Index

Note: page numbers followed by f indicate a figure; page numbers followed by a t indicate a table.

A
Analysis, eigenvalue. See Eigenvalue analyses
Analysis, experimental modal.
 See Experimental modal analysis
Axial force, effect on lateral vibration, 339–340, 339f

B
Balancing of rotors
 crankshafts, 120–126
 balance machine, 126f
 ring weight installation, 125f
 ring weights, 123f
 unbalance forces and moments, 121–122f
 weighing big-end mass, 124f
 weighing connecting rod mass, 124f
 experimental balancing
 single-plane, 98–100, 100f
 two-plane balancing, 100–104, 101f, 103f
 inertia forces and couples of multicylinder engines, 110–120
 couples of inertia forces, 119f
 inline three-cylinder engine, 111f
 numbered V8 engine, 113f
 phase angles, 114f
 phase angles between the eight cylinders, 115f
 two unit vector sets, 118f, 119t
 inertia forces in a single-cylinder engine, 104–110, 104f, 107f, 109f

problems, 126–133
 unbalance
 dynamic, 94–95, 94f, 95f
 static, 93, 93f
 whirling of rotating shaft, 95–97, 96f, 97t

C
Classification of vibration
 degrees of freedom of the system, 7
 differential equation of motion of the system, 7–8, 7f
 input, 3–4
 belt friction system, 4f
 mass spring system, 3f
 unbalanced disk, 4f
 output, 4–6, 4f, 5f, 6f
 Coherence function, experimental modal analysis
 multiple, 434–435, 435f
 ordinary, 433–434, 434f
 partial, 435–436
Continuous systems
 axial force, effect on lateral vibration, 339–340, 339f
 forced vibration, 340–344, 342f
 introduction, 309
 lateral vibration of a string, 310f
d’Alembert’s solution, 310–312, 311f
 separation of variables, 312–315, 313f, 314f
 lateral vibration of beams, 323–331, 323f, 326t, 331t
 longitudinal vibration of rods, 315–320, 315f, 316f, 318f
 orthogonal relations, 331–336, 335f
problems, 348–351
Ritz method, 344–348, 347f
rotary inertia, shearing
deformation, effects of,
336–339, 337f
torsional vibration of rods,
320–322, 320f, 321t
Crankshafts, balancing of, 120–126
balance machine, 126f
ring weight installation, 125f
ring weights, 123f
unbalance forces and moments,
121–122t
weighing big-end mass, 124f
weighing connecting rod mass, 124f

D
Damped free vibration
damping forces, 41
differential equation of motion,
41–42, 42f
solution, 43–49, 44f, 46f, 47f, 49f
critically damped case, 46f
overdamped case, 47f
spring stiffness, 49f
Damping
complex stiffness and loss factor,
79
evergy dissipation due to a
viscous damping force,
76–78, 77f
sharpness of resonance, 80–81
structural (hysteretic), 78–79, 79f
Dunkerley’s Equation, 269–271, 270f

E
Eigenvalue analyses
algebraic problem, 179
generalized problem, 179
generalized problem in state
space, 185–197
and lumped parameter systems,
265–269, 267f
standard problem in state space,
183–185
symmetric problem, 180–183
Energy method
law of conservation, 33, 33f
Rayleigh method, 34–40, 34f, 36f,
38f, 39f
Engine mounting systems
decoupling and optimization,
382–384, 383t
optimization, 389–394, 391f,
392t, 394t
three-degree-of-freedom
coupled system, 387–389,
388f, 389t
two-degree-of-freedom
coupled system, 384–387,
384f, 386f, 387f
equations of motion
coordinate systems, 372–374,
373f
rotational, forces and torques
produced by, 376–379
translational, forces and
torques produced by,
374–376
inertia properties
approaches, 355
CG location, 355f
inertia matrix, 358–361, 361f
mass center, 361–363, 362f
moment of inertia, 357f
principles, 354
reference frame, 357f
reference frame and direction
cosines, 358
torsion pendulum method,
355–358
torsional stiffness, 356f
introduction, 353–354
mode shapes and natural
frequencies, 379–382, 380f,
380t, 381f, 382t
orientation angles and transformation matrix, 363–372
configuration graph, 367f, 369f, 370f, 371f
equation coefficients and signs, 368f
plane of unit vector, 367f
unit vector sets, 366f, 369f, 370f
problems, 398–402
torque roll axis (TRA), 395–397, 396f
torque roll axis (TRA) mode decoupling, 397–398
Equations of motion
coordinate systems, 372–374, 373f
rotational, forces and torques produced by, 376–379
translational, forces and torques produced by, 374–376
Equivalent spring stiffness, 28–33
parallel-connected springs, 28f
series-connected springs, 30f, 31f
shaft-disks system, 32f
system, 29f
Estimation of FFRs, 428–430, 429f
H_1 estimator of FRF, 430–431, 430f
H_2 estimator of FRF, 431–432, 431f
H_v estimator of FRF, 432–433, 432f
estimation of modal vectors, 426–428
Ibrahim time domain method, 419–422
introduction, 405–406, 405f
least-squares complex exponential method, 412
modal analysis theory, 406–408
modal data acquisition
data acquisition system, 451–453, 452f, 453f
exciter, 447–451, 447f, 448f, 450f, 451f
introduction, 444–445
test structure, 445–446, 446f

