Index

Anti-Stokes radiation, 53
Autocorrelation-based analysis, 89
Azimuthal momentum quantum number, 45

Background light, minimization in LRS, 168–169
Background radiation, in SRS, 179–181
Back-illumination, 199–200, 329
Band area method, 276
Band peak intensity method, 276
Bandwidth factor, 60
Beam diffuser, 39
Beam samplers, 31
Beam shaper, 39
Beam splitters/separators, 31
Beam splitting, 73
Beam waist, 21, 24
Beer-Lambert law, 204, 323, 324
Binning, 35
Blackbody, 260
Boltzmann equation, 48
Bowditch extension, 4
Bragg cell, 79

Calibration
data, with SRS, 181–183, 188–191
image
with laser-based optical instruments, 37–39
with PLIF, 138–139
of LII, 337–338
of two-color method, 312–313
Carbon monoxide, imaging by two-photon PLIF, 156–159

Charge-coupled device (CCD) cameras, 34–36
cross-correlation, 94–95
Chemiluminescence, 242–243, 248–251
Chopped method, 266
Coatings, 28
Coherent anti-Stokes Raman scattering (CARS) thermometry application for nitrogen, 282–285
in IC engines, 285–286
principle of, 280–282
Combustion species
light absorption of, 243
light emission of, 241–243
emission peaks in IC engines, 243
visualization by PLIF, 144–156
Combustion spectroscopy, 241–248
application of emission and absorption techniques, 246–248
detection of emission and absorption, 243–246
Combustion visualization, nonluminous, 251–255
Complementary metal-oxide semiconductor (CMOS) sensor, 36–37
Computational fluid dynamics (CFD), 71
Conditional sampling, 89–90, 92
Continuous wave lasers, 19–21
Controlled autoignition (CAI) combustion engines
formaldehyde measurement by PLIF, 153–156
Fluorescence

differential cross section for, 68
energy-level diagram, 67f
linear fluorescence equation, 66
requirements for quantitative measurements, 66–67, 134
selection of tracers for, 135–137
see also Laser-induced fluorescence (LIF), Planar laser-induced fluorescence (PLIF)
Fluorescence quantum yield, 66
Fluorescence thermometry
monochromatic implementation of, 288–290
principle of, 287–288
two-line atomic (TLAF), 298–299
two-line molecular (TLMF) implementation of, 292–298
principle of, 290–292
selection of molecule and excitation wavelengths, 292–295
Focal position, 23
Formaldehyde, 145
visualization by PLIF, 153–156
Fraunhofer diffraction, 201–202
implementation of method, 202–206
Frequency shifting, in LDA, 78–79
Fringe biasing, 78–79, 82
Fuel
concentration measurement by LRS, 165–173
injection and spray characterization, 199–234
liquid, simultaneous visualization with fuel vapor by LIEF, 223–234
refractive indices for, 219
Fuel vapor
concentration measurement by PLIF, 133–144
mole fraction of, 52
simultaneous visualization with liquid fuel by LIEF, 223–234
Full-field two-color measurement, 317–322
Gas temperature measurement, 259–300
Gaussian laser beam, 21–22 focusing of, 22–25
Half-wave plate, 32
High-energy pulsed lasers, 17–18
High-repetition pulsed lasers, 18–19
High-speed imaging, 36–37
Internal combustion (IC) engines
CARS thermometry in, 285–286
LDA applications in, 90–92
LRS fuel concentration measurement in, 171–173
PDPA application in, 219
PIV measurements in, 111–127
experimental setup, 112–116
flowfield analysis, 116–127
PLIF measurements in, 139–141
NO, 150–152
OH, 148–149
SRS application in, 183–185
vibrational frequencies for molecules of interest to, 57f
Image processing
removing systematic errors, 37–38
with laser-based optical instruments, 37–39
Imaging
chemiluminescence, 248–251
direct, of spray and droplets, 199–201
Imaging spectrograph, 178
In-cylinder measurements
diesel spray, application of LIEF to, 231–234
In-cylinder measurements (continued)
flow
LSA for, 71–92
PIV for, 92–127
fuel distribution by PLIF, 139–144
example of, 141–144
overview of, 139–141
fuel visualization, application of PLIF to, 228–231
mixture composition with SRS, 191–194
NO, application of PLIF to, 151–152
particle size, 305–344
soot concentration, 305–344
Integral length scale, 90–91
estimation using PIV, 121–123
Intensity distribution, 21, 22f
Interference filters, 29
Interference fringe spacing, 72

