2-S1 tractor-trailer
   braking dynamics of, 281–302
   effects of brake balance on tire-road
   friction utilization, 287–302
   general design considerations, 281
   limiting and proportioning valves for,
   286–287
   optimum braking forces, 281–302
   PC-BRAKE AIR for, 302–312
2-S1–2 two-axle tractor, single-axle
   semitrailer, double-axle trailer, 318–320
2-S2 tractor-semitrailer, 320
2-S3 tractor-semitrailer, 321–324
3-S2 tractor-semitrailer, 312–318
   with air springs on tractor and trailer
   tandem axles (3-S2-AA), 313
   PC-BRAKE AIR for, 316–318
   with tractor air springs and trailer walking
   beam (3-S2-AWB), 314
   with tractor air springs and trailer leaf
   springs (3-S2-ALS), 315–318

Accelerated testing, 12
Add-on hydraulic ABS systems, 355–358
Adjustable step bore master cylinder, 244–248
Advertisement guidelines, 12
Aerodynamics, effect on brake force
distribution, 237
Aftermarket equipment, 167
Air brake systems
   antilock brake systems for, 364–368
      control analysis in, 364–367
      designs for, 367–368
      modulating valves for, 196–199
      analysis of, 183–210
      basic concepts for, 183–184
      brake chamber in, 187–190
      brake torque in, 190–194
      braking by wire, 209–210
      deceleration in, 194–196
      disc, 187
      drum, 186
      electronic brake control, 209–210
   failure of, 403
   PC-BRAKE AIR, 199–200
   rear tandem axle with, 253–254
   response time of, 200–209
   S-cam, 184–186
   in three-axle straight truck, 253–267
   in two-axle truck, 249–253
   wedge brake, 186
Allowable heat flux
   into brake drums, 112
   into brake rotors, 112–114
Angular acceleration, formula for, 261
Angular velocity, formula for, 198
Antilock brake system (ABS), 327
   for air brakes, 364–368
   basic performance requirements of,
   343–353
   components of, 360–364
   control concepts for, 345–351
   drivetrain influence on, 364
   electric circuit, 364
   electronic control unit, 361–362
   hydraulic, 353–360, 362–363
      add-on, 355–358
      basic considerations for, 353–355
      integrated, 358–360
      modulating valves for, 196–199
   wheel speed sensors, 360–361
Assembly, 12
Automatic brake control (ABC)
   for air brakes, 364–368
   basic considerations, 327–328
   basic performance requirements of,
   343–353
   control concepts for, 345–351
   drivetrain influence on, 364
   electronic traction and stability control
   systems, 351–353
   hydraulic ABS, 353–360
   system components, 360–364
   wheel-lockup analysis, 328–343
Automatic front brake limiting valve, 195–196
Automatic slack adjuster (ASA), 22, 185, 374
Brake Design and Safety

Average displacement, formula for, 121
Axles
  air springs rear tandem, 253–254
  and dynamic loads
    for 2-S1 tractor-trailer combination, 303–304
    for single vehicles, 214–216
    for tow vehicle-trailer combination, 276–277
  rear leaf spring tandem axle, 257–258
  rear walking beam tandem axle, 254–256
  static loads on, for single vehicles, 213–214
  three-axle straight truck, 253–267
  two-axle truck with air brakes, 249–253

Boost ratio, formula for, 128
Boost systems
  analysis of, 127–141
  comparison of boost systems, 139–141
  full-power hydraulic brakes, 139
  hydraulic, 136–139, 177–179
  overview and requirements for, 127
  vacuum-assisted, 127–135
    dynamic response of, 176–177
    failure of, 381–392
Brake-assist system (BAS), 327
Brake chamber, 187–190
  clamp ring, 191–192
Brake control, electronic, 209–210
Brake factor, 27–28
  brake wear effects on, 46
  of drum brakes, 29–48
  of duo-servo brakes
    with pivot abutment, 40–44
    with sliding abutment, 39–40
  effects of humidity on, 46
  effects of shoe and drum stiffness on, 47–48
  effects of temperature on, 46
  formula for, 27
  importance to brake system design, 28
  of leading-trailing shoe brakes
    with inclined abutment, 38–39
    with parallel sliding abutment, 36–38
    with pivot on each shoe, 35–36
  of S-cam brakes, 44–45
  of two-leading shoe brakes
    with inclined abutment, 39

