Appendix

Acronyms and Definitions

Timothy J. Wilmering The Boeing Company

AAIB
Air Accident Investigation Branch
ACARS
Aircraft Communications Addressing and Reporting System
ACID
Atomicity, Consistency, Isolation, and Durability
ACMS
Aircraft Condition Monitoring System
ADMS
Aircraft Diagnostic and Maintenance System
AI
Artificial Intelligence
AL
Autonomic Logistics
Ambiguity group
a set of diagnoses that cannot be distinguished with the given set of test outcomes
AMOC
Alternative Means Of Compliance
Anomaly
irregularity or abnormality in a system
ASIAS
Aviation Safety Information Analysis and Sharing
BIT
Built-In Test
BITE
Built-In Test Equipment
CAA
Civil Aviation Authority
Capta
a subset of data, which is selected by machine rules or by a person, where the data has relevance to a particular context of interest
CARUD
Create, be Aware, Read, Update, and Delete
CBM
Condition-Based Maintenance
CBM+
Condition Based Maintenance Plus is the application and integration of appropriate processes, technologies, and knowledge-based capabilities to improve the reliability and maintenance effectiveness of DoD systems and components. At its core, CBM+ is maintenance performed based on evidence of need provided by Reliability-Centered Maintenance (RCM) analysis and other enabling processes and technologies. CBM+ uses a systems engineering approach to collect data, enable analysis, and support the decision-making processes for system acquisition, sustainment, and operations.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI</td>
<td>Condition Indicator</td>
</tr>
<tr>
<td>CND</td>
<td>Can Not Duplicate</td>
</tr>
<tr>
<td>Condition-based maintenance</td>
<td>maintenance performed as governed by condition monitoring programmes²</td>
</tr>
<tr>
<td>Condition monitoring</td>
<td>acquisition of information and data that indicates the state of a machine over time²</td>
</tr>
<tr>
<td>CONOPS</td>
<td>CONcept of OPerationS</td>
</tr>
<tr>
<td>COTS</td>
<td>Commercial-Off-The-Shelf</td>
</tr>
<tr>
<td>CRIS</td>
<td>Common Relational Information Schema</td>
</tr>
<tr>
<td>CVFDR</td>
<td>Cockpit Voice and Flight Data Recorder</td>
</tr>
<tr>
<td>CVR</td>
<td>Cockpit Voice Recorder</td>
</tr>
<tr>
<td>DAPU</td>
<td>Data Acquisition and Processing Unit</td>
</tr>
<tr>
<td>DBA</td>
<td>Data-Base Administrator</td>
</tr>
<tr>
<td>DCS</td>
<td>Detection Confidence Score</td>
</tr>
<tr>
<td>Dependability</td>
<td>the ability of some system to perform its required functions when needed, as specified, and without catastrophic failure⁶</td>
</tr>
<tr>
<td>DFP</td>
<td>Detection False Positive</td>
</tr>
<tr>
<td>DI</td>
<td>Detailed Inspection</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>the conclusion(s) inferred from tests, observations, or other information; conclusion or group of conclusions drawn about a system or unit under test⁵.²</td>
</tr>
<tr>
<td>Diagnostic maturation</td>
<td>the process of monitoring diagnostic system predicted vs. actual performance to identify and implement corrective action. The goal is to enhance diagnostic effectiveness throughout the product life cycle. Diagnostic elements that may benefit from the maturation process include (but are not limited to) diagnostic models, system performance models, test programs, and even product design improvements.⁶</td>
</tr>
<tr>
<td>Diagnostic reasoner</td>
<td>a system that uses a knowledge base to infer conclusions¹</td>
</tr>
<tr>
<td>Diagnostic strategy</td>
<td>1) An approach taken to combine factors including constraints, goals and other considerations to be applied to the localization of faults in a system. 2) The approach taken to evaluate a system in order to obtain a diagnostic result.¹</td>
</tr>
<tr>
<td>DMC</td>
<td>Direct Maintenance Cost</td>
</tr>
<tr>
<td>DSS</td>
<td>Decision Support System</td>
</tr>
<tr>
<td>EAM</td>
<td>Enterprise Asset Management</td>
</tr>
</tbody>
</table>
EASA European Air Safety Agency
EGT Exhaust Gas Temperature
EHM Engine Health Management
EMOO Evolutionary Multi-Objective Optimization
ERP Enterprise Resource Planning
FA False Alarm
FAA Federal Aviation Administration
FADEC Full Authority Digital Engine Controller
Failure the loss of ability of a system to perform some intended function
Failure mode observable manifestation of a system fault
Failure rate number of failures within a population divided by the number of life units used by that population
False alarm an indicated fault where no fault exists
False negative an indication from a test or monitor which indicates that its outcome is “good” when the condition being monitored is actually “bad” (Type II error).
False positive An indication from a test or monitor which indicates that its outcome is “bad” when the condition being monitored is actually “good” (see false alarm or Type I error).
Fault a physical cause of anomalous behavior within a system; condition of a machine that occurs when one of its components or assemblies degrades or exhibits abnormal behaviour, which may lead to the failure of the machine
Fault isolation the process of reducing the set of diagnoses in ambiguity to a degree sufficient to undertake an appropriate corrective action
Fault progression characterization of the change in the observability of a fault over time
FBD Function Block Diagram
FC Fault Condition
FDA Flight Data Acquisition
FDAU Flight Data Acquisition Unit
FDM Flight Data Management
FDR Flight Data Recorder
FFT Fast Fourier Transform
FMEA Failure Modes Effects Analysis
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMECA</td>
<td>Failure Mode Effects Criticality Analysis</td>
</tr>
<tr>
<td>FOQA</td>
<td>Flight Operation Quality Assurance</td>
</tr>
<tr>
<td>FTA</td>
<td>Fault Tree Analysis</td>
</tr>
<tr>
<td>GAG</td>
<td>Ground-Air-Ground</td>
</tr>
<tr>
<td>GCCS</td>
<td>Global Command Control System</td>
</tr>
<tr>
<td>GCSS</td>
<td>Global Combat Support System</td>
</tr>
<tr>
<td>GSS</td>
<td>Ground Support Station</td>
</tr>
<tr>
<td>GVI</td>
<td>General Visual Inspection</td>
</tr>
<tr>
<td>HHMAG</td>
<td>Helicopter Health Management Advisory Group</td>
</tr>
<tr>
<td>HM</td>
<td>Health Management</td>
</tr>
<tr>
<td>HUMS</td>
<td>Health and Usage Monitoring System</td>
</tr>
<tr>
<td>ICAO</td>
<td>International Civil Aviation Organisation</td>
</tr>
<tr>
<td>IFHM</td>
<td>Integrated Fleet Health Management</td>
</tr>
<tr>
<td>IFSD</td>
<td>In-Flight Shut Down</td>
</tr>
<tr>
<td>IFESD</td>
<td>In-Flight Engine Shut Down</td>
</tr>
<tr>
<td>IHUMS</td>
<td>Integrated Health and Usage Monitoring System</td>
</tr>
<tr>
<td>INCOSE</td>
<td>INternational Council on Systems Engineering</td>
</tr>
<tr>
<td>IN/FC</td>
<td>INspection/Functional Check</td>
</tr>
<tr>
<td>IP</td>
<td>Intellectual Property</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
</tr>
<tr>
<td>IVHM</td>
<td>Integrated Vehicle Health Management</td>
</tr>
<tr>
<td>JSF</td>
<td>Joint Strike Fighter</td>
</tr>
<tr>
<td>Knowledge base</td>
<td>a set of data, data semantics and relationships, and functions used by diagnostic reasoners</td>
</tr>
<tr>
<td>KPI</td>
<td>Key Performance Indicator</td>
</tr>
<tr>
<td>LCC</td>
<td>Life Cycle Costing</td>
</tr>
</tbody>
</table>

