References

[60] Eco-Physics. CLD 700 for the Automotive Industry.

[63] Siemens Laser Analytics. LDS 3000 Product Information.

149

[126] Folgen einer globalen Massenmotorisierung. UPI-Bericht 35. UPI Umwelt–und Prognose–Institute e.V.

Index

Air, properties of, 36t
Air mass flow, correlation coefficient with different input parameters, 138t
Airplane engines
 emissions at airports, 112f
 emissions in different phases of flight, 112t
 engine type CF6-80 emissions, 112f
 measurement of emissions from, 111–114
 OBD/OBM application in, 3–6
 output of pollutants into the atmosphere, 111f
 test bench emissions, 113f
Ammonia
 measurement at test bench, 41–42
 setup and principle of measuring device, 43f
Artificial neuronal network (ANN), 137
Auxiliary engine, analyzing emissions from, 113–114

Catalyst
 applications with different engine technologies, 87t
 deactivation mechanisms for, 90t
 exhaust gas measurement at, 87–100
 measurement of unburned concentration between engine and, 79
 monitoring of conversion ability of, 91f
 oxidation, 87–93
 cold-start phase, 88–89
 detection of misfires, 92–93
 light-off point, 88
 monitoring aging of, 89–92
 reduction, 93–94
 by addition of hydrocarbons, 93–94
 through feeding of urea, 93
 storage, 94, 95f
Chemo luminescence for NOx measurement, 41
Climate protection, 123–129, 132–133
Cold-start phase, 88–89
 important parameters of oxidation catalyst in, 91f
 in natural-gas-powered vehicle, 106f
Combined systems, 72
Compression ignition engine
 control of exhaust gas after treatment (EGAT) in, 94–96
 emissions of conventional and synthetic-fuel-propelled, 109f
 limiting values of European OBD/OBM for, 22t
Contamination in the field, 73–76
Cylinder
 cylinder-specific emissions, 80–82
 hydrocarbon concentrations of, 81f, 82f
Data
- storage, 62, 72f
- transfer, 30f, 63f, 121f
- evaluation, 72f

Denitrification, reduction of nitrogen oxides by, 95–96, 97f

Detector structure, 56, 57f

Diesel engines, in ships, measuring emissions from, 115–122

Directive 98/69/EC, 2–3, 10, 18
- essential content of, 9t

Driving
- comparison of relaxed and aggressive, 102f
- comparison of trained and untrained, 101f
- ecological, 101–103
- educational measures in road transport, 128f
- measurement results, 85f, 86f
- OBM use in driving schools, 101–102
- video record of, 102f

Ecological driving, 101–103

Electronic and software system
- data storage and transfer, 62
- gas flow schematic, 62f
- hardware and software design, 66–67
- internal electronic system, 62f
- measurement device description, 61–65
- onboard microcontroller system, 63f
- signal and reference curve correction, 63–65
- signal smoothing, 65
- technical data of electronic master board, 61t
- trends in electronic defects in road vehicles, 32f

Emissions
- from airplane engines, 111–114
 - at airports, 112f
- of conventional and synthetic-fuel-propelled compression ignition engine, 109f
 - of engine type CF6-80, 112f
- proportion depending on load, 95f
- from transport, possibilities for reducing, 127t

Emitter
- construction of, 55f
- contaminated window, 73f
- microhalogen, spectral transmission of, 56f
- structure of, 55–56

Engines
- airplane engine emissions, 111–114
- analyzing emissions from, 113–114
- catalyst applications with different engine technologies, 87t
- diesel, in ships, measurement of emissions from, 115–122
- elements with high influence on exhaust gas, 79f
- elements with high influence on raw exhaust gas concentration, 79f
- fast device for measurements near engine, 69–70
- gas-sampling points near, 81f
test setup with external sensors in engine compartment, 84f
see also Compression ignition engine, Spark ignition engine

Environmental protection, 123–129, 132–133
 cost trends, 125
 economic benefits, 128
 fuel consumption tendencies, 124–125
 number of motor vehicles, 123–124
 use of renewable fuel, 126–127

European Union
 CO₂ emissions by usage sectors, 123f
 classification of vehicles in, 16
 comparison of EU 5 and EU 6, 26–27f
 comparison of limiting values with U.S. values, 28, 30–33
 EU 6 OBD/OBM limiting values for heavy commercial vehicles, 23t
 implementation dates for OBD requirements, 17t
 limiting values of OBD for spark ignition engines, 19t
 motor vehicles with compression ignition motor, 20–23

Exhaust gas after treatment (EGAT), control of, 94–96

Exhaust gas cooler, 49–50, 51f
 contaminated, 73f

Exhaust gas recycling (EGR), 94–96

Exhaust gas test, structure of, 14f

Exhaust gases
 approved instruments for intelligent monitoring in motor vehicles, 4f
 comparison of EU 5 and EU 6, 26–27t
 engine elements with high influence on, 79f
 infrared spectra of, 54f
 intelligent control of, 3f
 measurement at catalyst, 87–100
 of spark ignition engine upstream of catalyst, 80f

