standardisation of Automation and Measuring Systems (ASAM) Association for Standardisation of Automation and Measuring Systems (ASAM), 149 AVL Company, 130
Bedel, Charles, 6
Bosch Company, 101

Calculations and results, measurement system software
derived results, importance of, 163
future developments, 169–170
real-time results, 164–165
user-defined results, 165–169, 167f, 168f
Calibration, transducers, 280–284, 281f, 282f, 283f

Capacitive probe
advantage of, 191–192
installation, 195–196
measurement procedure, 193–194
mechanical operation, 191
sensor, 192f, 193f, 194f, 195f, 196f

Carrier-frequency amplifier, 122–124, 123f, 124f

Cetane Index, 101

Charge amplifier
basic function and operation, 113
cabling and interfaces to, 117
design, 113
drift and drift compensation, 116–117, 116f, 117f
measurement procedure, 113–114
piezoelectric sensor, 113
time constant property, 115–116

Cold start measurement
definition, 249–250
significance of, 249
system configuration and results
data visualization and processing, 253, 254f
measurement procedure, 252–253
preconditions, 250–251
and quality considerations, 253–254

Combustion knock
and algorithm adaptations, 241
causes, 219–220
conditions producing, 221
confusion about, 218
cylinder pressure measurements
acquisition frequency, 225–226
acquisition window, 226

AVL histogram, 234–236, 235f
AVL KI (knock index), 233, 233f
AVL real time, 228–231, 230f
AVL transient, 234
calculation of knock overpressure, 226, 227f, 228
FEV CAS, 231–232, 233f
filtering, 224–225
frequency, 224
oscillation, 223f
rectification of peak curve, 228, 229f
signal processing, 224
third derivative, 236–237
weighting table, 232f
definition, 218–219, 219f
measurement techniques
instrumented spark plug, 222–223
ionization current, 222
optical access, 222
structure-borne knock sensors, 221–222
quality considerations
measurement range and resolution, 239
measurement system setup, 239–240
transducer position, type, and properties, 237–238, 238f, 239f
significance of, 220–221

Combustion measurement system,
applications
chain properties, introduction to, 176–177
instrumentation
angle domain, 177
angle encoders, 177
external interfaces, 180
hardware, 178–179
pressure, 177–178
signal conditioning, 178
low pressure–gas exchange process
and low pressure transducers, 214–216, 215f
measurement, analysis, 213–214, 214f
measurement, setup, 212–213, 213f
measurement, task and goal, 212–212
mechanical operation, 209–210
Combustion measurement system, signal conditioning (continued)
carrier-frequency amplifier, 122–124, 123f, 124f
charge amplifier
 basic function and operation, 113
cabling and interfaces to, 117
design, 113, 115f
drift and drift compensation, 116–117, 116f, 117f
measurement procedure, 113–114
piezoelectric sensor, 113
and time constant property, 115
design, 112, 113f, 114f
harmonisation of elements, 131
ignition timing amplifier, 121–122, 122f
information provided, 130
intelligent amplifiers
 advantages, 125–126
 analogue, 124
 for combustion noise, 133–134
digital, 125, 125f
IMEP (indicated mean effective pressure) meter, 135–136
knock meter, 134–135
PMax monitoring, 131–133, 133f, 134f, 135f
properties, 124
mechanical operation, 112
purpose, 112
sensor recognition, 131
and SID (sensor identification) advantage, 130
measurement procedure, 130
surface acoustic wave (SAW) technology, 130, 130f
and TEDS (Transducer Electronic Data Sheet)
data security management, 127, 128f
definition, 126
installation, 129, 129f
integration of, 127, 127f
measurement procedure, 127
mechanical operation, 128–129
and microchips, 126–127, 126f
tracking procedure, 130–131