Integrated Vehicle Health Management

the unified capability of a system of systems to assess the current or future state of the member system health and integrate that picture of system health within a framework of available resources and operational demand.
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of indenture</td>
<td>a hierarchical partition in a physical or functional system decomposition⁶</td>
</tr>
<tr>
<td>Level of maintenance</td>
<td>a level at which test, diagnosis, and repair operates (e.g., maintenance depot, factory, in the field)⁵</td>
</tr>
<tr>
<td>LRU</td>
<td>Line Replaceable Unit</td>
</tr>
<tr>
<td>MPIG</td>
<td>Maintenance Planning Industry Group</td>
</tr>
<tr>
<td>MRBR</td>
<td>Maintenance Review Board Report</td>
</tr>
<tr>
<td>MRO</td>
<td>Maintenance, Repair, and Overhaul</td>
</tr>
<tr>
<td>MSG</td>
<td>Maintenance Steering Group</td>
</tr>
<tr>
<td>MTBF</td>
<td>Mean Time Between Failure</td>
</tr>
<tr>
<td>MTTR</td>
<td>Mean Time To Repair</td>
</tr>
<tr>
<td>NDI</td>
<td>Non-Destructive Inspection</td>
</tr>
<tr>
<td>NDT</td>
<td>Non-Destructive Test</td>
</tr>
<tr>
<td>NFF</td>
<td>No Fault Found</td>
</tr>
<tr>
<td>OEM</td>
<td>Original Equipment Manufacturer</td>
</tr>
<tr>
<td>OSA-CBM</td>
<td>Open Systems Architecture-Condition-Based Maintenance</td>
</tr>
<tr>
<td>PCMCIA</td>
<td>Personal Computer Memory Card International Association</td>
</tr>
<tr>
<td>PDF</td>
<td>Probability Density Function</td>
</tr>
<tr>
<td>PEHM</td>
<td>Predictive Equipment Health Monitoring</td>
</tr>
<tr>
<td>P-F</td>
<td>Potential to Functional failure (interval)</td>
</tr>
<tr>
<td>PHM</td>
<td>Prognostics Health Management</td>
</tr>
<tr>
<td>P&ID</td>
<td>Process and Instrumentation Diagram</td>
</tr>
<tr>
<td>POD</td>
<td>Probability Of Detection</td>
</tr>
<tr>
<td>Prognosis</td>
<td>Estimation of time to failure and risk for one or more incipient failure modes²</td>
</tr>
<tr>
<td>Prognostics</td>
<td>analysis of the symptoms of faults to predict future condition and residual life within design parameters²</td>
</tr>
<tr>
<td>PSS</td>
<td>Product Service System</td>
</tr>
<tr>
<td>QAR</td>
<td>Quick Access Recorder</td>
</tr>
<tr>
<td>R&O</td>
<td>Repair & Overhaul</td>
</tr>
<tr>
<td>RCM</td>
<td>Reliability-Centered Maintenance</td>
</tr>
<tr>
<td>Reliability</td>
<td>probability that a machine will perform its required functions without failure for a specified time period when used under specified conditions²</td>
</tr>
</tbody>
</table>
Integrated Vehicle Health Management