  with parallel sliding abutment, 38
  with pivot on each shoe, 36
  of wedge brakes, 45–46
Brake factor sensitivity, formula for, 27
Brake failure
  of air brake systems, 403
  analysis of, 373–403
  basic considerations for, 373–374
  brake line failure, 376–383
  comparison of dual brake systems, 389–391
  of components, 374–375
  data collection in, 396–403
  degraded braking due to air inclusion, 393
  development of, 374–376
  fluid considerations in, 394–396
    full-power, 392
    intermittent, 375–376
    partial, 376–389
      pedal force and pedal travel in, 18
    performance calculations, 383–387
    of seal and rubber materials, 396
    of vacuum assist, 381–392
Brake fluid
  compression of, 164–165
  considerations in design and failure analysis, 394–396
    mineral oil, 395
    polyglycolether-type, 395
    silicone-based, 395
    viscosity of, 175–176
    water content in, 167
  volume analysis of, 150–179
    basic concepts for, 150–155
    checkpoints for, 16
    detailed, 156–175
    individual component fluid requirements, 159–167
    master cylinder, 156–159
    simplified, 155–156
Brake force distribution
  fixed
    analysis of, 232–237
    brakes-unlocked deceleration, 232–233
    comparison of theoretical and road test results, 235–236
    design selection, 232
    effect of aerodynamics on, 237
Brake force distribution
fixed (Continued)
effect of drivetrain on, 236–237
vehicle loading-brake force distribution analysis, 233–235
variable
adjustable step bore master cylinder, 244–248
analysis of, 238–248
pressure limiter valve, 241–242
pressure reducer valve, 242–243
deceleration-sensitive pressure reducer valve, 243
optimum brake line pressures for, 238–241
Brake hose expansion, 160
Brake lines
combination valves for, 145
comparison of pressure control devices for, 150
dynamic response of, 177
expansion of, 160
failure of, 376–384
optimum pressures for, 238–241
braking in a turn, 268–271
pressure reducer valve for, 143–147, 196, 242–243, 286–287
deceleration-sensitive, 145–147, 243
step bore master cylinder, 147–150
Brake linings
braking power absorbed by, 70–72
design values, 74t
fluid requirements for, 162–163
friction and classification of, 58–59
horsepower into, 114
pressure distribution on, 29–32
wear in, 115
Brake pads
compression of, 161–162
design values for, 74t
four-piston fixed-caliper, 55–57
friction and classification of, 58–59
“hammerhead,” 51–52, 54–55
horsepower into, 114
non-uniform pressure distribution, 52–53
offset piston design, 53–54
pad-rotor clearance, 159
pressure and wear of, 51–57
pulled, 54–55
wear in, 115
Brake pedal linkage, 176
Brake shoes
fluid requirements for, 162–163
shoe/drum clearance, 163
stiffness of, effects on brake factor, 47–48
Brake system design
basic considerations for, 10–11, 13
design and product development guidelines, 11–13
elements of, 10–17
hydraulic, specific steps for, 13–15
PC-BRAKE AIR for, 249–253
selection process guidelines, 18–20
testing checkpoints, 15
Brake system failure, partial, checkpoints for, 16
Brake systems
air or gas in, 165–166
basic safety considerations, 20
with booster, 17–18
functions of, 1–2
hydraulic
analysis of, 125–179
dynamic response of, 175–179
involvement in accidents, 20–25
mechanical, analysis of, 119–123
Brake torque, 27, 190–194
for parking brake, 194
pushrod travel adjustment factor for clamp ring chambers, 191–192
pushrod travel increase due to thermal drum expansion, 193
pushrod travel measurement, 193–194
temperature fade correction factor for drum brakes, 192–193
Brake wear, effects on brake factor, 46
Brakes-unlocked deceleration, 232–233
Braking
continuous, temperature analysis for, 85–88
degraded, due to air inclusion, 393
from high- to low-friction surface, 338–342
repeated, temperature analysis for, 82–85
on split-coefficient road surface, 267
tire/wheel analysis, 328–335
Brake Design and Safety