Lambert-Beer law, 204, 323, 324
Laser-based optical instruments, 13–40
beam delivery and focusing, 21–26
image processing and calibration, 37–39
laser types, 16–21
optics and photodetection systems, 26–37
overview of, 13–16
Laser Doppler anemometry (LDA)
accuracy of, 81–82
advanced systems, 82–84
applications to IC engines, 90–92
cycle-resolved-velocity analysis, 86–90
data analysis of in-cylinder flows, 84–90
discrimination of flow direction by frequency shifting, 78–79
ensemble-averaged analysis, 84–86
laser and transmitting optics, 73–75
light collection system, 75–77
principle of, 71–73
seeding particles, 79–81
signal processing, 77
Laser-induced exciplex fluorescence (LIEF)
application for in-cylinder fuel visualization, 228–231
application for in-cylinder diesel spray measurement, 231–234
experimental setup of, 226–228
principle of, 223–226
quantitative analysis of fuel vapor concentration, 228
Laser-induced fluorescence (LIF), 61–67
comparison with LRS and SRS, 67–69
laser sheet droplet sizing (LSD) by, 222–223
main energy transfer processes in, 62f
two-energy-level model for, 63–64
see also Planar laser-induced fluorescence (PLIF)
Laser-induced incandescence (LII), 305, 330–344
calibration of, 337–338
further considerations of, 343–344
implementation of, 333–337
principle of, 331–333
signal trapping correction and calibration procedure, 338
soot particle sizing with, 338–340
soot volume fraction measurement by, 331–338
time-resolved (TiRe-LII), particle sizing by, 340–343
Laser Rayleigh scattering (LRS)
comparison with SRS and LIF, 67–69
Index

fuel concentration
measurement, 165–173
application to IC engines, 171–173
filtered Rayleigh scattering, 169–170
implementation of, 167–168
minimization of background light in, 168–169
principle of operation, 166–167
thermometry
implementation of, 270–272
principle of, 270
Laser scattering (LS), soot particle sizing with, 338–340
Laser sheets
droplet sizing (LSD) by combined Mie scattering and LIF, 222–223
optics for, 25–26
Laser spectroscopic techniques
comparison of LRS, SRS, and LIF, 67–69
LIF, 61–67
molecular spectroscopy, 41–49
Raman and Rayleigh scattering, 49–61
Lasers, 16–21
basic principle of, 16f
beam delivery and focusing, 21–26
continuous wave, 19–21
Gaussian beam, 21–22
focusing of, 22–25
high-energy pulsed, 17–18
high-repetition pulsed, 18–19
for LDA, 73–75
for PIV, 95–97
sheet optics, 25–26
Lens formula, standard, 22
Lenses, 25, 26–28
Light absorption
application of technique, 246–248
doctor of combustion species, 243
detection by combustion spectroscopy, 243–246
Light emission
application of technique, 246–248
from combustion, 241–243
detection by combustion spectroscopy, 243–246
Light emission-absorption method, of radiation thermometry, 265–267
Light-extinction method for soot concentration measurement, 305
implementation of, 326–330
principle of, 322–326
Light sheets, for PIV, 95–97
Linear fluorescence equation, 66
Linear regime, 134
Liquids, refractive indices for, 219
Long-pass filters, 29
Microchannel plate (MCP), 33
Mie scattering, 68–69
combined with LIF, 222–223
differential cross section for, 68
laser sheet droplet sizing (LSD), 222–223
two-dimensional spray imaging with, 220–221
Mirrors, 28–30
Mixture composition measurement by SRS, 173–194
Modulation, 27
Molecular spectroscopy, 41–49
Molecules
coupling between rotational and electronic modes, 46–47
coupling between vibrational and rotational modes, 44
diatomic
electronic states of, 44–46
rotational energy of, 43, 55f
rotational-vibrational
Raman spectrum of, 57
vibrational energy of, 43–44
internal energy of, 41–47
Molecules (continued)
spectral structure and selection rules, 47
Monochromatic emissivity, 306–307
Monochromatic fluorescence thermometry, 287–290
Moving window average, 88

\(\text{N}_2 \)
- CARS thermometry of, 282–285
- Raman thermometry of, 275–277
Neutral-density filters, 30
NO, 144
- measurement, by PLIF, 150–152
Nonluminous flow visualization, 251–255
Normalization factor, 139
Null method, 267–268