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFID</td>
<td>Radio Frequency IDentification</td>
</tr>
<tr>
<td>RTB</td>
<td>Rotor Track and Balance</td>
</tr>
<tr>
<td>RUL</td>
<td>Remaining Useful Life</td>
</tr>
<tr>
<td>S-SHM</td>
<td>Scheduled-Structural Health Monitoring</td>
</tr>
<tr>
<td>SDI</td>
<td>Special Detailed Inspection</td>
</tr>
<tr>
<td>SE</td>
<td>Systems Engineering</td>
</tr>
<tr>
<td>SHEL</td>
<td>Safety Health Environment and Legislation</td>
</tr>
<tr>
<td>SHM1</td>
<td>System Health Management</td>
</tr>
<tr>
<td>SHM</td>
<td>Structural Health Management, Structural Health Monitoring</td>
</tr>
<tr>
<td>SME</td>
<td>Small and Medium Enterprise</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal to Noise Ratio</td>
</tr>
<tr>
<td>System</td>
<td>a collection of entities to be processed by applying a top-down, hierarchical approach; a collection of elements forming a collective, functioning entity; a collection of hardware or software components necessary for performing a function; a set of interconnected elements that achieve a given objective through the performance of a specified function.</td>
</tr>
<tr>
<td>Systems engineering</td>
<td>an interdisciplinary approach and means to enable the realization of successful systems</td>
</tr>
<tr>
<td>Test</td>
<td>a set of stimuli, either applied or known, combined with a set of observed responses and criteria for comparing these responses to a known standard</td>
</tr>
<tr>
<td>TRL</td>
<td>Technology Readiness Level</td>
</tr>
<tr>
<td>TSA</td>
<td>Time Synchronous Averaging</td>
</tr>
<tr>
<td>Type I error</td>
<td>a false positive indication – a test or monitor which indicates that its outcome is “bad” when the condition being monitored is actually “good” (see false alarm).</td>
</tr>
<tr>
<td>Type II error</td>
<td>a false negative indication – a test or monitor which indicates that its outcome is “good” when the condition being monitored is actually “bad.”</td>
</tr>
<tr>
<td>UA</td>
<td>Unexplained Anomaly</td>
</tr>
<tr>
<td>UAV</td>
<td>Unmanned Aerial Vehicle</td>
</tr>
<tr>
<td>UML</td>
<td>Unified Modeling Language</td>
</tr>
<tr>
<td>Unexplained anomaly</td>
<td>a functional failure that cannot be attributed to any known system failure mode</td>
</tr>
</tbody>
</table>
Appendix Acronyms and Definitions

Validation the process of ensuring the correct system to meet customer needs has been constructed

Verification the process of ensuring that the system has met all of the developed requirements

VHM Vibration Health Monitoring

VLRS Vehicle-Level Reasoning System

V&V Verification and Validation

References

1IEEE 1232-2011, Artificial Intelligence Exchange and Service Tie to All Test Environments.

2ISO/DIS 13372, Condition Monitoring and Diagnostics of Machines—Vocabulary (Draft Update to 13372:2004).

5IEEE 1232-2002 Artificial Intelligence Exchange and Service Tie to All Test Environments.

7SAE HM-1 Committee.

Index

A, B, C scans, 93
Abnormal condition detection, 69–70
Accident rate, helicopter, 126–127, 138
Acoustic emission, detection of, 94t, 95t
Acronyms, 151–156
Active query function, 104
Actuator stiction, 101–102
Adaptive controls, 73
Aftermarket model, 5–6
Aftermarket services, 14–15
AIR 4176, 40
Aircraft condition monitoring system (ACMS), 107
Aircraft diagnostic and maintenance system (ADMS), 105–106, 107
Aircraft, 12, 20
layered approach to IVHM for, 21f
Algorithms
for abnormal condition detection, 69–70
diagnostic, 36, 58f, 70–71
impact on IVHM, 68–75
introduction to, 68–69
neural net diagnosis, 70
prognostic, 36–37, 58f, 71–72, 82, 83f
selection example, 84f
Ambiguity group, 85–86, 104, 106
Anecdotal data, 118
Architecting, 44–45
functional, 80–81
Aviation Safety Information Analysis and Sharing (ASIAS), 107
Avionics, 101

B-747 jumbo jet, 12–13
Bandwidth, 145–146
Bearing analysis, 134
Boeing, 12–13
Business models, changing, 14–15
Business propositions, 4–5

Cannot duplicate (CND), 50–51
Capta, 119, 121f
Cascade function, 104
Case-based reasoning, 70–71
Integrated Vehicle Health Management

Case study, IHUMS, 126–140
Centralization vs. distribution, 122
Chemical sensors, 94t, 95t
Commercial-off-the-shelf (COTS), 109
Communication interface protocols, 103–104
Concept of operations (CONOPS), 47
Condition indicator (CI), 60, 143
Condition-based maintenance (CBM), 37, 96
data for, 117
and HUMS, 139
open systems architecture for, 56, 57, 58f
time value of data, 120
Contingency management, 72–75, 86–87
adaptive controls in, 73
multi-objective optimization in, 74–75
Continuous diagnostics, 82
Control panels, 132
Controller, optimization of, 73
Corrosion sensors, 94t, 95t
Cost-benefit analysis, 33, 38–39, 40, 49, 52, 53, 82
Costs, reducing, 30–31
Coverage, 86
Crack gauges, 94t, 95t

Damage threshold, 72
Data, 34–36
acquisition of, 133–134
analysis techniques, 134
anecdotal, 118
centralized vs. decentralized, 35f
and condition-based maintenance (CBM), 117
discrete, 117
diversity of, 119
event, 117–118
integrating system-wide, 100–110
logistical, 118
parametric, 116–117
free-form text vs., 119
pre-processing of, 60
processing and analysis of, 133–136
quality of, 118–119
storage and download of, 132
synthesizing information and knowledge from, 120
time value of, 120
types and applicability of, 116–118
Data acquisition and processing unit (DAPU), 132, 133
Data-driven models, 72
Data management, 116–120
Data mining and learning loop, 103
Data processing, 59–63
Database management, 63–64
Decision support, 37
Decision support system (DSS), 74
Definitions, 151–156
Dependability, 42, 45
Design synthesis and integration, 49
Design tools, 78–88
Diagnosability, 85
Diagnostic monitor, 104
diagnostics, 36–37, 56, 63, 70–71
continuous, 82
discrete, 82
Direct maintenance cost (DMC), 31
Discrete data, 117
Discrete diagnostics, 82
Disruptive technologies, 5, 142–143
Distribution, centralization vs., 122
Diversity, 119
Dowding, Sir Keith, 114

