References

References

Chapter 2

Chapter 3

Bibliography

Chapter 4

Chapter 5

Index

Acceleration estimators
 filter-observer based, 116–118
 Kalman, 114–116
Algebraic analysis of planetary gear trains, 26–29
AMESim models
 hydraulic clutch control system, 91
 hydraulic ratio control system, 172
Applying mode, 122
Artificial intelligence–based shift scheduling
 system, 142–150
 fuzzy controls, 145–148
 fuzzy logic operations, 144
 fuzzy logic rules for up-shift and down-shift
 points, 148–150
 fuzzy set, membership function, and truth
 value, 143–144
Automatic transmissions
 basics of, 1–7
 continuously variable transmissions (CVTs), 6
 six- and eight-speed planetary, 65–69
 step gear, 6
 types of, 6–7
see also Dual-clutch transmissions, Metal
 pushing V-belt continuously variable
 transmissions, Planetary gear automatic
 transmissions
Backward-searching strategy, 138–141
Brake specific fuel consumption (BSFC), 2–3
Canceled shifts, 118–119
Centrifugal pendulum vibration absorber
 (CPVA), 156–166
 basic concept of, 157–158
 equations of motion of, 159–161
 path of pendulum motion, 162–166
 Simulink model of, 162
 tuning of, 162
Clutch
 apply force of, 39
 dual-clutch models, 57–62
 synchronization of, 41
 torque capacity of, 25, 38–39
Clutch capacity, 46
Clutch control
 electronic torque converter, 121–126
 off-going methods, 111
see also Hydraulic clutch control systems
Clutch fill detection, 114
Clutch fill phase, control of, 111
Clutch-to-clutch gear-shift control
 acceleration estimator, 114–118
 canceled shifts, 118–119
 clutch fill detection, 114
 control of power-on down-shifts, 112
 control of power-on up-shifts, 110–112
 double-transition shifts, 120–121
 dynamic simulation model for studying, 110
 gear-shifting mechanics, 105–110
 hydraulic control system for, 110
 system design, 112–114
 transitional shifts, 119–120
Clutch torque, 105
Clutch torque capacity, 105
Constant-output-torque power-on up-shift
 control, 109–110, 154–156
Continuously variable transmissions (CVTs), 6
see also Metal pushing V-belt continuously
 variable transmissions
Coupling state, 12
Double-transition shifts, 37, 120–121
Down-shift
 fuzzy logic rules for shift points, 148–150
 power-on down-shift, 42, 109–110
 control of, 112
Driveline compliance 56
Dry dual-clutch modules, 190–192
Dual-clutch transmissions (DCTs), 6
 construction of, 186
 dynamics and controls of, 185–193
 generic models for, 57–60
 matrix models for, 60–62
Duty cycle, 82
Dynamic modeling, 14
Dynamic programming optimization, 137–138, 141–142
ECCC mode, 122–123
Efficiency, 12
Eight-speed planetary automatic transmissions, 65–69
Electrohydraulic pressure control system, 72–105
 hydraulic clutch control system analytical study, 84–98
 PPC solenoid model, 80
 pressure control system and simulation models, 73–79
 pressure control valves, high-flow, direct-acting, 81
 pulse width modulated (PWM) solenoid, 82–84
Electronic torque converter clutch control, 121–126
 electronic control algorithm for, 122–123
 hydraulic system for, 121
End phase, 112
Engine
 dynamic model of, 14–18
 engine power, 2
 operation of, 5–6
Engine loader control concept, 130–132
Engine torque command generator, 151
Engine torque control system, 151–152
Feed-forward/feedback control
 application to V-CVT ratio control, 177–184
 as direct pulley pressure control, 181–183
 control algorithms for, 192
 control systems, 179–180
 dual-clutch modules, 189–192
 feed-forward control design, 180–181
 feedback controls, limitations of, 177–179
 synchronizer and its control, 187–189
Filter-observer (FO) acceleration estimator, 116–117
Fluid flow equation, 72
Friction launch control, 129–135
Frictional clutches, 24–25
 hyperbolic tangent function model, 45–46
 mathematical models of, 45–47
 proportional and integral (PI) control techniques, 46
Fuzzy controls, 145–148
Fuzzy logic operations, 144
Fuzzy logic rules for shift points, 148–150
Fuzzy set, 143–144
Gear ratio, 2, 5, 24, 186
Gear selection, power-based 152–154
Gear-shift control, clutch-to-clutch, 105–121
Gear-shifting mechanisms, 37–42
 from control perspective, 105–110
 power-on down-shift, 42
 power-on up-shift, 38–41
Hydraulic clutch control systems
 analytical study of, 84–98
 block diagrams and transfer functions for, 87–90
 for clutch-to-clutch shift controls, 110
 dynamic equations for, 85–87
 dynamic simulation models of, 91
 system design, 91–98, 112–114
 for torque converter clutch control, 121
Hydraulic pistons, 76–77, 86–87
Hydraulic pressure control system and simulation models, 73–79
Hydraulic ratio control system, 171–173
Hyperbolic tangent function clutch model, 45–46
Inertia balancing, 62–65
Inertial phase, 40, 42, 107–108, 111–112
Input K-factor, 12–13
Input torque ratio, 28
Internal combustion engine, 2
 k, calculation of, 132–133
 Kalman acceleration estimator, 114–116
 kpki model, 46
Lagrange equation
 for planetary gear trains, 49–52, 54–56
 for simple planetary gear set, 47–49
Index