\(\text{OH} \), 144
- electronic states of, 46
- energy levels of, 41–42
- excitation and detection schemes used in PLIF, 149
- measurement by PLIF, 148–150
Optical engines, 1–10
- differences from normal engines, 10
- endoscopic access, 7–8
- introduction to, 1
- operation of, 9–10
- optical access, 1–7
 - through the cylinder head, 2–4
 - through the piston, 4–6
 - through the sides, 6–7
- single-cylinder with transparent cylinder head, 2f
Optical instruments, laser-based, 13–40
- beam delivery and focusing, 21–26
- image processing and calibration, 37–39
- laser types, 16–21
- optics and photodetection systems, 26–37
- overview of, 13–16
Optical multichannel analyzer (OMA), 35
Optical windows
 - clean operation of, 9
 - materials for, 8–9
Optics, 26–32
- beam splitters/separators and beam samplers, 31
- imaging, for PIV, 97–99
- lenses, 26–28
 - for laser sheet, 25–26
- mirrors and filters, 28–30
- polarization, 32
- telescopic beam-expanding, 24
- transmitting, for LDA, 73–75
Orbital angular momentum quantum number, 45
Out-of-plane strain, 124, 125–126
Overlap correction coefficient, 146

Particle image velocimetry (PIV), 71
- accuracy of, 106–107
- advanced systems, 109–111
- evaluation of displacement vectors, 99–103
- imaging optics and perspective errors, 97–99
- lasers and light sheets, 95–97
- measurement dynamic range, 104–106
- measurements in IC engines, 111–127
 - experimental setup, 112–116
 - flowfield analysis, 116–127
 - operation of the digital system, 117–124
 - postprocessing of data, 107–109
 - principle of, 92–94
 - seeding particles, 103–104
 - spatial resolution of, 104
stereoscopic, 109–111
system optimization, 104–107
system variables and their optimization, 108
temporal resolution of, 104

Particles
in-cylinder size measurements, 305–344
seeding in PIV, 103–104
seeding in LDA, 79–81
sizing by LII and laser scattering, 338–340
sizing by time-resolved LII (TiRe-LII), 340–343

Pedestal, 72
3-Pentanone, 293–295
Perspective error, 99

Phase Doppler particle analyzer (PDPA)
application to IC engines, 219
data reduction and presentation, 213–216
implementation of, 210–213
principle of, 206–210
system optimization, 216–218
Phase matching, 282–283
Photodiode array (PDA), 35
Photomultiplier tube (PMT), 33
Photon detectors, 32–36
PIN photodiode, 33

Pistons
extended, in optical engine, 5
optical access through, 4–6
Placzek-Teller coefficients, 54

Planar laser-induced exciplex fluorescence (PLIEF), see Laser-induced exciplex fluorescence (LIEF)

Planar laser-induced fluorescence (PLIF)
CO imaging, 156–159
combined with Mie scattering, 222–223
example experiments, 139, 140
fuel vapor concentration measurement
example of in-cylinder fuel distribution, 141–144
experimental setup, 137–138
in IC engines, 139–141
image calibration, 138–139
in-cylinder, 139–144
principles of operation, 133–134
selection of fluorescence tracers, 135–137
two-dimensional spray imaging with, 221
two-photon technique, 156–159
two-tracer experiment, 141–144
visualization of combustion species
experimental considerations, 145–148
introduction to, 144–145
NO measurement, 150–152
OH measurement, 148–150
visualization of formaldehyde, 153–156
water vapor imaging, 156–159
see also Fluorescence thermometry

Planck’s law, 260, 306
Planck-Teller coefficients, 274
Polarization optics, 32
Population of energy levels, 48–49
Principal quantum number, 44
Probe volume, 73
Pulse stretcher, 187–188

Quantum theory of radiation, 49
Quarter-wave plate, 32
Quenching, 62

Radiation thermometry, 259–269
implementation of, 263–269
emission-absorption method, 265–267
null method, 267–268
two-color gas thermometer/pyrometer, 268–269
principles of, 259–263
Radiation trapping, 147–148
Radiative transitions, 42
Raman scattering, 49
gas temperature measurement by, 61
intensity of, 58–60
major species concentration measurement, 60–61
pure rotational Raman spectrum, 53–55
vibrational Raman spectra, 55–57
see also Spontaneous Raman scattering
Rayleigh range, 22, 23
Rayleigh scattering, 49–53
differential cross section for, 68
see also Laser Rayleigh scattering
Refractive indices, 326
Retardation plates, 32
Rotational energy of diatomic molecules, 43, 55
Rotational mode coupling, 44, 46–47
Rotational partition function, 48