Eddy current probes, 93
Emergent properties, 42, 43–44
Engine sensors, 130–131
Errors, Type I (false positives), 44, 52, 53
Errors, Type II (false negatives), 44, 52, 53
Event data, 117–118
Evidence handling function, 104
Exceedance monitoring, 129, 132
Explicit knowledge, 120
Exploration of the problem space, 43

Failure
and design tools, 78–79
mean time between failures (MTBF), 52, 53
and subsystem interactions, 79, 80f
Failure modes, effects, and criticality analysis (FMECA), 78–79
Failure prognosis, 57, 58f
False alarms (FAs), 50–51, 137
False alerts, 137
Fault diagnosis, 57, 58f, 61
Integrated Vehicle Health Management

Fault insertion, 50
Fault isolation, 86–87
 granularity of, 114–115
Fault reachability, 84–85
Fault scenarios, 102
Feature extraction
 and selection, 60–62
 typical scheme for, 62f
Fitness function, 83
Fleet-centric view, 35f
Flight controls, interaction with, 109–110
Flight-crew interaction, 109
Flight crew training, 137
Flight data acquisition (FDA) data, 133
Flight data management (FDM), 144
Flight data recorders (FDRs), 128, 131
Flight operation quality assurance (FOQA), 144
Fracture mechanics, 92
Free-form text vs. parametric data, 119
Full authority digital engine controller (FADEC), 30
Function tree decomposition, 48
Functional analysis, 48–49
Functional architecture, 80–81
Functional capability function, 105

Gear analysis, 134
Gearbox sensors, 130–131
Gearbox, Process flow for vibration analysis, 135f
Global Combat Support System (GCSS), 23
Global Command Control System (GCCS), 23
Ground crew training, 137
Ground equipment, 133
Ground Support Station (GSS), 133, 137

Hardware-in-the-loop, 50
Health and Usage Monitoring System (HUMS), 30
 airborne equipment for typical installation, 130f
 background of, 126–128
 effectiveness of, 138
 future trends for, 139–140
 introduction to, 126
 see also Integrated Health and Usage Monitoring System (IHUMS)
Health assessment, 135–136
Health monitoring, 128–129
Heap, Howard, 12
Helicopter Health Management Advisory Group (HHMAG), 128
Helicopters, in North Sea operations, 126–128, 138
Hypothesis generation function, 104

Integrated Health and Usage Monitoring System (IHUMS)
 airborne equipment in, 130–132
 approach to, 128–130
 case study, 126–140
 data processing and analysis for, 133–136
 functional block diagram, 129f
 ground equipment in, 133
 health assessment in, 135–136
 in-service support, 137–138
 introduction into service, 137
 power assurance in, 136
 research and development team, 128f
 rotor track and balance in, 136
 see also Health and Usage Monitoring System (HUMS)

Implicit knowledge, 120–121
Inconvenience, reducing, 31–32
Inference engine, 103
Inferencing module, 105f
In-flight engine shut down (IFESD), 107, 108–109
Information, 4
 synthesizing from data, 120
Information revolution, emergence of, 13–14
Inhibit function, 105
Integrity, of structural health monitoring, 91–93
Intellectual property, protecting, 109
Interactive decision-making, 74f
International Society for Air-Breathing Engines Conference, 32
Inventory, IVHM-enabled, 22–24
Integrated Vehicle Health Management (IVHM)
 activity cycle for, typical, 18f
 applications of, 21–22
 architecture of, 57–59
 and bandwidth, 145–146
 background of, 2–3
 basic principles of, 56–68
 business value of, 28–40
 challenges to implementation, 40
 commercial benefit of, 142–143
 components of, 18f
 conclusions about, 147–149
 cost-benefit analysis to justify, 38–39
 cost reduction, 30–31
Integrated Vehicle Health Management

data collection and, 34–36
decision support in, 37
definition of, 3, 18–19
deriving benefit from, 33–37
diagnostics for, 36–37
emergence of, 15
end-to-end system, 34

evaluating effects of, 52–53
evolution of, 18
framework for, 5–7
future directions and issues for, 142–146
inconvenience, reducing, 31–32
introduction to, 2–7, 18–19, 56
lifecycle of
design synthesis and integration, 49
functional analysis, 48–49
maturation, 51–52
requirements development, 47–48
research, 46–47
stages of, 46

test and evaluation, 49–51
typical, 20–21
logistics and inventory supply, 22–24
and maintenance credits, 145
maximizing use of data, 144
motivation for installing, 28–33
operations rooms for, 114–123
organizational and cultural barriers to, 142
perspective from literature, 18–24
and probabilistics, 144–145
at product level, 19–20
prognostics for, 36–37
and safety, 32–33, 143–144
sensors in, 34
setting the context for, 10–11
and structural health monitoring, 96–98
taxonomy of, generic, 7f
and technology, 3–4
and wireless systems, 143

Joint Strike Fighters, 23, 23, 37

Knowledge
tacit, 120–121
explicit, 120
implicit, 120–121
importance in IVHM, 120–122
synthesizing from data, 120
Knowledge management, importance in IVHM, 120–122

Large-scale integration, 109
Lifecycles, 44
 IVHM, 45–52
Livingstone Version 2 (LV2), 100
Logistical data, 118
Logistics
 five key concepts for autonomous system, 23f
 IVHM-enabled, 22–24

Maintenance Credits, 145
Maintenance Planning Industry Group (MPIG), 91
Maintenance Steering Group (MSG-3), 91–92
Maintenance
 condition-based (CBM), 37, 96
 and HUMS, 139
 open systems architecture for (OSA-CBM), 56, 57, 58f
 early history of, 11–12
 logic tree for, 38f
 on-condition, 13–14
 optimization of, 88
 predictive, 13–14
 preventive, emergence of, 12
 reliability-centered (RCM), 10
 emergence of, 12–13
 setting the context for, 10–11
 time value of CBM data in, 120
Matrix assessment, 135–136
Matteson, Tom, 12
Maturation, of system, 51–52
Mean time between failures (MTBF), 36, 52, 53
Mean time to repair (MTTR), 52, 53
Mentzer, Bill, 12
MIMOSA Common Relational Information Schema (CRIS), 56
Models, 72
MSG 1, 13
Multi-objective optimization, 74–75