Combustion measurement system, test environment
components, 289–290
configuration, 288
conversion processes, 289f
integration of, 288
interfaces
 angle encoder to measurement system, 296–297
 charge amplifier to measurement system, 297, 298f
 components, 296, 298f
data transfer and control, analogue, 300–301
data transfer and control, digital, 299
transducer to charge amplifier, 297
systems
 high-end, 294–296, 294f
 low-end, 290–292, 290f
 mid-range, 292–294, 292f
Combustion noise
definition, 242–244, 243f
measurement procedures
 filters, 246–248, 246f, 247f
 human ear response, 247f
 signal processing and calculation, 244–246, 244f, 245f
and quality considerations, 248
significance of, 241–242
Combustion pressure curve
definition, 23
influence of crank angle resolution on,
 24f, 24t
measurement procedure, 23–24
sampling frequency, 25
Crosshead beam engine indicator, 3f
Cylinder pressure measurements,
 combustion knock
 acquisition frequency, 225–226
 acquisition window, 226
 AVL histogram, 234–236, 235f
 AVL KI (knock index), 233, 233f
 AVL real time, 228–231, 230f
 AVL transient, 234
calculation of knock overpressure, 226, 227f, 228
FEV CAS, 231–232, 233f
filtering, 224–225
frequency, 224
oscillation, 223f
rectification of peak curve, 228, 229f
signal processing, 224
third derivative, 236–237
weighting table, 232f
Cylinder pressure sensing, alternatives to
piezoelectric
advantages, 92
exhaust and inlet sensors
acceleration effects, 108–109
adaptors, 108f, 109f, 109–110, 111f
installation, 108
measurement procedure, 107–108, 107f
purpose, 107
optical sensors, as alternative to
piezoelectric
advantages, 94
diagram, 94f
installation, 94f
measurement procedure, 93
mechanical operation, 93
requirements, 94
piezoresistant
advantages, 92
mechanical procedure, 93
valve lift sensors
laser vibrometry, 105–106, 106f
measurement procedure, 106–107
purpose, 105
system, 106f
Cylinder pressure transducers
construction and types
cooled, 42–44, 43f, 44f, 45f
design, 41, 42f
and ground isolation, 41, 42f
mechanical operation, 41
uncooled, 44–47, 46f
installation and adaptors
considerations and positions, 62–66, 65f
front sealing, 63f
glow plug adaptors, 75–79, 77f, 78f
installation of mounting bores, 66–69,
67f, 68f, 69f
intervention, 62f
intrusive mounting, 62
nonintrusive mounting, 69–70
spark plug adaptors, 70–75, 71f, 72f,
73f, 74f, 75f
piezoelectric
crystal cuts, 39, 40f
direct, 36, 37f
discovery, 36
Gallium orthophosphate (GAPO4),
39–40, 41
materials used, 38–41
mechanical procedure, 38
purpose, 36
quartz, 38–39
reciprocal, 36–37, 37f
selection and applications
categories, 82–83
considerations, 83–89, 83f, 85f, 89f
requirements, 80–82, 81f
transducer properties, piezoelectric
design, 60–61
environmental effects, 47, 48f
specifications, 48–53, 49f
thermodynamic, 54–60

Diesel engines. See Line pressure; Needle
lift

Digital systems
advantages, 15–16
combustion measurement systems, 146
data reduction, 17
features, 15
and future engine technologies, 17
inputs and outputs, combustion
measurement system hardware, 142
measurement procedure, 16
modern indicator system, 18f
overview, 15f
PC-based user interface, 17–18
portable, 16–17, 16f
real-time calculation ability, 17
technology developments, 17–18

Drum-type engine indicator
diagram produced by, 5f
mechanical operation, 4, 4f
Index

Eichelberg correlation, 191
Encoder output signal
 measurement procedure, 25–26
 mechanical operation, 25
 profile, typical, 26f
Encoder signal, processing
 accuracy of, 33
 and crank position sensor, 32f
 and crankshaft position information, 30
 limitations, 32
 measurement process, 32
 stages of testing, 31
 and toothed wheel, 30–31
 waveform display, 31f
Encoder types
 open, 28–29, 29f, 30f
 standard-closed, 27, 27f, 28f
Engine indicators
 analysis of diagrams
 measurement process, 12–13
 mechanical operation, 13
 planimeter, 12f, 13
 combustion measurement system, modern
 angle encoder, 20
 data acquisition system, 20
 dead weight tester, 20
 measurement procedure, 19
 signal conditioning amplifier, 19–20
 TDC (engine tope dead centre) sensor equipment, 20
 transducer, 19
 transducer conditioning system, 20
 workflow process, 19f
 crosshead beam, attached to, 3f
digital systems
 advantages, 15–16
 data reduction, 17
 features, 15
 and future engine technologies, 17
 measurement procedure, 16
 modern indicator system, 18f
 overview, 15f
 PC-based user interface, 17–18
 portable, 16–17, 16f
 real-time calculation ability, 17
 technology developments, 17–18
drum-type indicator
 diagram produced by, 5f
 mechanical operation, 4, 4f
Farnsboro indicator
 cylinder pressure diagram, 11f
 pickup with disc valve arrangement, 10f
 recorder unit, 9f
 system, 8f
 and internal combustion engines, 6
Midgley optical engine indicator
 limitations, 8
 mechanical operation, 7
“moving tablet” indicator, 2, 3f
optical indicators
 diaphragm-type indicator, 6f
 limitations, 6–7
 mechanical operation, 6
oscilloscope recording
 components, 13
 measurement procedures, 14–15
 mechanical operation, 13–14
 system, 14f
 and transducer technology, 14–15
spark-trace indicator
 improvements in, 11
 “low-pressure” measurements, 11
 measurement procedure, 11
 mechanical operation, 8–10
Errors, sources of, in combustion measurement system
 amplifier, 259–260
 cabling, 257–258
 encoder, 258–259
 and measurement chain, 260–261, 261t
 measurement device, 260
 transducer, 257
Excel™, 150
Exhaust and inlet sensors
 acceleration effects, 108–109
 adaptors, 108f, 109f, 109–110, 111f
 installation, 108
 measurement procedure, 107–108, 107f
 purpose, 107