Saturation intensity, 65
Saturation limit, 66
Sauter mean diameter (SMD), 214, 222
Scattered light signal, 50
Schlieren system, 329
Schlieren technique, 251–255
Seeding
in LDA, 79–81
in PIV, 103–104
Shadowgraph, 201, 329
for nonluminous flow and combustion visualization, 251–255
Shear strain, 123, 126, 127
Short-pass filters, 29
Signal amplitude method, 216
Signal processing, in LDA, 77
Signal trapping correction in LII, 338
Smoothed-ensemble data-reduction, 85
Sodium line-reversal technique, 268
Solid-state cameras, in full-field two-color method, 317–322
Soot
concentration measurement
in-cylinder, 305–344
by light-extinction method, 322–330
particle sizing using LII and laser scattering, 338–340
volume fraction measurement by LII, 331–338
Spatial frequency response, 28
Spectroscopy
combustion, 241–248
laser techniques, 41–69
molecular, 41–49
Spin quantum number, 45
Spontaneous Raman scattering (SRS)
comparison with LRS and LIF, 67–69
mixture composition measurement, 173–194
applications to IC engines, 183–185
background radiation and signal-to-noise ratio, 179–181
in CAI combustion engine, 185–194
data analysis and calibration, 181–183
experimental setup, 176–179
principle of operation, 174–176
multispecies measurements in CAI combustion engine
data interpretation and calibration, 188–191
experimental considerations, 185–188
in-cylinder, 191–194
thermometry, 272–280
implementation of, 278–280
principle of, 272–277
spectrum synthesis, 272–276
Spot size, 23
Spray
 direct imaging of, 199–201
 two-dimensional imaging
 through Mie scattering or
 PLIF, 220–221
Standard lens formula, 22
Stokes/anti-Stokes methoc, 275
Stokes radiation, 53
Strain rate, determined using PIV, 123–127
Swirl, 90
Swirl chamber, 3–4

Telescopic beam-expanding optics, 24f
Thermal equilibrium, 41
Thermometry
 by CARS, 280–286
 fluorescence, 287–299
 by LRS, 270–272
 radiation, 259–269
 by SRS, 272–280
Time-resolved laser-induced
 incandescence (TiRe-LII)
 implementation of, 342–343
 particle sizing by, 340–343
 principle of, 340–341
TMPD/naphthalene, 224–226, 228–229
Tracers, fluorescence, selection of, 135–137
Tumble, 90
Turbulence length scale, 91
Two-color gas thermometer/
 pyrometer, 268–269
Two-color method, 305, 306–308
 accuracy of, 317
 calibration, 312–313
 data acquisition and analysis,
 313–315
 effect of nonuniform
 temperature and soot
 distributions, 316–317
 effect of soot deposition on
 window, 316
 effect of wall reflections, 316
 full-field, 317–322
 using solid-state cameras,
 317–322
 implementation of, 309–315
 principle of, 306–308
 selection of α, 310–311
 selection of wavelengths, 311
Two-line atomic fluorescence (TLAF)
 thermometry, 298–299
Two-line molecular fluorescence
 (TLMF) thermometry, 290–292
Two-photon LIF technique, 156–159

Velocity bias, 81–82
Velocity-filtering analysis, 86–87
Vibrational energy of diatomic
 molecules, 43–44
Vibrational frequencies for molecules
 of interest to IC engines, 57f
Vibrational mode coupling, 44
Vibrational Raman scattering,
 differential cross section for, 68
Volume mean diameter (VMD), 214
Vorticity, determined using PIV, 123–127

Water vapor, imaging by two-photon
 PLIF, 156–159
Wien’s law, 261
About the Author

Professor Hua Zhao has been involved in combustion engine research and the development of laser diagnostics for more than 25 years. As the Director of the Centre for Advanced Powertrain and Fuels Research at Brunel University in London, he leads a team of 20 academic staff and researchers on the fundamental studies and applied research of cleaner and more efficient combustion engines. His research includes CAI/HCCI (controlled autoignition / homogeneous charge compression ignition) gasoline and diesel engines, two- and four-stroke combustion systems, highly downsized direct-injection (DI) gasoline engines, cost-effective air hybrid powertrain, and the development and application of advanced laser measurement techniques to internal combustion (IC) engines. Professor Zhao has led a great many research projects in the UK and EU and directed key national projects in China on CAI/HCCI combustion engines. He has written or edited five books on IC engines and published more than 200 papers at international journals and conferences. He has received publication awards from the Institution of Mechanical Engineers, Institute of Energy, and Professional Engineering Publishing. He has collaborated widely with the automotive industry and provided consulting services to several vehicle, engine, and oil companies in Europe and China.

Professor Zhao graduated from Tianjin University in China and obtained his PhD from the University of Leeds in the UK. He worked as a research fellow at Cambridge University and Imperial College in London before joining Brunel University in 1994. In 2009, he was awarded the higher doctorate degree of Doctor of Science (DSc) for his outstanding contribution to combustion engine research. He is a Fellow of SAE International and the Institution of Mechanical Engineers.