time response, 209f
two-degree-of-freedom system, 203f
Van der Pol equation, 207f
Experimental modal analysis
averaging, 442–443, 442f
coherece function multiple, 434–435, 435f
ordinary, 433–434, 434f
partial, 435–436
complex exponential algorithm, 408–412
discrete Fourier transform (DFT)/fast Fourier transform (FFT), 436–440, 438f, 439f, 440f
eigensystem realization algorithm, 422–426
estimation of frequency response functions (FRFs), 428–430, 429f
H_1 estimator of FRF, 430–431, 430f
H_2 estimator of FRF, 431–432, 431f
H_v estimator of FRF, 432–433, 432f
estimation of modal vectors, 426–428
Ibrahim time domain method, 419–422
introduction, 405–406, 405f
least-squares complex exponential method, 412
modal analysis theory, 406–408
modal data acquisition
data acquisition system, 451–453, 452f, 453f
exciter, 447–451, 447f, 448f, 450f, 451f
introduction, 444–445
test structure, 445–446, 446f

539
Experimental modal analysis (continued)
operational modal analysis introduction, 453–454
natural excitation technique (NExT), 457–458
stochastic subspace identification method, 454–457
overlapping signal analysis, 443–444, 444f, 445f
polyreference time domain method, 412–419, 417f
problems, 460–462
running modes analysis, 458–460
window functions, 440–442, 441f, 442t

F
Forced harmonic vibration of damped systems, 55–62
damaged mode, 58f
magnification factor, 61f
phase angle, 61f
vector relationship, 57f
viscously damped system, 55f
Forced harmonic vibration of undamped systems, 63f
beating, 64–65, 65f
resonance, 66, 66f
Forced vibration caused by rotating unbalance, 67–69
harmonic excitation caused by, 67f
nondimensional amplitude, 68f
Forced vibration caused by support motion, 69–72
system excited by, 69f
transmissibility for various degrees of damping, 71f
Fourier transform, 219–220

Free vibration
equivalent spring stiffness, 28–33
parallel-connected springs, 28f
series-connected springs, 30f, 31f
shaft-disks system, 32f
system, 29f
governing differential equation of motion, 24–28
equilibrium position of system, 26f
mass-spring system, 24f
rigid right-angle bar, 25f
shaft-disk system, 25f
suspended mass system, 27f
Frequency domain: frequency response function, 225f
acceleration (or inertance), 223–226
Bode diagrams, 226–228, 226f
estimation of, 428–430, 429f
H_1 estimator of FRF, 430–431, 430f
H_2 estimator of FRF, 431–432, 431f
H_v estimator of FRF, 432–433, 432f
mobility, 223
Nyquist diagrams, 228–230, 229f
receptance (or admittance, or dynamic compliance), 223
Frequency response functions. See Frequency domain:
frequency response function; Transfer functions and frequency response functions
Frequency response functions (FRFs) of multi-degree-of-freedom systems
concepts of transfer functions, 234
frequency domain and frequency response function matrix, 238–241, 240f, 241f
Laplace domain and transfer function matrix, 235–238
time domain and impulse response functions, 241–248, 242f
FRFs. See Frequency response functions