Farnsboro indicator
 cylinder pressure diagram, 11f
pickup with disc valve arrangement, 10f
recorder unit, 9f
system, 8f
Fuel systems. See Needle lift

Gallium orthophosphate (GAPO₄), 39–40, 41 versus quartz, 41
General Motors, 8
Great Exhibition, 1862, 5

Hardware, combustion measurement system
measurement data-flow sequence, 137–139
operating requirements, 137
system interfaces
analogue inputs and outputs, 139–142
angle encoder, 139
digital inputs and outputs, 142
operator interface, 139
Hiroyasu, Hiroyuki, 190

IEEE. See Institute of Electrical and
Electronic Engineers (IEEE)

Ignition signals
adjustment variables, 98
angle measurement equipment, 99f
definition, 97
inductive clamp probe, 98, 98f
mechanical operation, 99

Ignition timing amplifier, 121–122, 122f
Inductive angle encoder, 22–23
Installation and adaptors, piezoelectric. See Transducer installation and adaptors
Institute of Electrical and
Electronic Engineers (IEEE), 126

Instrumentation, combustion measurement system, applications
angle domain, 177
angle encoders, 177
external interfaces, 180
hardware, 178–179
pressure, 177–178
signal conditioning, 178

Intelligent amplifiers
advantages, 125–126
analogue, 124
for combustion noise, 133–134
digital, 125, 125f
IMEP (indicated mean effective pressure)
meter, 135–136
knock meter, 134–135
PMax monitoring, 131–133, 133f, 134f, 135f
properties, 124
SID (sensor identification)
advantage, 130
measurement procedure, 130
surface acoustic wave (SAW) technology, 130, 130f

Transducer Electronic Data Sheet (TEDS)
data security management, 127, 128f
definition, 126
installation, 129, 129f
integration of, 127, 127f
measurement procedure, 127
mechanical operation, 128–129
and microchips, 126–127, 126f

Interfaces, measurement system hardware
analogue inputs and outputs, 139–142
angle encoder, 139
digital inputs and outputs, 142
operator interface, 139
typical system, 142–144, 143f

Interfaces, measurement system software
time controller area network (CAN), 161–163
to engine electronics system, 159–160, 160f
remote system, 157–159

Interfaces, PC-based, 17

Interfaces, and test environment,
combustion measurement systems
angle encoder to measurement system,
296–297
charge amplifier to measurement system,
297, 298f
components, 296, 298f
data transfer and control, analogue,
300–301
data transfer and control, digital, 299
transducer to charge amplifier, 297

