Index

α-λ performance, 57–58, 83t

Accuracy metrics, 78, 80–81t

Acoustic emission detection, 8, 186–189, 227

Acronyms, 263–267

Actuator, electro-mechanical, case study, 59–68

Adaptive Huffman compression, 135

Aerospace applications of SHM, 178–192

Airbus, 141

Aircraft maintenance, rationale for SHM in, 180–181

Algorithm performance metrics, 76–84

Algorithm selection, 169–170

Aliasing, 12–13

Analog-to-digital conversion, 7, 10–16

Anomaly detection

data-driven, 27–46

introduction to, 28

machine learning, 29–45

methods, 145–146

system modeling and residuals, 28–29

Architecture, 89–111

Avionics, 91–94, 97–98

data management systems, 117–119

design guidelines for onboard CBM, 94–96

functional, 96

hardware for onboard CBM, 98–102

introduction to, 90–91

on-ground network elements, 109–111

software for onboard CBM, 102–109

summary and conclusions, 111

Artificial neural networks (ANNs), 24, 56

feed-forward, 40–41

Automated structural health monitoring (A-SHM), 181, 250

Autonomous health monitoring, 253–254

Averaging, 22

Aviation industry, examples of wireless systems in, 246

Avionics systems, 91–94

architectures that include IVHM, 97–98

Balance of plant, 193

Bandwidth requirements, 131

Bearings, 195

hybrid and full ceramic, 199–200

journal, 195

pad, 195

rolling element, 195

Boeing, 140–141

Boeing On-Line Diagnostic Reporting (BOLDR), 102

Built-in-test (BIT), 91

Calibration, 17–18

Case-based reasoning, 145

Case studies

electro-mechanical actuator, 59–68

machine fault simulator unbalance localization, 21–25

Ceramic bearings, 199–200

Certification, 245–246

Chafing protection system (CHAPS), 100–101

Chemical sensors, 8

Class imbalance, 30

Classification, 24, 169, 170

Cloud-hosted applications, 254–255

Clustering, 30–32, 169–170

Commercial condition-monitoring systems for wind turbines, 220–222

Component phenomenology, 62–63

Compressors, 194–195

Computational performance metrics, 75

Condition indicator extraction and selection, 63–64

Condition monitoring, 205–206

of rotor system, 251

of wind turbines, 217–220

commercial systems for, 220–222

Confusion matrix, 41–42, 78t

Constant rate reliability metrics, 74–75

Convergence rate, 83t

Correct rejection, 42

Cost benefit metrics, 76

Coulplings, 195

Critical-α index, 58

Critical-α performance measure, 84t

Cross-validation, 44–45, 46

Customer interactions, 160
Damage detection, 179–180
Data acquisition, 90
Data compression, 133–135
adaptive Huffman compression, 135
Gnu ZIP (GZIP) compression, 135
Huffman compression, 135
run-length compression, 135
Data-driven prognostics, 55–56, 165–166, 169–170
Data fusion
decision-level, 125–126
feature-level, 123–125
sensor-level, 120–123
Data Fusion Information Group (DFIG) model, 120
Data management, 115–135
system architectures, 117–119
Data mining, 141, 228–229
Data preprocessing, 167–169
Data processing, 63–64, 119–126
Data reduction and compression, 126–136
changing bandwidth requirements, 131
data volumes, 127–129
inflexible data collection, 131
multiple data customers, 131
storage standards and formats, 129–130
variable usefulness of data, 131
Data sources, 85–86
Data storage, 7
standards and formats, 129–130
Data transmission, 167–169
DataEvent hierarchy, 103
Decision-level fusion, 125–126
Decision trees, 37–38
Deployment, 46
Deposited sensors, 240–241
Design of experiments (DOE), 171–172
Detection accuracy, 78
Detection sensitivity, 81
Detection stability, 81
Detection stability factor, 82
Detection thresholds, 81
Diagnostics
compartment, vs. vehicle-level reasoning systems (VLRs), 146–147
performance metrics, 78–82
platform-level fusion, 251
Digital control system, 198–199
Digital sensors, 236, 250–251
Digital signal processing, 7
Dimensionality reduction, 30–32
Driven equipment, 193
Driver training, 206
Drivetrain, 209–210, 219
monitoring, 250–251
Dynamic analysis, 197
Dynamic standard deviation (DStd), 84