Braking accident causation databases, 22–25
Braking by wire, 209–210
Braking dynamics
  of combination vehicles, 275–325
    2-S1, 281–302
    2-S1–2, 318–320
    2-S2 tractor-semi-trailer, 320
    2-S3 tractor-semi-trailer, 321–324
    3-S2 tractor-semi-trailer, 312–318
tow vehicle-trailer combination, 275–278
  tractor-trailer, 279–281
  trailer with brakes, 276–278
  trailer without brakes, 275–276
of single vehicles, 213–271
  actual braking forces, 224–225
  braking efficiency, 230–232
  comparison of optimum and actual braking forces, 225–228
  with dynamic axle load, 214–216
  fixed brake force distribution analysis, 232–237
  optimum braking forces, 216–224
  with static axle loads, 213–214
  of three-axe straight truck, 253–267
tire-road friction utilization, 228–230
  of two-axe truck with air brakes, 249–253
  while turning, 267–271
  variable brake force distribution analysis, 238–248
  of three-axe straight truck, 253–267
  of two-axe truck with air brakes, 249–253
Braking efficiency, 230–232
  checkpoints for, 15
Braking energy, 66–69
  formula for, 66
Braking force
  actual, 224–225
  comparison of optimum and actual, 225–228
dynamic 217–218
  ideal, 218
  optimum
    in 2-S1 combination, 281–286 braking traction coefficient for, 216–217
dynamic, 217–218
  lines of constant friction coefficient for, 220–224
  parabola analysis of, 224
  peak and sliding friction in, 336–338
  for single vehicles, 216–224
Braking power, 66–69
  absorbed by lining and drum, 70–72
  formula for, 66
Braking slip, 328–330
Braking time, formula for, 67
Braking traction coefficient, 216–217
Bureau of Motor Carrier Safety, parking brake regulations, 122–123
Calipers
  basic design considerations for, 48–51
deformation of, 161
fixed, 48, 49/5, 55–57
floating, 49, 50
installation of, 57
CamLaster drum brake, 186
Clamp ring brake chambers, 191–192
Combination valves, 145
Combination vehicles
  2-S1–2 two-axe tractor, single-axe semitrailer, double-axe trailer, 318–320
  2-S2 tractor-semi-trailer, 320
  2-S3 triple-axe trailer with leaf springs, 321–324
  3-S2 tractor-semi-trailer, 312–318
  3-S2-AAA, air springs on tractor and trailer tandem axles, 313
  3-S2-ALS, tractor air springs and trailer leaf springs, 315–318
  3-S2-AWB, air springs on tractor with trailer walking beam, 314
tow vehicle-trailer, braking dynamics of, 275–278
  tractor-trailer, braking dynamics of, 279–281
Component sizing, checkpoints for, 17
Compression
  of brake fluid, 164–165
  of brake pad, 161–162
  of brake shoe and lining, 162–163
Compensative stress, formula for, 107
Computer-based temperature analysis, 100–107
Constant deceleration time, formula for, 7
Convective cooling, 88–99
Convective heat transfer coefficient, 88
Crashworthiness Data System (CDS), 22
Critical deceleration, 227
Customer complaints and accident data, 12
Danger, hazard, and risk, 21–22
Deceleration
  for air brake systems, 194–196
  with automatic front brake limiting valve, 195–196
  average, formula for, 10
  and brake line failure, 378
  brakes-unlocked, 232–233
  critical, 227
  formula for, 3
  idealized, 5f, 6
  measurement of, 10
  with proportioning valves, 196
  rise time, formula for, 6
  and stopping distance, 2–10
Deceleration-sensitive reducer valves, 145–147, 243
Disc brakes, 48–61
  adjustment of, 49–50
  air, 187
  caliper installation, 57
  compared to drum brakes, 57–58
  complete temperature analysis in a single stop, 75–82
  design values for, 74f
  pad pressure and wear in, 51–57
  self-energizing, 60–61
  solid, heat transfer coefficient for, 90
  thermal stress in rotors, 107–109
  ventilated
    heat transfer coefficient for, 91–99
    temperature analysis of, 104–107
Downgrade, 2
Driver reaction time
  four phases of, 8
  in emergency braking, 8–9
Driveshaft-mounted brakes, analysis of, 122–123
Drivetrain
  effect on brake force distribution, 236–237
  influence on ABS, 364
Drum brakes
  air in hydraulics, 163
  brake factor of, 34–46
  brake shoe and lining compression in, 162–163
  braking power absorbed by drums, 70–72
  CamLaster, 186
  compared to disc brakes, 57–58
  design values for, 74f
  drum deformation in, 162
  drum expansion in, 163, 193
  heat transfer coefficient for, 89–90
  lining pressure distribution and wear in, 29–32
  self-energizing and self-locking, 32–34
  temperature fade correction factor for, 192–193
  thermal stress in, 110
Drum expansion, thermal, 163
  pushrod travel increase due to, 193
Drum stiffness, effects on brake factor, 47–48
Dual brake systems, comparison of, 389–391
Duo-servo brakes
  with pivot abutment, 40–44
  with sliding abutment, 39–40
Dynamic axle loads
  for tow vehicle-trailer combination, 276–277
  for 2-S1 tractor-trailer combination, 303–304
  for single vehicles, 214–216
Dynamic braking forces, 217–218
Economics, 12
Electric trailer brakes, 277
Electronic brake control, 209–210
Electronic control unit (ECU), 361–362
Electronic stability control (ESC), 278–279, 327, 351–353
  function of, 352
  major components of, 352–353
  malfunction of, 353
  operation of, 353
Electronic traction control, 351–353
Emergency brake, see Parking brake
Example problems
  air brake design, 250–253
  brake factor, 121–122
  brake line pressure, 173–175
  and pedal travel, 167–173
  braking energy and braking power, 67–69
  braking forces, optimum, 218–220
  braking performance, brake lockup sequence, 305–312
Example problems (Continued)