G
Governing differential equation of motion, 24–28
equilibrium position of system, 26f
mass-spring system, 24f
rigid right-angle bar, 25f
shaft-disk system, 25f
suspended mass system, 27f

H
Harmonically excited motion damping
complex stiffness and loss factor, 79
ergy dissipation due to a viscous damping force, 76–78, 77f
sharpness of resonance, 80–81
structural (hysteretic), 78-79, 79f
definition, 55
forced harmonic vibration of damped systems, 55–62
type, 58f
magnification factor, 61f
phase angle, 61f
vector relationship, 57f
viscously damped system, 55f
forced harmonic vibration of undamped systems, 63f
beating, 64–65, 65f
resonance, 66, 66f
forced vibration caused by rotating unbalance, 67–69
harmonic excitation caused by, 67f
nondimensional amplitude, 68f
forced vibration caused by support motion, 69–72
system excited by, 69f
transmissibility for various degrees of damping, 71f
forced vibration under periodic excitation, 81–82
problems, 87–92
response to arbitrary excitation, 82–87, 83f, 85f, 86f
vibration isolation
definition, 72
isolation of the foundation from the machine, 73–76, 73f, 75f
isolation of the machine from the foundation, 73, 73f
Hybrid FEA-Experimental FRF (HYFEX) method
and application to vehicle dynamic analysis, 493
experimental impact test setup, 494–495
introduction, 488
and substructures connected by dampers, 489–491, 491f
and substructures rigidly connected, 488–489, 488f
and two-degree-of-freedom system, 491–493, 491f

I
Ibrahim time domain method, 419–422
Inertia forces and couples of multicylinder engines, 110–120
couples of inertia forces, 119f
inline three-cylinder engine, 111f
numbered V8 engine, 113f
phase angles, 114f
phase angles between the eight cylinders, 115t
two unit vector sets, 118f, 119t
Inertia forces in a single-cylinder engine, 104–110, 104f, 107f, 109f
Inertia properties, engine mounting systems
approaches, 355
CG location, 355f
inertia matrix, 358–361, 361f
mass center, 361–363, 362f
moment of inertia, 357f
principles, 354
reference frame, 357f
reference frame and direction cosines, 358
torsion pendulum method, 355–358
torsional stiffness, 356f

Kane's Equations, 172–174
advantages with, 170
ease of use, 169
generalized applied forces, 172
inertia forces, 170–172
partial velocities and partial angular velocities, 170

Lagrange's Equations
as alternative to Newton's laws, 164
definition, 165
derivation of, 166–169
and double-rod pendulum, 167f
generalized coordinates and virtual displacements, 165
virtual work and generalized forces, 165–166
Laplace domain: transfer function, 220–223, 220f, 222f
Laplace transform, 217–219, 218t
Lumped parameter systems
beams modeled as lumped masses
definition, 292
flexural vibration, 292–301, 292f,
293f, 296f, 297f, 298f, 301f
rotating beams, 301–304, 302f
benefits of, 259
determining of higher-order modes and frequencies,
277–279
Dunkerley's Equation, 269–271, 270f
and eigenvalue analysis, 265–269, 267f
flexibility and stiffness matrices, 259–261
Maxwell's reciprocity theorem, 261–265, 262f, 263f, 264f
method of matrix iteration, 274–277, 276f
problems, 304–308
and Rayleigh principle, 271–274
transfer matrix method
branched systems, 290–292, 290f
definition, 279–280
geared system, 289–290, 289f
spring-mass system, 280–286, 280f, 283f, 284f
torsional systems, 286–288, 286f, 288f