Interfaces, user, measurement system software
basic function and requirements, 146
data management, 149–151, 149f
Interfaces, user, measurement system software (continued)
display of data, 148–149, 149f
parameterisation, 147–148, 148f
Internal combustion engines, and impact on design of engine indicators, 6
Ion current sensors
advantages, 95
applications, 97
in combustion chamber, 95f
and glow plug design, 96f
measurement procedure, 96–97
mechanical operation, 95–96
and pressure curve, 96f
principle, basic, 95f
purposes, 95
Jodon system, 197
The Kistler Company, 39
Knock, combustion
and algorithm adaptations, 241
causes, 219–220
conditions producing, 221
confusion about, 218
cylinder pressure measurements
acquisition frequency, 225–226
acquisition window, 226
AVL histogram, 234–236, 235f
AVL KI (knock index), 233, 233f
AVL real time, 228–231, 230f
AVL transient, 234
calculation of knock overpressure, 226, 227f, 228
FEV CAS, 231–232, 233f
filtering, 224–225
frequency, 224
oscillation, 223f
rectification of peak curve, 228, 229f
signal processing, 224
third derivative, 236–237
weighting table, 232f
definition, 218–219, 219f
measurement techniques
instrumented spark plug, 222–223
ionization current, 222
optical access, 222
structure-borne knock sensors, 221–222
quality considerations
measurement range and resolution, 239
measurement system setup, 239–240
transducer position, type, and properties, 237–238, 238f, 239f
significance of, 220–221
Line pressure
challenges in the measurement of, 101
dynamic effects, 99
installation, 100, 100f
measurement procedure, 100
mechanical operation, 100
Low pressure-gas exchange process
and low pressure transducers, 214–216, 215f
measurement, analysis, 213–214, 214f
measurement, setup, 212–213, 213f
measurement, task and goal, 212–212
mechanical operation, 209–210
Maintenance, combustion measurement system
calibration, 280–284, 281f, 282f, 283f
installation and handling, 278–279
measurement range and resolution, 239
measurement system setup, 239–240
transducer position, type, and properties, 237–238, 238f, 239f
significance of, 220–221
Matlab™, 150
Measurement procedures, combustion noise filters, 246–248, 246f, 247f
human ear response, 247f
signal processing and calculation, 244–246, 244f, 245f
Measurement system software
calculations and results
derived results, importance of, 163
future developments, 169–170
real-time results, 164–165
user-defined results, 165–169, 167f, 168f
combustion measurement system
best practices, 274–275
measured data requirements, 269–272
plausibility checks and data validation, 272–273, 273f, 274f
reliability, 269
interfaces
controller area network (CAN), 161–163
to engine electronics system, 159–160, 160f
remote system, 157–159
operating modes
advanced thermodynamic analysis, 156
cold start, 153
event mode, 154
fuel injection analysis, 156
knock measurement, 153
optical and flame analysis, 156–157
pulse frequency analysis, 157
standard measurement options, 151–152, 152f
time-based, 154–155
torsion and rotation analysis, 155, 156f
postprocessing and data management
basic requirements for data format and export, 170–172
main purpose, 170
requirements for engine and system parameters, 172–173
typical environment, 173–174
user interface
basic function and requirements, 146
data management, 149–151, 149f
display of data, 148–149, 149f
parameterisation, 147–148, 148f
Microsoft Visual Basic™, 150
Microsoft Windows™, 146
Midgley optical engine indicator, 7f
limitations, 8
mechanical procedure, 7
Midgley, Thomas, Jr., 7
MOSFET (metal oxide semiconductor field effect transistor), 38
"Moving tablet" indicator measurement procedure, 2

Needle lift
amplification, 103, 105
calibration, 105
definition, 101
Hall effect sensing element, 102, 103f
inductive method, 101
installation, 103
instrumented injectors, 103f
measurement procedure, 104
production equipment, 101–102, 102f
and signal output, 104–105, 104f
technologies for, 102
Noise, combustion
definition, 242–244, 243f
measurement procedures
filters, 246–248, 246f, 247f
human ear response, 247f
signal processing and calculation, 244–246, 244f, 245f
and quality considerations, 248
significance of, 241–242
Operating modes, measurement system
software
advanced thermodynamic analysis, 156
cold start, 153
event mode, 154
fuel injection analysis, 156
knock measurement, 153
optical and flame analysis, 156–157
pulse frequency analysis, 157
standard measurement options, 151–152, 152f
time-based, 154–155
torsion and rotation analysis, 155, 156f
Optical angle encoder, 22
Optical indicators
diaphragm-type indicator, 6f
limitations, 6–7
mechanical operation, 6
Optical sensors, as alternative to piezoelectric
advantages, 94
diagram, 94f
installation, 94f
measurement procedure, 93
Index