- braking stability, 264–267
- deceleration and braking efficiencies, 244–248
- maximum, 222–224
- at peak friction, 338
- and stopping distance, 199–200
- duo-servo drum brake, 41–44
- forensic brake system analysis, 253
- optimum braking forces, 218–220
- thermal analysis of front disc brake, 74–75
- of heavy truck brake, 87–88
- of linearly decreasing heat flux, 81–82
- of pickup truck brake, 78–80
- of rear brake, 84–85
- of tractor-semitrailer brake, 85–86
- of ventilated disc brake, 93–99
- time required to lock front brakes, 340–342
- wheel peak and sliding friction parameters, 332–333

Failure analyses, 12
Fatality Analysis Reporting System (FARS), 24–25
Federal Motor Vehicle Safety Standard (FMVSS), 105, 123
FMVSS 105, 84, 120, 123
FMVSS 121, 280, 287
FMVSS 126, 328
FMVSS 135, 84, 119
Finite difference method, 100–104
- temperature analysis of ventilated disc, 104–107
Fixed brake force distribution analysis, 232–237
Fixed caliper, 48, 49f
Floating caliper, 49, 50
Fourier’s conduction law, 100
Friction
- braking from high- to low-friction surface, 338–342
- lines of constant friction coefficient, 220–224
- of lining/pad, 58–59
- peak and sliding, in braking forces diagram, 336–338
- tire braking, empirical equations for, 336
- tire-road friction utilization

2-S1 tractor-trailer combination, 287–302
- and brake line failure, 379
- single-vehicle, 228–230
Friction brakes, design and analysis of, 27–61
Full-power hydraulic brakes
- analysis of, 139
- failure of, 392
General Estimates System (GES), 22
Heat distribution, formula for, 72
Heat flux, allowable, 112–114
Heat penetration time, formula for, 72
Heat transfer, radiative, 99–100
Heat transfer coefficient
- for drum brakes, formula for, 89–90
- for solid discs, formula for, 90
- of ventilated disc brakes, formula for, 91–92
Horsepower, into lining or pad, 114
Humidity, effects on brake factor, 46
Hydraulic ABS systems, 353–360
Hydraulic boost systems
Hydraulic brake systems, 125–179
- boost systems for, 127–141
- analysis of, 136–139
- dynamic response of, 177–179
- vacuum, 176–177
- brake fluid viscosity, 175–176
- brake fluid volume analysis for, 150–179
- brake line, 177
- pressure control devices for, 141–150
- brake pedal linkage, 176
- dynamic response of, 175
- manual, 125–127
- master cylinder in, 177
Hydraulic modulator, 362–363
Hydrovac
- analysis of, 134–135
- fluid loss in, 166
Ideal braking force, 218
Inclined abutment, 38–39
Inspection and maintenance, 12
Integrated hydraulic ABS systems, 358–360
In-use factors, checkpoints for, 16–17
Jackknifing, 279–280
Leaf spring tandem axle, rear, 257–258
Lines of constant friction coefficient, 220–224
Loading-brake force distribution analysis, 233–235

Manual brakes
- hydraulic, analysis of, 125–127
- PC-BRAKE HYDRAULIC for, 125
- pedal force and pedal travel for, 17