Exterior sensors, 72

Field experiments
 control of secondary air injection, 82
 conversion of results to test bench conditions, 137–139
 cylinder-specific emissions, 80–82
 measurement of unburned concentration between engine and catalyst, 79
 monitoring of deteriorations in, 83–85
 results of, 86

Filters
 ceramic, soot loading of, 75f
 crude, 74f
 fine, 74f

Flame ionization detector for collection of unburned hydrocarbons, 41

FTP 75 driving cycle, 88f, 89f

Fuel consumption

Fuels
 alternative, 107–108
 consumption rates, 124–125, 126f
 future, OBD/OBM for, 105–109
 natural gas, 105–107
new, in motor vehicles, 108
renewable, 126–127
retail costs of, 127f

Gas analyzers, 38
Globalization through mobility, 131

Hydrocarbons
 analyzer for low concentrations, 71–72
 measuring cell, 45f
 for reduction of NO, 93–94
 unburned, flame ionization detector for, 41
Hydrogen fuel, 107

Infrared gas absorption
 detector structure, 56
 emitter structure, 55–56
 measurement device with optical cell, 54f
 optical cell length, 57–58
 optical cell structure, 56
 principle of, 53
 pyroelectric technology with, 54–58
 spectra of exhaust gases, 54f
Infrared spectrophotometers, 41, 42f
International comparisons
 guidelines, 25–26
 of limiting values in Europe and the U.S., 27–33
 of technologies and dates of use for vehicles with spark ignition engines, 25f
 trends of applications in heavy commercial vehicles, 31–32
 type approval limiting values at light commercial vehicles, 30
Iteration, approximation with, 138–139

Laser remote measuring systems, 38–39
Light-off point, 88

Measurement techniques
 ammonia measurement at test bench, 41–42
 chemo luminescence for NOx measurement, 41
 classification according to use, 35f
 example of high-precision device for R&D, 37f
 fast device for measurements near engine, 69–70
 flame ionization detector for collection of unburned hydrocarbons, 41
 gas analyzers, 38
high-precision devices, 36–37
infrared spectrophotometers for determining CO and CO₂, 41
laser remote systems, 38–39
main applications of devices, 36t
mobile applications of large analyzers, 41
on-road field devices, 42–43
research and development, 36–39
sensor technology, 44–45
test bench devices, 40–42
Microhalogen emitter, spectral transmission of, 56f
Misfires, detection of, 92–93
Motor vehicles
 approved instruments for intelligent monitoring of exhaust gas in, 4f
 architecture of, 1f
 classification in EU related to permissible total mass, 16t
 classification of OBD and OBM technology in, 5f
 classification of vehicles in the EU, 16
 with compression ignition motor in the EU, 20–23
 emission limit values, 17–23
 exhaust gas tests, 13–16
 FTP 75 driving cycle, 88f, 89f
 heavy commercial, 21–23, 31–32
 trend of NOₓ limiting values in, 31f
 trends in emission of particles in, 31f
 heavy-duty, test bench for, 40f
 with intelligent technology, 132
 light- and medium-weight, 20–21
 light commercial, 30
 light-duty, OBM installation in, 84f
 low-cost, 132
 measurement, storage, and evaluation of internal and external data, 72f
 monitoring by manufacturer and owner, 13f
 natural-gas-powered, cold-start phase, 106f
 number of, 123–124
 OBD/OBM application in, 1–2, 3, 7–12
 OBM system installation in, 10f
 retrofitting, 32–33
 road monitoring, 13–24
 spark ignition engine limiting values, 18
 structure of emission limit monitoring, 23–24
 trucks, comparison of emissions, 117–118
 type approval limit values, 17–18

Natural gas
 cold start of engine, 106f, 107
 determination of hydrocarbon concentration in exhaust, 105–106
 fluctuation of quality, 105
New European driving cycle (NEDC), 18f
Nitrogen oxides
 reduction by denitrification, 95–96, 97f
 reduction by addition of hydrocarbons, 93–94
reduction through feeding of urea, 93
measurement with chemo luminescence, 41

OBD (onboard diagnostics)
comparison of OBD II and EOBD, 9t
development of legislation, 8t
implementation dates for requirements in EU, 17t
limiting values for EU spark ignition engines, 19t
OBD III, 30–31
ratio of OBD to TA, 28f

OBD/OBM
application in airplanes, 3–6
application in motor vehicles, 1–2, 3, 7–12
application in ships, 3–6
combination of, 10–11
environmental protection with, 129
in field experiments, 79–86
for future fuels, 105–109
historical development of 6, 7–8, 11–12
limiting values for EU compression ignition motor, 22t
limiting values for heavy commercial motor vehicles with EU 6, 23t
system applications, 79f
technology classification in motor vehicles, 5f