Early stopping, 41
Electrical and electronic systems, 219–220
Electrical energy, 8
Electrical power and wiring, 250
Electrical power distribution systems, solid-state, 99–100
Electrical rotating machinery, 193–194
Electrical sensors, 9
Electro-mechanical actuator case study, 59–68
actuator model, 59–60
component phenomenology and system performance modeling, 62–63
data processing/condition indicator extraction and selection, 63–64
experimental evaluation, 67–68
failure modes, effects, and criticality analysis, 61–62
motor winding short model, 64
prognosis, 64–67
Embeddable programmable instrumentation controller (EPIC), 101–102
Embedded sensors, 239–240
Energy harvesting, 237
Engine monitoring, 247–249
Engineering estimate, 150–161
Error-based metrics, 80
European Aeronautic Defence and Space Company (EADS), 141, 148
Expert knowledge, 164–165
Failure analysis (FA), 173
Failure modes, effects, and criticality analysis (FMECA), 61–62
Failure modes, mechanisms, and effects analysis (FMMEA), 163–164
Failure precursor parameter, 223–224
Failure Recording, Analysis, and Corrective Action System (FRACAS), 196
Failure threshold, definition of, 226
False alarm, 42
False negative rate, 79
False positive confidence metric, 79
False positive rate, 79
Fault detection rate, 79
Feature extraction, 19–21
frequency domain techniques, 20
time domain techniques, 19–20
time frequency, 20–21
wavelet transforms, 21
Feature-level fusion, 123–125
Feed-forward artificial neural networks, 40–41
Fiber-optic sensors, 189–190, 238, 240
Fidelity, 17
Filtering, 7
Frequency domain feature extraction techniques, 20
Fusion, 166
platform-level, 251
Fuzzy logic, 125
Gearboxes, 195
health monitoring example, 107–109
Generators, 210
Glands, 195
Gnu ZIP (GZIP) compression, 135
Ground support equipment (GSE), 109–111

Hardware
accelerated testing of, 172–173
design of experiments (DOE) for, 171–172
failure analysis for, 173
for onboard condition-based maintenance, 98–102
qualification of, 170–174
virtual qualification (VQ), 170–171
Health and usage monitoring systems (HUMS), 92, 250–251
data types for, 127–129
Health monitoring, real-time, 253–254
High-temperature sensors, 238
Huffman compression, 135
Hybrid bearings, 199–200
Hydraulic sensors, 8

Inference, 142, 147, 149
Integrated vehicle health management (IVHM)
application examples, 177–229
architecture, 89–111
assessment metrics, 71–86
background of, 2
choosing instrumentation, 16–18
data-driven anomaly detection and diagnosis, 27–46
data management for, 115–135
direct-action, 90–91
emerging technologies, 235–255
functional architecture for, 96
hardware qualification, 170–174
introduction to, 1–3
motorsport applications, 178, 201–208
preparation, model building, and deployment, 45–46
prognostics, 49–68
for rotating machinery
current technology for, 195–199
emerging technologies for, 199–200
sensors, instrumentation, and signal processing, 5–24
summary and concluding remarks, 259–261
system design, 157–175
algorithm selection, 169–170
customer interactions, 160
design considerations, 162–170
identification of critical components and parameters, 163–165
integration, 174
introduction to, 158
prognostics framework development, 161–162
regulatory requirements, 159–160
requirements and specification generation, 158–161
selection of prognostic approach, 165–166
selection of data transmission and preprocessing, 167–169
sensor selection, 166–167
testing, 170–174
taxonomy of, 2–3
vehicle-level reasoning systems (VLRSs), 139–154
Integrated wireless data transfer and power generation, 237
Isolation classification rate, 80t
Isolation misclassification rate, 80t
Isolation performance matrix, 79t
Isolation set size, 80t
Kernel regression, 39–40
K-means clustering, 32–34
Kohonen self-organizing maps, 34–36

Leakage, 14–16
Leave-one-out (LOO) cross validation, 45
Lifing, 206
Line replaceable unit (LRU), 91–92
Low-pass filter, 22