Maxwell's reciprocity theorem, 261–265, 262f, 263f, 264f
Modal data acquisition, experimental modal analysis
data acquisition system, 451–453, 452f, 453f
exciter, 447–451, 447f, 448f, 450f, 451f
introduction, 444–445
test structure, 445–446, 446f
Multi-degrees-of-freedom systems, 137f
characteristic equation and natural frequency, 138
coordinate coupling, 152–154, 153f
damped systems and coordinate decoupling
coordinate decoupling with forced response, 159–162
coordinate decoupling with initial value problems, 162–164
eigenvalues and eigenvectors, 140–143
Kane’s Equations, 172–174
advantages with, 170
ease of use, 169
generalized applied forces, 172
inertia forces, 170–172
partial velocities and partial angular velocities, 170
Lagrange’s Equations
as alternative to Newton’s laws, 164
definition, 165
derivation of, 166–169
and double-rod pendulum, 167f
generalized coordinates and virtual displacements, 165
virtual work and generalized forces, 165–166
mode shapes, 138–140, 139f, 149f
orthogonal properties of modal vectors, 143–146
problems, 174–176
repeated roots, 147–150
response of a system to initial conditions, 150–152
three-degrees-of-freedom system, 142f
two-degrees-of-freedom, 137, 145f, 148f, 151f, 152f, 156f
undamped systems and coordinate decoupling
forced response and coordinate decoupling, 155–157
initial value problem and coordinate decoupling, 157–159
zero eigenvalues, 146–147, 146f
Numerical methods
eigenvalue analyses
algebraic problem, 179
generalized problem, 179
generalized problem in state space, 185–197
standard problem in state space, 183–185
symmetric problem, 180–183
evaluation of the time response, 197–210
damped system excited by harmonic force, 198f
phase plane plot, 200f
phase plane representation, 201f
plots, 202f
solutions, 199f, 205f
time response, 209f
two-degree-of-freedom system, 203f
Van der Pol equation, 207f
Numerical methods (continued) problems, 210–214
Nyquist diagrams, 228–230, 229f

O
Operational modal analysis, experimental modal analysis
introduction, 453–454
natural excitation technique (NExT), 457–458
stochastic subspace identification method, 454–457

Orientation angles and transformation matrix, engine mounting systems, 363–372
configuration graph, 367f, 369f, 370f, 371f
equation coefficients and signs, 368f
plane of unit vector, 367f
unit vector sets, 366f, 369f, 370f

P
Problems
balancing of rotors, 126–133
continuous systems, 348–351
engine mounting systems, 398–402
experimental modal analysis, 460–462
harmonically excited motion, 87–92
lumped parameter systems, 304–308
multi-degrees-of-freedom systems, 174–176
numerical methods, 210–214
transfer functions and frequency response functions vibration, 16–18
vibration of a single-degree-of-freedom system, 50–53

R
Rayleigh method, 34–40
cone, 38f
and lumped parameter systems, 271–274
and Ritz method, 344–348, 347f
semi-cylinder, 36f
spring-restrained pendulum, 34f
velocity components, 39f
Rotors, balancing of. See Balancing of rotors

S
Sensitivity analysis
eigenvalue derivatives, 496–497
eigenvector derivatives, 497–503, 501f, 502f, 502t
methods, 495–496
Substructuring
and complex structure analysis using the FRFs of substructures, 467–468
equations of motion, 468–469, 469f
solution method, 469–475, 472f, 474f, 475f

T
Time response, numerical method evaluation, 197–210
damped system excited by harmonic force, 198f
phase plane plot, 200f
phase plane representation, 201f
plots, 202f
solutions, 199f, 205f
time response, 209f
two-degree-of-freedom system, 203f
Van der Pol equation, 207f
Transfer functions and frequency response functions
determination of residues and poles in state space,
248–254, 252f
frequency domain and frequency response function, 225f
accelerance (or inertance),
223–226
Bode diagrams, 226–228, 226f
mobility, 223
Nyquist diagrams, 228–230, 229f
receptance (or admittance, or dynamic compliance),
223
FRFs of multi-degree-of-freedom systems
concepts of transfer functions, 234
frequency domain and frequency response
function matrix, 238–241, 240f, 241f
Laplace domain and transfer function matrix, 235–238
time domain and impulse response functions,
241–248, 242f
Fourier transform, 219–220
Laplace domain: transfer function, 220–223, 220f, 222f
Laplace transform, 217–219, 218f
problems, 254–256
time domain and impulse response function,
230–234, 233f
Transfer matrix method
branched systems, 290–292, 290f
definition, 279–280
geared system, 289–290, 289f
spring-mass system, 280–286, 280f, 283f, 284f
torsional systems, 286–288, 286f, 288f