NASA, 15, 18, 100–101, 114
Neural net diagnosis algorithms, 70
Noise
 - blind deconvolution data de-noising, 61f
 - signal to noise ratio (SNR), 60
Non-destructive inspection (NDI), 92
Non-deterministic techniques, 110
North Sea helicopter operations, 126–128, 138
Norwegian civil aviation authority, 126, 140
Nowlan, Stanley, 12

Observational quality, 82
On-condition maintenance, 13–14
Open system architecture–condition-based maintenance (OSA-CBM), 19, 20f, 56, 57, 58f
Operations rooms
 - and centralization, 122
 - future of, 122–123
 - importance of data and data management, 116–120
 - motivation for, 114–116
 - resource optimization in, 116
 - shared situational awareness in, 116
Optimization
 - of controller, 73
 - multi-objective, 74–75
 - of resources, 116
Original equipment manufacturers (OEMs)
 - aftermarket services of, 14–15
 - and product knowledge, 3
 - and sensors, 34
 - as stakeholders, 10
 - transformation of, 2

Parameter data, 116–117
 - free-form text vs., 119
Parametric monitor, 104
Penetrant dyes, 93
Performance metrics, 63
Physics-based models, 72
Pitch-catch ultrasound, 94t, 95t
Potential to functional failure (P-F) interval, 28f, 96–97, 114
 - vs. impact of failure, 29f
Power assurance, 136
Predictive equipment health monitoring (PEHM), 13, 15
Predictive maintenance, 13–14
 - emergence of, 12
Probabilistics, 144–145
Probability of detection (POD), 93
Product service system, 2–3
Products, and IVHM, 19–20
Prognostic monitor, 104
Prognostics, 19, 36–37, 56, 63, 71–72
 algorithms for, 72, 82, 83f
damage threshold, 72
model, 72
Propulsion, 101

Quick access recorder (QAR), 132

Rank permutation test, 69–70
Reasoning, 86–88
 fault isolation and contingency management, 86–87
 troubleshooting and maintenance optimization, 88
 vehicle-level systems
 application of, 105–106
 background, 100–101
 conclusions about, 110
 functional modules in, 103f
 introduction to, 100
 safety impact of, potential, 107–109
 scope of technologies for, 101–105
 verification and validation issues in, 109–110
Redundancy relationship network, 60f
Reliability-centered maintenance (RCM), 10
 emergence of, 12–13
Remaining useful life (RUL), 37
Remote Agent software, 101
Repair, mean time to (MTTR), 52, 53
Requirements development, 47–48
Research, 46–47
Risk management, 47
Rolls-Royce, 3
Rotor sensors, 131–132
Rotor track and balance (RTB), 133, 136
Rule-based systems, 70

SAE Integrated Vehicle Health Management Steering Group, 2, 139
Safe-life, 92–93
Safety
 increasing, 32–33
 and IVHM, 143–144
potential impact of vehicle-level reasoning systems on, 107–109
Integrated Vehicle Health Management

Safety, health, environment, and legislation (SHEL), 29–30
Scenarios, 44
Scheduled structural health monitoring (S-SHM), 92
Sense, acquire, transfer, analyse, act, 5, 6f
Sensors, 34
 chemical agent, 94t, 95f
corrosion, 94t, 95f
data fusion, 62–63
engine, 130–131
gearbox, 130–131
rotor, 131–132
selection and placement of, 81–84
selection example, 84f
strain, 94f, 95f
for structural health monitoring, 94–96
validation of, 59–60
Servitization, 2
Shaft analysis, 134
Shared situational awareness, 116
Signal to noise ratio (SNR), 60
Simulation models, 50
Software, 102
Stakeholder value proposition, 4, 5
Stakeholders, vehicle, 10, 11f
Strain sensors, 94t, 95f
Structural health monitoring (SHM), 90–98
 characteristics of various techniques, 94t
 common methods and applications, 94t
 current approaches to ensure integrity, 91–93
definition of and justification for, 90–91
 in IVHM context, 96–98
 manual, 90
 MSG-3, definition of, 92
 scheduled SHM (S-SHM), 92
 sensors and systems for, 94–96
Subjective attributes, 118
Subsystem interactions, and failure mode, 79, 80f
Symptom evidence, 102
System reference model, 103
Systems engineering
 application to health management systems, 42–45
 architecting, 44–45
 emergent properties, 42, 43–44
 exploration of the problem space, 43
 and health management, 45
 overview of, 42
 scenarios and lifecycles, 44
Tacit knowledge, 120–121
Technology
 breakthroughs in, 13, 14f
 disruptive, 5, 142–143
 and IVHM, 3–4
Technology readiness level (TRL), 47
Temporal filter function, 104–105
Test and evaluation, 49–51
Time synchronous averaging (TSA), 133–134
Time value of CBM data, 120
Time-based latching, 104–105
Toolkits, 78–88
Trend monitoring, 136, 137
Troubleshooting, 88
Trust, 118
Type I errors (false positives), 44, 52, 53
Type II errors (false negatives), 44, 52, 53

UK Civil Aviation Authority (CAA), 126, 138
UK Ministry of Defence, 52
Ultrasound, 93, 94t, 95t
 pitch-catch, 94t, 95t
Unmanned aerial vehicle (UAV), 145
U.S. Army, 39–40
U.S. Department of Defense (DoD), 23
Usage data, 134
Usage monitoring, 129
Usage, optimizing, 36f

Value proposition, 4, 5
Vehicle-centric view, 35f
Vehicle health management, 9
Vehicle-level reasoning systems (VLRS), 100–110
Verification and validation (V&V), 49
 vehicle-level reasoning system issues, 109–110
Vibration analysis, 134
 gearbox, process flow for, 135f
Vibration data, 133–134
Vibration health monitoring (VHM), 127
Vibration sensing, 131–132

Xerox, 3
X-rays, 93
About the Authors

Ashok N. Srivastava
Ashok N. Srivastava, Ph.D. is the Project Manager for the System-Wide Safety and Assurance Technologies Project at NASA. He is formerly the Principal Investigator for the Integrated Vehicle Health Management research project at NASA. His current research focuses on the development of data mining algorithms for anomaly detection in massive data streams, kernel methods in machine learning, and text mining algorithms.