Master cylinder
- dual, improved design, 387–389
- dynamic response of, 177
- fluid requirements for, 160–161
- sizes of, 169
- step bore, 147–148
- adjustable, 148–150, 244–248
- volume analysis of, 156–159

Mastervac, 127

Materials selection, 12

Mechanical brake systems
- analysis of, 119–123
- driveshaft-mounted brakes, 122–123
- general observations, 119–120
- wheel brakes, 120–122

Mechanical gain, formula for, 120

National Accident Statistical Sampling (NASS), 22–24

New-versus-used, 12

Offset piston design, 53–54

Optimum brake line pressures, 238–241

Optimum braking forces
- for 2-S1 combination, 281–286
- braking traction coefficient for, 216–217
- dynamic, 217–218
- lines of constant friction coefficient for, 220–224
- parabola analysis of, 224
- peak and sliding friction in, 336–338
- for single vehicles, 216–224

Packaging, labeling, and shipping, 12

Parabola analysis of optimum braking forces, 224

Parallel sliding abutment, 36–38

Parking brake
- analysis of, 120–122
- checkpoints for, 16
- design example, 19–20
- dynamic response of, 177
- pedal force and pedal travel for, 18
- torque in, 194

PC-BRAKE AIR
- for 2-S1 tractor-trailer combination, 302–312
- for 3-S2 tractor-semitrailer, 316–318
- brake system design with, 249–253
- for leaf spring suspensions, 257
- multi-axle, 199–203
- pushrod travels in, 191f, 192

PC-BRAKE FACTOR
- for duo-servo brake with pivot support, 43
- for LT-shoe brake with parallel sliding abutment, 37–38
- for S-cam brake, 45

PC-BRAKE HYDRAULIC, for manual brakes, 125

PC-BRAKE STABILITY, 264–267

PC-BRAKE TEMPERATURE, for continuous braking, 86

Peak and sliding friction in braking forces diagram, 336–338

Pedal force
- and brake line failure, 378–379
- idealized, 4–5
- and pedal travel, 17–18

Pedal travel
- and brake line failure, 379–383
- computation of, 167–173
- and pedal force, 17–18

Piston
- four-piston caliper design, 55–57
- offset, 53–54

Pivot abutment, 40

Pressure control devices, brake line, 141–150

Pressure distribution
- on brake lining, 29–32
- on brake pad, 52–53

Pressure limiter valves, 142–143, 241–242
- for 2-S1 combination, 286–287
- automatic, for front brake, 195

Pressure reducer valves, 143–144, 196, 242–243
- for 2-S1 combination, 286–287
- deceleration-sensitive, 243

Production approval, 12

Production methods, 12
Brake Design and Safety

Pulled pad design, 54–55
Pushrods
  adjustments for, 188
  travel adjustment factor for clamp ring chambers, 191–192
  travel increase due to thermal drum expansion, 193
  travel measurement, 193–194
  travels and limits of, 192
Radiation heat transfer coefficient, formula for, 99
Reaction and application time, formula for, 6
Rear leaf spring tandem axle, 257–258
Rear walking beam tandem axle, 254–256
Relay quick release valve, 200, 204
Reliability, 11, 20–21
Response time
  of air brake systems, 200–209
  checkpoints for, 15
Road surface, split-coefficient, braking on, 267
Road test, comparison of theoretical and test results, 235–236
Roll stiffness, formula for, 270
Rotors
  allowable heat flux into, 112–114
  design considerations for, 115
  thermal failure of, 110–111
  thermal stress in, 107–109
Rubber materials, failure of, 396
Safety and product liability, 11
Safety regulations, checkpoints for, 17
Safety standards, 12
S-cam brakes, 184–186
  PC-BRAKE FACTOR for, 45
Seal, failure of, 396
Select-high control, 345
Select-low control, 345
Self-energizing brakes
  disc, 60–61
  drum, 32–34
Self-locking drum brakes, 32–34
Single-vehicle braking dynamics, 213–271
Single-wheel control, 345
Sliding abutment, 39–40
Slowing, 1–2
Specific design measures, checkpoints for, 16
Speed, definition of, 3
Stability analysis, 258–267
  and brake line failure, 383
  braking on a split-coefficient road surface, 267
    expanded, 260–267
    general considerations for, 258–259
    simplified, 259–260
Static axle loads, 213–214
Step bore master cylinder, 147–148
    adjustable, 148–150, 244–248
Stopping, 1–2
Stopping distance
  and deceleration, 2–10
    expanded analysis of, 3–4
    lightly and fully laden, checkpoints for, 15
    simplified analysis of, 3–4
    total, 6–7
Strain, 29
Stress, thermal, analysis of, 107–111
Surface finish, 12
Surge brakes, 277–278
System-based design methods, 11
Temperature
  effects on brake factor, 46
  surface, formula for, 73
Temperature analysis, 65–107
  checkpoints for, 16
  computer-based, 100–107
  for continuous braking, 85–88
  disc, complete in a single stop, 75–82
  finite difference method, 100–107
  general considerations in, 65
  for repeated braking, 82–85
  simplified in a single stop, 72–75
Temperature fade correction factor for drum brakes, 192–193
Temperature response
  for constant heat flux, formula for, 77
  for time-varying heat flux, formula for, 80
Test results, for combination vehicles, 325
Thermal design measures, 112–115
Thermal drum expansion, 163
  pushrod travel increase due to, 193
Thermal resistance, formula for, 71
Thermal rotor failure, 110–111
Thermal stress
  analysis of, 107–111
  in brake drums, 110
  in disc brake rotors, 107–109
Index