Lever analogy method for planetary gear trains, 29–32

Lever diagram, 22

Low-high-pressure ratio control system, 176

Master-slave ratio control system, 176–177

Matrix method for analysis of planetary gear trains, 33–37

Membership function, 143–144

Metal pushing V-belt continuously variable transmissions, 167–184

comparison with other ratio control systems, 173–177

controls of, 170–173

feed-forward/feedback control, 177–184

mechanics of, 168–169

Off-going clutch control methods, 111

Orifice flow equation, 72

Output torque ratio, 28

Pedal input interpreter, 150–151

Pipe flow equation, 73

Planet carrier, 21–22

Planet gears, 21

Planetary gear automatic transmissions, 6

centrifugal pendulum vibration absorber (CPVA), 156–166

clutch-to-clutch gear-shift control, 105–121

control of, 71–166

eight-speed, 65–69

electrohydraulic pressure control system, 72–105

electronic torque converter clutch control, 121–126

friction launch control, 129–135

integrated powertrain controls, 150–166

mechanics of, 10–69

shift scheduling system, 135–150

six-speed, 65–69

Planetary gear sets, 21–23

Lagrange equation for, 47–49

reduced-order equation for, 49

simple, dynamic equations for, 47–49

Planetary gear trains, 21–37

dual-clutch models, generic, 57–62

dynamic equations for, 49–53

frictional clutches in, 45–46

inertial balancing of, 52–65

Lagrange equation for, 49–52

obtained directly, 54–56

mechanics of gear shifting, 37–42

reduced-order equation for, 53

static analysis of

algebraic method, 26–29

lever analogy method, 29–32

matrix method, 33–37

Power-based gear selection, 152–154

Power-on down-shift, 42, 109–110

control of, 112

Power-on up-shift, 38–41, 106–109

constant-output-torque control, 154–156

control of, 110–112

Powertrain, 2, 5

integrated control system for

architecture of, 150–152

constant-output-torque power-on up-shift control, 154–156

power-based gear selection, 152–154

Pressure control valves, high-flow, direct-acting, 81

Pressure regulation spool valve, 74–76, 85–86, 87–89

design of, 91–94

Proportional pressure control (PPC) solenoid, 73–74, 76, 80

Propulsion power curve, 4–5

Pulse width modulated (PWM) solenoid, 82–84

Pump speed, 2, 13, 18

Pump torque, 12, 13, 18

Ratio control systems, comparison of, 173–177

Ratio thrust force, 170–171

Reduced-order equation

for planetary gear trains, 53

for simple planetary gear set, 49

Regulated clutch fill control, 95

Released mode, 122

Releasing mode, 122

Ring gear, 21–22

Shift maps, 135–137

dynamic-programming-based generation of, 137–142

power-based, 152

Shift scheduling system, 135–150

artificial intelligence-based, 142–150

shift map, 135–137

dynamic-programming-based generation of, 137–142

Simulink models

centrifugal pendulum vibration absorber (CPVA), 161

dual-clutch system, 59
Simulink models (cont.)
 engine and torque converter system, 15
 engine loader friction launch control algorithm, 131
 four-speed transmission, 51, 53
 frictional clutch, 46
 hydraulic clutch control system, 77
 pressure control system, 91
 pump speed and pump torque, 18
 torque converter clutch control algorithm, 123
Single-transition shift, 37
Six-speed planetary automatic transmissions, 65–69