Dr. Srivastava is also the leader of the Intelligent Data Understanding group at NASA Ames Research Center. The group performs research and development of advanced machine learning and data mining algorithms in support of NASA missions. He performs data mining research in a number of areas in aviation safety and application domains such as earth sciences to study global climate processes and astrophysics to help characterize the large-scale structure of the universe.

Dr. Srivastava is the author of many research articles in data mining, machine learning, and text mining and has edited the book, Text Mining: Classification, Clustering, and Applications (with Mehran Sahami, 2009). He is currently editing two more books: Advances in Machine Learning and Data Mining for Astronomy (with Kamal Ali, Michael Way, and Jeff Scargle) and Data Mining in Systems Health Management (with Jiawei Han).

Dr. Srivastava has given seminars at numerous international conferences. He has a broad range of business experience including serving as Senior Consultant at IBM and Senior Director at Blue Martini Software. In these roles, he led engagements with numerous Fortune Global 500 companies including Bank of America, Chrysler Corporation, Saks 5th Avenue, Sprint, Chevron, and LG Semiconductor.

He has won numerous awards including the IEEE Computer Society Technical Achievement Award for “pioneering work in Intelligent Information Systems,” the NASA Exceptional Achievement Medal for contributions to state-of-the-art data mining and analysis, the NASA Distinguished Performance Award, several NASA Group Achievement Awards, the IBM Golden Circle Award, and the Department of Education Merit Fellowship.

Assaad Krichene
Assaad Krichene is Lead Engineer at Impact Technologies, LLC. He has close to ten years experience in the development and optimization of PHM systems, the implementation of prognostic and diagnostic algorithms, and the design and development of reasoning algorithms for fault detection and isolation, and maintenance optimization and planning. Assaad has been instrumental in the development of health management and fault detection and isolation reasoning modeling and design tools at Impact. He has also worked in collaboration with other companies to explore avenues of integration of Impact-developed health management technologies into their modeling and design tools. Recent work has focused on data mining for the development of data-driven diagnostics and prognostics algorithms, automated fault isolation reasoning capability
development and validation, and data-driven fleet management optimization. Assaad has a Ph.D. and M.S. in Aerospace Engineering from the Georgia Institute of Technology and a post-graduate degree in Aerospace Engineering from the National Aeronautical Engineering School in France. He is a senior member of the American Institute of Aeronautics and Astronautics (AIAA).

Charlie Dibsdale
Charlie began his engineering career in the Royal Navy, joining the submarine service and moving into operating and maintaining nuclear propulsion and electrical power and distribution systems. The broad range of equipment and the independence on patrols combined to form a solid foundation of operations and maintenance practice. On finishing a full service career, Charlie joined Rolls-Royce Marine with accountability for improving reliability and maintenance; he undertook Reliability-Centered Maintenance (RCM) training and was part of a team that successfully reduced (Trident) submarine maintenance by 20% for no loss of safety or reliability. When OSyS (then known as DS&S) was formed, Charlie moved over. OSyS delivers the predictive maintenance services in all of Rolls-Royce’s market sectors in support of the company’s product-based services. He has been part of and has influenced the fundamental changes involved as EHM matured and was part of the team that conceptualized the early development of the operations room. Charlie’s current roles are as Rolls-Royce global capability owner for Equipment Health Management (EHM), program managing Rolls-Royce IVHM research, and as Chief Engineer for EHM in OSyS, heavily involved with its fitness for purpose and development.

Charlie is active in development of Predictive Maintenance standards and processes, is a member of API 691 defining risk-based maintenance for rotating machinery in the oil and gas sector, and is a member of the SAE International HM1 committee. He has combined his engineering knowledge with a formal education with a BSc (Hons) in Computer Science and an MSc in Information systems.

Chris Pomfret
Chris Pomfret has been actively involved with the marketing and implementation of Health Management (HM) capabilities for the past 20 years. As an Aerospace Engineer and Maintenance Officer in the Royal Air Force, he recognized the benefits that HM would afford the aircraft maintenance technicians. After moving to the Wright-Patterson Air Force Base in the U.S. in the early 1990s and initiating Engine Health Management R&D programs in the USAF, he has pursued the continued funded development by the Department of Defense for HM tools and capabilities and been a strong advocate for their implementation. He is a recent past Chairman of the SAE Technical Committee for Aerospace Propulsion Systems Health Management (E-32), a founder member of the SAE HM-1 Committee for Integrated Vehicle HM, a member of the SAE IVHM Steering Committee and, since 2006, the Executive Director of MFPT, a not for profit organization that promotes the application of HM tools across all types of equipment and machinery. He has a BS/MS in Chemical Engineering from the University of Sheffield in UK and founded his own company, Treble One Aerospace Consulting, in 1999 to provide independent marketing, business development, and consulting to aerospace companies.
Dinkar Mylaraswamy
Dr. Dinkar Mylaraswamy is the Technology Fellow for condition-based maintenance within Honeywell’s Advanced Technology organization. His areas of expertise are fault diagnosis and process monitoring, modeling, and control. In his current role, Dr. Mylaraswamy is responsible for identifying and maturing strategic health management technologies that cut across multiple products and services, providing inputs for strategic technology investments, and mentoring.