OBM (onboard measurement), 10
applications, 69–77
in shipping, 121–122
combined systems, 72
contamination in the field, 73–76
development of legislation, 8t
exhaust gas cooler, 49–50, 51f
exploded view of applied system, 85f
exterior measuring sensors, 72
fast device for measurements near engine, 69–70
gas block diagram, 47f
gas preparation system, 47, 50–51
hydrocarbon analyzer for low concentrations, 71–72
installation in light-duty vehicle, 84f
installation in motor vehicle, 10f
internal system setup, 71f
miniaturization of devices, 135–136
miniaturized system, 77f
multireflection optical cells, 75–76
readjustment valve for zero point switching, 48–49, 50f
regenerative filters, 48
sampling technology, 48
system construction, 47–51
two-way optical cells, 76, 77f
use in driving schools, 101–102
using on roller test bench, 96–97, 98f, 99f

Observation, phases of, 137
Oil
discrepancy between production and new discoveries, 125f
price change from 1990 to 2006, 125f
transportation’s share of world consumption, 124f
On-road field measurement devices, 42–43, 44f
optical cells
elements of, 58f
infrared measurement device with, 54f
length of, 57–58
multireflection, 75–76
structure of, 56
two-way, 76, 77f
Optical system, 53–59
detector structure, 56
emitter structure, 55–56
optical cell length, 57–58
optical cell structure, 56
principle of infrared gas absorption, 53
pyroelectric technology with infrared gas absorption, 54–58
structure of, 58–59
Oxidation catalyst, 87–93
important parameters in cold-start phase, 91f

Pump and cooler module, 136f

Railway, comparison of emissions, 117–118
Readjustment valve for zero point switching, 48–49, 50f
Reduction catalyst, 93–94
Regenerative filters
installation of, 49f
structure of the regulated, heated system, 49f
system setup, 48f

Sampling technology, 48
Secondary air injection
with hydrocarbon sensor, 83f
control of, 82
Sensor technology, 44–45

Ships
comparison with other transportation types, 117–118
emissions from, 119f
evaluation of measurement results, 119–120
experimental setup for emissions measurements, 118–119
future use of OBM in emissions measurements, 120–121
legal guidelines for emissions measurements, 115–117
measurement of emissions from, 115–122
measurement results from ship idling in harbor, 120f
OBD/OBM application in, 3–6
objective of emissions measurement experimental work, 118
system setup at port, 118f
Signal correction, 63–65
Signal smoothing, 65
Social behavior, analysis of, 133–134
Software, see Electronic and software system
Spark ignition engines
cylinder hydrocarbon concentrations, 81f, 82f
exhaust gas upstream of catalyst, 80f
limiting values of EU OBD for, 19t
unburned hydrocarbon peaks in propulsion phase, 92f
Storage catalyst, 94, 95f
SunFuel, 107
Synfuel, 107

Test bench
cylinder hydrocarbon concentrations of spark ignition engine, 81f
field results conversion to, 137–139
measurement devices for, 40–42
mobile, with conventional analyzers, 43f
roller, using OBM on, 96–97, 98f, 99f
Test methods, systemization of, 15t
Type approval (TA)
classification in EU and U.S., 14f
limiting values for motor vehicles, 17–18
limiting values for light commercial vehicles, 30
ratio of OBD to TA, 28f

Urea, for reduction of NO, 93

Wavelet transformation, effects on signal quality, 66f

Zero point switching, 48–49
gas preparation with, 50f
Michael Palocz-Andresen studied engineering sciences at Montan University Freiberg in Saxony, Germany, between 1966 and 1971, earning a certificate diploma (equivalent to a postgraduate degree). From 1971 to 1978, he was an assistant professor at the same university in the field of combustion processes in large power stations. He taught habilitation at the university in 1993.

From 1978 to 1986, Palocz-Andresen was a researcher at the University of Karlsruhe in Germany, in the fields of adsorption and desorption of odorants and natural gases in soils. He worked on the development of new odorants for the international gas industry with a low adsorption rate and high safety level.

He was the head of the Research and Development Department at the Maihak AG in Hamburg for measuring and application systems from 1986 to 1992. He contributed to the development and installation of more than 100 control stations for the measurement of the dissolved organic carbon concentration in the waste water of chemical companies after the catastrophe by Sandoz in the Rhine in 1988.

Between 1993 and 2004, Palocz-Andresen was director of OBM GmbH, a scientific institute for environmental research, in Hamburg, specializing in micromasurement technology in gas pressure regulation stations, mobile gas analysis of pollution, and the decrease of fuel consumption and exhaust gas emissions in different modes of transportation.

Since 1997, he has been a professor of Environmental Measurement Technology at the Technical University in Budapest, and since 2005, a professor at the University of West Hungary for Environmental and Climate Protection. Between 2005 and 2007, he was director of the West Hungarian Environmental Centre. Since November 2011, he has held the position of a guest professorship for Sustainable Transportation at Leuphana University in Lüneburg.

His research fields include technologies such as onboard diagnostics (OBD) and onboard measurement (OBM) techniques and applications that use these solutions as well as combined OBD/OBM.