Three-axle straight truck
  air springs rear tandem axle, 253–254
  braking dynamics of, 253–267
  rear leaf spring tandem axle, 257–258
  rear walking beam tandem axle, 254–256
Threshold angular deceleration, 332

Tire-road friction utilization
  effects of brake balance on, 287–302
  and brake line failure, 379
  single-vehicle, 228–230
Tire/wheel braking analysis, 328–335

Total stopping distance, 6–7

Tow vehicle-trailer combination
  braking dynamics of, 275–278
  trailer with brakes, 276–278
  trailer without brakes, 275–276

Traction coefficient for braking, 216–217

Tractor-semitrailer braking instability,
  279–281
  jackknifing, 279–280
  trailer swing, 280

Tractor-trailer combinations, braking of,
  279–281
  stable, 280–281

Trailer swing, 278–279, 280

Trailers
  with brakes
    braking dynamics of, 276–278
    dynamic axle loads, 276–277
    electric brakes, 277
    surge brakes, 277–278
  without brakes, 275–276

Transcendental equation, 77

Trucks
  three-axle straight, braking dynamics of, 253–267
  two-axle, with air brakes, braking dynamics of, 249–253

Turning
  basic considerations, 267–268
  braking dynamics while, 267–271
  optimum brake line pressures for, 268–271

Two-axle truck, with air brakes, braking dynamics of, 249–253

Vacuum-assisted brake booster, 127–135
  analysis of, 128–134
  dynamic response of, 176–177
  failure of, 381–392

Vals
  combination, 145
  modulating, 196–199
  pressure limiter, 241–242
    for 2-S1 tractor-trailer, 286–287
  automatic front brake, 195–196
    for hydraulic brakes, 142–143
  pressure reducer, 242–243
    for 2-S1 tractor-trailer, 286–287
    for air brakes, 196
    for hydraulic brakes, 143–147
  relay quick release, 200, 204f
  volume loss in, 166

Variable brake force distribution analysis, 238–248

Velocity, formula for, 2–3

Velocity-time (V-t) diagram
  constant, 3f
  for stopping process, 4f, 5f

Ventilated disc brakes
  heat transfer coefficient for, 91–99
  temperature analysis of, 104–107

Walking beam tandem axle, rear, 254–256

Warnings, 12

Wear relationship, formula for, 30–31

Wedge brakes, 186

Wheel brakes, see Parking brakes

Wheel speed sensors, 360–361
  signal analysis for, 342–343

Wheel-lockup analysis, 328–343
  braking from high- to low-friction surface, 338–342
  empirical equations for tire braking friction, 336
  peak and sliding friction in braking forces diagram, 336–338
  tire/wheel braking analysis, 328–335
  wheel speed sensor signal analysis, 342–343
Dr. Rudolf Limpert is retiring from a long career as consulting engineer on motor vehicle and traffic safety. He continues to publish and teach motor vehicle accident reconstruction and design of braking systems. The author of many publications and four other books related to automotive safety, Dr. Limpert received his Ph.D. in mechanical engineering from the University of Michigan, his M.S. and B.E.S. from Brigham Young University, and his B.S. from the Engineering School of Wolfenbuettel.