Dr. Mylaraswamy joined Honeywell in 1997 after completing his Ph.D. from Purdue University. His Ph.D. thesis on blackboard-based architectures was adopted by the Abnormal Situation Management Consortium as the basis of an operator tool for addressing the $16B loss suffered by the petrochemical industry from abnormal situations and equipment malfunctions. Dr. Mylaraswamy spent his first six years in Honeywell developing and deploying an Early Abnormal Event Detection application at six refinery sites in North America.

On the Aerospace side, he was the technical lead for Honeywell’s Predictive Trend Monitoring program, a web-based application for monitoring aircraft engines. He continues to serve as the technical lead on various health management programs — within Honeywell as well the U.S. Army, NASA, UK-MOD, and Navair — to support the Aerospace Services business within Honeywell.

As the Technology fellow, he routinely works with academic institutes and small businesses, seeking cutting-edge technologies to support the condition-based service business within Honeywell. Dr. Mylaraswamy has authored over 30 papers and holds 14 patents in the area of fault diagnosis and its applications.

Eric G. Cooper
Eric Cooper is a research engineer in NASA Langley Research Center’s Safety-Critical Avionics Systems Branch and is working on issues involving the verification and validation of flight-critical systems. He has over 20 years of experience in designing and developing software systems for mission-critical applications. His research interests also include integrated vehicle health management and vehicle-level reasoning systems. He received a Bachelor’s degree in Information Science from Christopher Newport College and a Master’s degree in Computer Science from the College of William and Mary.

George Vachtsevanos
Dr. Vachtsevanos is serving as Chief Scientist at Impact Technologies and is Professor Emeritus at the Georgia Institute of Technology. He directs the Intelligent Control Systems Laboratory at Georgia Tech, where faculty and students are conducting interdisciplinary research in intelligent control, fault diagnosis, and failure prognosis of complex dynamic systems with emphasis on rotorcraft, and hierarchical / intelligent control of Unmanned Aerial Vehicles. His research in fault diagnosis and prognosis for condition-based maintenance began in 1984 with innovative fault detection and control technologies for
the space station program. Under Office of Naval Research (ONR) sponsorship, he developed fault detection and fault-tolerant control systems for a turbojet engine. Jointly with Honeywell, he designed diagnostic and prognostic algorithms for shipboard machinery under ONR sponsorship. More recently, he has been an active participant in DARPA’s Prognosis Program, the Aging Aircraft Program, an Advanced Diagnostics Program for U.S. Army vehicles, a U.S. Navy program on Prognostic Enhancements to Diagnostic Systems, an Air Force Space Command Program for CBM Design of Ground Satellite Stations, and other industrial programs. He administers at Georgia Tech and on-site an intensive four-day short course on “Fault Diagnosis and Prognosis for Engineering Systems.” He has published over 350 technical papers and is the recipient of the 2002-2003 Georgia Tech School of ECE Distinguished Professor Award and the 2003-2004 Georgia Institute of Technology Outstanding Interdisciplinary Activities Award. He is the lead author of the book, Intelligent Fault Diagnosis and Prognosis for Engineering Systems, published by Wiley in 2006.

Ian K. Jennions

Ian K. Jennions is a Professor and Director of the IVHM Centre, Cranfield University, UK. He joined the Centre, which is funded by a number of industrial partners, when it was founded in 2008 and has led its development and growth in research and education over the last three years. Previously, Ian had worked for a number of companies in the gas turbine industry over a 30-year career. He worked for Rolls-Royce, General Electric, and Alstom in a number of technical roles, gaining experience in aerodynamics, heat transfer, fluid systems, mechanical design, combustion and, more recently, IVHM. He has a Mechanical Engineering degree and a Ph.D. in CFD, both from Imperial College, London. He is a Director of the PHM Society, contributing member of the SAE IVHM Steering Group and HM-1 IVHM committee, and a Fellow of IMechE, RAeS, and ASME.

Kai Goebel

Dr. Goebel is a senior scientist working at NASA Ames Research Center where he leads the Prognostics Center of Excellence. He is the Technical Lead for Prognostics and Decision Making in NASA’s System-wide Safety and Assurance Technologies Project. Prior to joining NASA in 2006, he was a senior research scientist at General Electric Corporate Research and Development Center since 1997. He has carried out applied research in the areas of real-time monitoring, diagnostics, and prognostics. He has fielded numerous applications for aircraft engines, transportation systems, medical systems, and manufacturing systems. He holds 15 patents and has co-authored more than 200 papers in the field of IVHM. Dr. Goebel was an adjunct professor of the CS Department at Rensselaer Polytechnic Institute (RPI), Troy, NY, between 1998 and 2005 where he taught classes in Soft Computing and Applied Intelligent Reasoning Systems. Dr. Goebel is a member of ASME, AIAA, IEEE, VDI, SAE, and ISO. He was the General Chair of the Annual Conference of the PHM Society, 2009 and held numerous chair positions at the PHM conference and the AAAI Annual Meetings series. He is currently a member of the board of directors of the PHM Society and associate editor of the International Journal of PHM.
Louis Redding

Louis E. Redding is a Ph.D. researcher working on the IVHM Mapping Project with the IVHM Centre at Cranfield University (UK). His research interest relates to the methods by which IVHM can inform and facilitate the formation of operations strategies for SMEs seeking to employ “intelligent” products, and to enable them to compete through the addition of advanced services.

He has 30+ years of experience within the automotive sector specializing in the design and manufacture of “body in white” tooling, assembly, and production systems, with 15 years being at the executive level.

His qualifications include a BSc (Hons) in Industrial Technology and Management, an MSc (Distinction) in Engineering Management, and an Executive Diploma in Management. He is a member of the Institution of Engineering and Technology (IET) and the Chartered Management Institute (CMI).

Michael J. Roemer

Michael J. Roemer is the co-founder and Director of Engineering at Impact Technologies with over 20 years’ experience in the development of automated health monitoring, diagnostic, and prognostic systems for a range of military and commercial applications. His experience includes a wide range of integrated vehicle health management system implementations to detect and predict system faults in real time and perform automated troubleshooting and maintenance planning.