V
Van der Pol equation, 207f
Vibration
classification of
degrees of freedom of the system, 7
differential equation of motion of the system, 7–8, 7f
input, 3–4, 3f, 4f
output, 4–6, 4f, 5f, 6f
classification of studies, 2–3
definition, 1, 1f, 2f
harmonic, 8–10, 9f
harmonic analysis, 10–16, 13f, 14f, 15f
problems, 16–18
Vibration absorber and tuning
absorber tuning based on the primary system FRF,
476–480, 476f
frequency ratio, 482f, 485f
introduction, 475–476, 476f
and single-degree-of-freedom system, 480–485, 480f
torsional, 486–487, 486f
torsional FRF and experimental measurement of, 487, 487f
Vibration isolation
definition, 72
isolation of the foundation from the machine, 73–76, 73f, 75f
isolation of the machine from the foundation, 73, 73f
Vibration of a single-degree-of-freedom system
 damped free vibration
 damping forces, 41
 differential equation of motion, 41–42, 42f
 solution, 43–49, 44f, 46f, 47f, 49f
 effective mass, 40–41, 40f
 energy method
 law of conservation, 33, 33f

Rayleigh method, 34–40, 34f, 36f, 38f, 39f
 free vibration
 equivalent spring stiffness, 28–33, 28f, 29f, 30f, 31f, 32f
 governing differential equation of motion, 24–28, 24f, 25f, 26f, 27f
 modeling, 21–24, 21f, 23f
 problems, 50–53
About the Authors

Ronald L. Huston is professor of mechanics in mechanical engineering at the University of Cincinnati. He also holds the titles distinguished research professor and Herman Schneider professor.

Dr. Huston has received a B.S. in mechanical engineering (1959), an M.S. in engineering mechanics (1961), and a Ph.D. in engineering mechanics (1962), all from the University of Pennsylvania in Philadelphia.

Dr. Huston has been a member of the faculty at the University of Cincinnati since 1962. During this time he has held a number of administrative positions, including head, Department of Engineering Analysis; interim head of chemical and materials engineering; director of the Institute of Applied Interdisciplinary Research; and acting senior vice president and provost. He has also served as a secondary faculty member in the Department of Biomedical Engineering and as adjunct professor of orthopedic surgery research.

From 1979 to 1980, on special leave from the university, Dr. Huston served as division director of civil and mechanical engineering at the National Science Foundation. In 1978, he was visiting professor of applied mechanics at Stanford University.

Dr. Huston's research interests are primarily in dynamics, with applications in multibody dynamics, biomechanics, and automotive engineering.

Dr. Huston has written more than 150 journal articles and 150 conference papers, as well as 75 book reviews and 7 books. He has served as a technical editor of Applied Mechanics Reviews, as associate editor of the Journal of Applied Mechanics, and as book review editor of the International Journal of Industrial Engineering.
About the Authors

C. Q. Liu is a Senior Technical Specialist at the Chrysler Corporation LLC, Auburn Hills, Michigan, USA. He is the recipient of the Chrysler Corporation Recognition Award (1999). He has over 30 years of experience as a noise, vibration, and harshness (NVH) specialist and 13 years of university teaching and research experience. He is the author/coauthor of four books and over 40 journal articles.

Dr. Liu has extensive analysis and experimental skills in NVH of vehicle and powertrain systems. He is sought after by peers as a consultant on hybrid finite element analysis (FEA) and the experimental (HYFEX) method for vehicle axle noise analysis, FRF-based substructure synthesis, experimental modal analysis, transfer path analysis (TPA), driveline sensitivity analysis, balance technologies, engine mounting system optimization design, vehicle instrumentation, data acquisition, digital signal processing, and engineering interpretation of results.

Dr. Liu received a B.S. degree in Engineering Mechanics (1969) from Tsinghua University, Beijing, China; an M.S. degree in Applied Mechanics (1982) from Chongqing University, Chongqing, China; and a Ph.D. degree in Mechanical Engineering (1991) from the University of Cincinnati, Ohio, USA.