Solenoids
 proportional pressure control (PPC), 73–74, 76, 80
 pulse width modulated (PWM), 82–84
Speed-change control method, 111–112
Speed constraint equations
 for planetary gear sets, 22, 33
 for planetary gear train, 23–24, 27
Speed ratio, 2, 12, 26–27, 29, 30–31, 33–35
Step gear transmissions, 6
Stick diagram, 22
Sun gear, 21–22
Supply-side orifice, 95–96
T_{low}, calculation of, 133–134
T_{high}, calculation of, 134
Torque capacity of clutch, 25, 38–39
Torque-capacity thrust force, 170
Torque converter
 backward calculation of variables, 18–21
 description of, 11–14
 dynamic model of, 14–18
Torque converter clutch (TCC), 10, 13–14
Torque converter clutch (TCC) control
electronic, 121–126
hydraulic, 121
Torque converter clutch damper, dynamic analysis of, 126–128
Torque coupling state, 12
Torque multiplication state, 12
Torque phase, 39–40, 106–107
 control of, 111
Torque ratio, 2, 12, 13, 28, 29, 32, 35–37
Transitional shifts, 119–120
Transmissions
 necessity for, 2–6
 connecting model to vehicle and engine, 56–57
 see also Automatic transmissions, Dual-clutch transmissions, Metal pushing V-belt continuously variable transmissions, Planetary gear automatic transmissions
Trim valve, 94
Truth value, 143–144
Turbine speed, 12, 13, 18
Turbine torque, 12, 13, 18
Up-shift
 fuzzy logic rules for shift points, 148–150
 power-on up-shift, 38–41, 106–109
 constant-output-torque control, 154–156
 control of, 110–112
Vehicle drag load, 56
Wave plates, 96–98
Wet dual-clutch modules, 189
Wheel power, 4
About the Authors

Dr. Shushan Bai earned his BS degree in mechanical engineering from Huazhong University of Science and Technologies, China, and his MS and PhD degrees in electrical engineering from Hokkaido University, Japan, both in the field of automatic controls. In his 23 years with GM Powertrain, he worked on advanced development of automatic transmissions. He is an adjunct faculty member in the mechanical engineering department at the University of Michigan. He has authored numerous technical publications and holds many patents.

Joel M. Maguire received his graduate degree (MSOT) from Rensselaer Polytechnic Institute and his undergraduate degree from Michigan Technological University. He began his automotive career with General Motors in 1985 and currently is global innovation leader in GM Powertrain's advanced hybrid group. His work has involved design, development, and analysis of automatic and manual transmissions, as well as experimental transmission projects in North America and Europe. He holds dozens of drivetrain-related patents.

Dr. Huei Peng received his PhD from the University of California, Berkeley. He is a professor in the mechanical engineering department at the University of Michigan. His research interests include adaptive control and optimal control, with emphasis on their applications to vehicular and transportation systems. His current research focuses include design and control of hybrid vehicles and vehicle active safety systems. He has authored numerous technical papers and three books. Dr. Peng received the National Science Foundation (NSF) Career award in 1998, and is an ASME Fellow and Chang Jiang Scholar at Tsinghua University.