He has developed several diagnostic and prognostic capabilities utilizing technologies such as dynamic signature analysis, artificial intelligence, aero-thermal performance monitoring, finite element modeling, probabilistic remaining life analysis, and risk assessment methods. He is the co-founder and Vice President of the PHM Society, Chairman of the SAE HM-1 Integrated Vehicle Health Management Committee, board member and past Chairman of the Machinery Failure Prevention Technology (MFPT) Society, Prognostic Lead for the SAE E-32 Engine Condition Monitoring Committee, Member of the IGTI Marine Committee and ASME Controls and Diagnostics Committee, and Adjunct Professor of Mechanical Engineering at the Rochester Institute of Technology. He is the co-author of a recent book, Intelligent Fault Diagnosis and Prognosis for Engineering Systems, and has written or co-authored more than 100 technical papers related to integrated systems health management.

Paul R. Davies

Paul Davies, MA (Cantab), MIMA, C.Math, is based at Thales in Leicester, where he has held a number of positions including Head of Systems Engineering and Chief Engineer on a variety of defence programmes. Paul is currently Head of Innovation for the Thales Defence Mission Systems domain in the UK. In this role, he runs a “Technology Watch” programme that involves the identification and funding of suitable topics for research applicable to Thales business. He also shares responsibility for representing Thales on a Confederation of British Industry working group, the ICARG (Inter-Company Academic Relations Group), and is a member of the EPSRC College.
Paul has held a position as Royal Academy of Engineering Visiting Professor in Integrated Systems Design at Loughborough, has been a guest lecturer at the Ecole Polytechnique in Paris, and also prepares and delivers training courses in systems engineering (SE) internally to Thales. He graduated from Cambridge University in Mathematics in 1978, and is a Chartered Mathematician. He has served as President of the UK Chapter of INCOSE, the International Council on Systems Engineering, and has chaired national (UK) and international conferences in SE.

Peter Foote
Peter Foote, BSc (Hons), Ph.D., C. Phys, FinstP, is an Executive Scientist at BAE Systems. In this role he contributes to the development of technology and capability related to platform and asset health management. His work addresses the needs across the company lines of business covering the domains of air, land, sea and fixed assets. Peter has nearly 25 years’ experience in industry using his specialized knowledge of sensors and sensor systems for structural health monitoring applications. During his time in BAE Systems he has pioneered work on fibre optic sensors for structural health monitoring of “smart” composites, helping to create new supplier companies. His current role is developing technology and strategy for the implementation of IVHM in company products. He is chair of the SAE G-11 SHM committee on structural health monitoring and management, and he co-chairs the newly formed SAE Steering Group on IVHM. Peter currently holds a Royal Society Industrial Fellowship on the topic of exploitation of fibre optic sensor technology and is a visiting professor at Cranfield University in the UK.

Robert W. Mah
Robert W. Mah is the Project Scientist for the SSAT Project, one of three projects under the NASA Aviation Safety Program. He has a Ph.D. in Applied Mechanics and Biomedical Engineering from Stanford University. He was PI and head of the Smart Systems Research Laboratory at NASA Ames which developed innovative software solutions and tools for space, aeronautics, and medicine. His experience spans a broad range of research and development work ranging from adaptive control of spacecraft, FT/RM architecture for CEV GN&C, FDIR, and fault tolerant control of the 2.5-m Artificial Gravity Research Centrifuge for the International Space Station, advanced signal processing and precision tools for airborne and ground-based telescopes, high-performance multi-axis motion control capabilities for biological and human research, astronaut space motion sickness research, to novel medical technologies for detection, diagnosis, and prognosis of cancer.

Steve Parker
After completing his Bachelor of Science with Honours in electrical and electronic engineering (City University, London, UK) in 1983, Steve spent 10 years as a design engineer and project leader at GEC Avionics, Rochester, UK, working on inertial systems, including an autopilot for a military underwater application, and a novel solid-state gyroscope for civil and military applications. Steve joined Meggitt Avionics, Fareham, UK, in 1993 as Product Manager for the
Meggitt Secondary Flight Display (SFD), the world’s first solid-state artificial horizon, with management responsibility for the complete design (systems, electronics, software, and mechanical). As part of this role, Steve was approved as a UK Civil Aviation Authority (CAA) design signatory.

Steve subsequently fulfilled senior technical management roles within Meggitt Avionics, including Chief Engineer and, from 2003, Engineering Director with overall responsibility for all engineering activity within Meggitt Avionics, and responsibility to the UK CAA and UK MoD Defence Logistics Organisation for the approval of Meggitt Avionics as a design organisation. In this latter role, Steve held responsibility for the Meggitt Avionics Integrated Health and Usage Monitoring System (IHUMS), acquired from BAE Systems in 2002.

In 2009 Steve moved from Meggitt Avionics to Meggitt PLC, supporting the Engineering aspects of a major organisational restructure of Meggitt. In January 2011, Steve took the role of Director of Engineering for Meggitt PLC, supporting Meggitt’s Executive Vice President of Technology and Engineering, Dr. Richard Greaves, in coordination of applied research, technology, design, and development across the Meggitt group.

Timothy J. Wilmering

Timothy J. Wilmering is a Technical Fellow with the Boeing Company. His professional interests are centered on Integrated Vehicle Health Management (IVHM) architectures, software tool and information system modeling and integration, and the application of knowledge-based methodologies to these technologies. He has 30+ years of experience in the performance of test, diagnosis, and maintenance procedures both on and off aircraft, diagnostic architecture development and design guidance, development of analytical engineering tools, and definition of enterprise process and information integration standards and tools. His educational background includes a BS in Computer Science and a Masters in Information Management. He is a Senior Member of the IEEE and co-chair of the Diagnostic and Maintenance Control subcommittee of IEEE Standards Coordinating Committee 20 on Test and Diagnosis for Electronic Systems, a member of the Society of Automotive Engineers, and a member of the Prognostics and Health Management Society Board of Directors.