Optical sensors, as alternative to (continued) mechanical operation, 93 requirements, 94
Oscilloscope recording components, 13 measurement procedures, 14–15 mechanical procedure, 13–14 system, 14f and transducer technology, 14–15
PC-based user interface, 17
Piezoelectric transducers crystal cuts, 39, 40f direct, 36, 37f discovery, 36 Gallium orthophosphate (GAPO₄), 39–40, 41 materials used, 38–41 mechanical operation, 38 purpose, 36 quartz, 38–39 reciprocal, 36–37, 37f
Piezoresistant sensors advantages, 92 mechanical procedure, 93
Planimeter, 12f
Porter-Allen engine, 5
Postprocessing and data management, measurement system software basic requirements for data format and export, 170–172 main purpose, 170 requirements for engine and system parameters, 172–173 typical environment, 173–174
Prechecks, combustion measurement system amplifiers, 263 encoder, 263–264 measurement procedure, 264 measurement setup, 262 transducer and cabling, 262–263
Quartz, 39 versus Gallium orthophosphate (GAPO₄), 39–40, 41
Rassweiler, G.M., 201–202
Richards indicator, 5, 5f
SID (sensor identification) advantage, 130 measurement procedure, 130 surface acoustic wave (SAW) technology, 130, 130f
Signal conditioning systems for combustion measurement and amplifier systems, 112–113, 113f analogue signals mechanical operation, 118–119 types of signals, 119, 120f, 121 carrier-frequency amplifier, 122–124, 123f, 124f charge amplifier basic function and operation, 113 cabling and interfaces to, 117 design, 113, 115f drift and drift compensation, 116–117, 116f, 117f measurement procedure, 113–114 piezoelectric sensor, 113 and time constant property, 115 design, 112, 113f, 114f harmonisation of elements, 131 ignition timing amplifier, 121–122, 122f information provided, 130 intelligent amplifiers advantages, 125–126 analogue, 124 for combustion noise, 133–134 digital, 125, 125f IMEP (indicated mean effective pressure) meter, 135–136 knock meter, 134–135 PMax monitoring, 131–133, 133f, 134f, 135f properties, 124 mechanical operation, 112 purpose, 112 sensor recognition, 131 and SID (sensor identification) advantage, 130 measurement procedure, 130

318
surface acoustic wave (SAW) technology, 130, 130f
and TEDS (Transducer Electronic Data Sheet)
data security management, 127, 128f
definition, 126
installation, 129, 129f
integration of, 127, 127f
measurement procedure, 127
mechanical operation, 128–129
and microchips, 126–127, 126f
tracking procedure, 130–131
Software and data handling
best practices, 274–275
measured data requirements, 269–272
plausibility checks and data validation,
272–273, 273f, 274f
reliability, 269
Software, measurement system
derived results, importance of, 163
future developments, 169–170
real-time results, 164–165
user-defined results, 165–169, 167f, 168f
Spark-trace indicator. See also Farnsboro indicator
improvements in, 11
“low-pressure” measurements, 11
measurement procedure, 11
mechanical operation, 8–10
Steam engine pioneers, 2
Stirling engines, 197
System interfaces, combustion measurement system
analogue inputs and outputs, 139–142
angle encoder, 139
digital inputs and outputs, 142
operator interface, 139
typical system, 142–144, 143f
TDC (top dead centre) combustion measurement system application
capacitive probe, 191–196. See also Capacitive probe
determination methods, 197–200, 199f
interval method, 190f
introduction, 185–186, 186f
microwave, 197
motored curve method, 191
pressure curve determination, 188–191
static determination, 186–187, 187f
thermodynamic loss angle, 187f, 188f
TEDS. See Transducer Electronic Data Sheet (TEDS)
Test environment, combustion measurement system
components, 289–290
configuration, 288
conversion processes, 289f
integration of, 288
interfaces
angle encoder to measurement system, 296–297
charge amplifier to measurement system, 297, 298f
components, 296, 298f
data transfer and control, analogue, 300–301
data transfer and control, digital, 299
transducer to charge amplifier, 297
systems
high-end, 294–296, 294f
low-end, 290–292, 290f
mid-range, 292–294, 292f
Thermodynamic analysis, combustion measurement system applications
calculations, offline, 206–207, 207f
definition, 200–201
error-producing effects, 208–209
heat release algorithm, 203–206, 204f
measurement procedure, 203–206
mechanical operation, 202–203
Transducer calibration, 280–284, 281f, 282f, 283f
Transducer combustion measurement applications
ignition signals
adjustment variables, 98
angle measurement equipment, 99f
definition, 97
inductive clamp probe, 98, 98f
mechanical operation, 99

319
Index

Transducer combustion measurement applications (continued)
 line pressure
 challenges in the measurement of, 101
 dynamic effects, 99
 installation, 100, 100f
 measurement procedure, 100
 mechanical operation, 100
 needle lift
 amplification, 103, 105
 calibration, 105
 definition, 101
 Hall effect sensing element, 102, 103f
 inductive method, 101
 installation, 103
 instrumented injectors, 103f
 measurement procedure, 104
 production equipment, 101–102, 102f
 and signal output, 104–105, 104f
 technologies for, 102
Transducer construction and types, piezoelectric
 cooled, 42–44, 43f, 44f, 45f
 design, 41, 42f
 and ground isolation, 41, 42f
 mechanical operation, 41
 uncooled, 44–47, 46f
Transducer, cylinder pressure
 construction and types
 cooled, 42–44, 43f, 44f, 45f
 design, 41, 42f
 and ground isolation, 41, 42f
 mechanical operation, 41
 uncooled, 44–47, 46f
 installation and adaptors
 considerations and positions, 62–66, 65f
 front sealing, 63f
 glow plug adaptors, 75–79, 77f, 78f
 installation of mounting bores, 66–69, 67f, 68f, 69f
 intervention, 62f
 intrusive mounting, 62
 nonintrusive mounting, 69–70
 spark plug adaptors, 70–75, 71f, 72f, 73f, 74f, 75f
piezoelectric
 crystal cuts, 39, 40f
 direct, 36, 37f
 discovery, 36
 Gallium orthophosphate (GAPO₄), 39–40, 41
 materials used, 38–41
 mechanical procedure, 38
 purpose, 36
 quartz, 38–39
 reciprocal, 36–37, 37f
 selection and applications
 categories, 82–83
 considerations, 83–89, 83f, 85f, 89f
 requirements, 80–82, 81f
 transducer properties, piezoelectric
 design, 60–61
 environmental effects, 47, 48f
 specifications, 48–53, 49f
 thermodynamic, 54–60
Transducer Electronic Data Sheet (TEDS)
 data security management, 127, 128f
 definition, 126
 installation, 129, 129f
 integration of, 127, 127f
 measurement procedure, 127
 mechanical operation, 128–129
 and microchips, 126–127, 126f
Transducer installation and adaptors,
 62–78
 considerations and positions, 62–66, 65f
 front sealing, 63f
 glow plug adaptors, 75–79, 77f, 78f
 installation of mounting bores, 66–69, 67f, 68f, 69f
 intervention, 62f
 intrusive mounting, 62
 nonintrusive mounting, 69–70
 spark plug adaptors, 70–75, 71f, 72f, 73f, 74f, 75f
Transducer properties, piezoelectric
 design, 60–61
 environmental effects, 47, 48f
 specifications, 48–53, 49f
 thermodynamic, 54–60, 55f, 56f, 58f, 59f, 61
Transducer selection and applications, 79–89
 categories, 82–83
 considerations, 83–89, 83f, 85f, 89f
 requirements, 80–82, 81f
Transducer technology
 inductive, 14
 piezoelectric, 14
 strain gauge, 15
 variable capacitance, 14–15
User interface, measurement system
 software
 basic function and requirements, 146
 data management, 149–151, 149f
 display of data, 148–149, 149f
 parameterisation, 147–148, 148f
Valve lift sensors
 laser vibrometry, 105–106, 106f
 measurement procedure, 106–107
 purpose, 105
 system, 106f
Watt, James, 2
Withrow, L., 201–202
Wolff Company, 102
Woschni correlation, 191
Zero-level correction, combustion
 measurement system applications
 detection methods, 184f
 fixed point and measured value, 180–181, 181f
 fixed point and reference value, 179–180, 180f
 introduction, 179
 post-processing, 183–184
 thermodynamic, 181–183, 182f
ABOUT THE AUTHOR

David R. Rogers started with a technical career in the retail motor industry. He then moved into technical positions in automotive research and development and following this, a position in technical sales and business management for automotive powertrain instrumentation and test systems allowed him to develop a detailed, practical knowledge base on combustion pressure measurement, from a user perspective and application viewpoint. He gained much of this knowledge through hands-on interaction with users of the equipment in real-life applications.

Professionally, he is a member of the Institution of Mechanical Engineers and the Society of Automotive Engineers. He is also currently a member of the board of the Institution of Mechanical Engineers, Automobile Division.