Machine fault simulator unbalance localization
case study, 21–25
Machine learning
cross-validation, 44–45
introduction to, 29–30
performance evaluation metrics, 41–44
supervised methods, 30, 36–41
Machine learning (cont.)
 decision trees, 37–38
 feed-forward artificial neural networks, 40–41
 kernel regression, 39–40
 random forests, 38–39
 unsupervised methods, 30–36
 k-means clustering, 32–34
 Kohonen self-organizing maps, 34–36
Maintenance logs, 165
Maintenance, repair, and overhaul (MRO) supply chain, 110–111
Mean absolute deviation (MAD) from sample median, 81
Mean life metrics, 74–75
Measurement systems and components, overview of, 6–7
Mechanical energy, 7
Mechanical sensors, 8
Metrics, 71–86
 accuracy and precision, 78, 80–81f
 algorithm performance, 76–84
 computational performance, 75
 constant rate reliability, 74–75
 cost benefit, 76
 diagnostic performance, 78–82
 introduction to, 73
 mean life, 74–75
 probability of success, 75
 prognostic performance, 78, 82–84
 rate, 78–80f
 reliability analysis, 74–75
 response time, 78, 82f
 robustness of detection, 78, 81–82f
 stakeholders and user objectives, 72–73
Microelectromechanical systems (MEMS), 236, 250–251
Military applications of SHM, 182–183
Minimum sampling rate, 11–12
Miss, 42
Mobile systems, 245
Model building, 46
Model-based diagnostics, 53–55
Model-based reasoning, 144–145
Moore’s law, 116
Mote devices, 245, 246
Motor winding fault, 62–64
Motorsport, 178, 201–208
 condition monitoring, 205–206
 design, 206
 driver training, 206
 introduction to, 201–205
 lifting, 206
 setup, 206
strategy, 206–207
summary and conclusions, 207–208
Multifunctional materials, 239
Nacelle, 210–211
National Aeronautics and Space Administration (NASA), 141, 245
Net present value (NPV), 77f
Noisy-OR, 149–152
Noncontact sensing, 238
Nondestructive examination (NDE), automating, 200–201
Normalization, 23–24
Nyquist-Shannon theorem, 11–12
Oil analysis, 196
Onboard condition-based maintenance (OCBM)
 Boeing On-Line Diagnostic Reporting (BOLDR), 102
 cost factors for, 95
 design guidelines for, 94–96
 embeddable programmable instrumentation controller, 101–102
 gearbox health monitoring example, 107–109
 hardware technologies for, 98–102
 multipurpose wire fault detection and location applications, 100–101
 practical application development process, 108–109
 software for, 102–109
 solid-state power distribution, 99–100
 wireless communications, 98–99
Open system architecture for condition-based maintenance (OSA-CBM), 103–109
Operational monitoring, 179
Optical sensors, 8
Overfitting, 41
Particle filtering methods, 53–55
Payback period, 77f
Physics of failure, 165, 169
Pitch and yaw systems, 220
Pitch-catch transducer sensor arrays, 184–186, 188–189
Platform-level diagnostic fusion, 251
Power of test, 79f
Preamplifier, 6–7
Precision-based metrics, 78, 80–81f
Prime movers, 193
Probabilistic approximation-based VLRS, 144–145
Probability of success metrics, 75
Index

Prognostic dynamic standard deviation, 58
Prognostic horizon, 57, 83
Prognostics, 49–68
cOMPONENT, vs. vehicle-level reasoning systems, 146–147
conclusions and recommendations, 68
damage propagation model, 51
damage threshold, 51
electro-mechanical actuator case study, 59–68
false alarm rate, 83
health-based, 50
introduction to, 50–51
performance measurement, 57–58
critical-α index, 58
prognostic dynamic standard deviation, 58
prognostic horizon, 57, 83
α-λ performance, 57–58
performance metrics, 78, 82–84
prognostic algorithm, 51
state-based, 198
statistical, 56–57
system model, 51
techniques, 53–57
data-driven, 55–56
model-based, 53–55
statistical, 56–57
uncertainty characterization, 51–53
usage-based, 50–51
vehicle integrated prognostic reasoner, 148–152
for wind turbines, 208–229
Prognostics and health management (PHM), 158–159
development of framework, 161–162
implementation strategies for wind turbines, 222–229
selection of approach, 165–166
testing and validation of software, 173–174

Quantization, 13–14

Radio frequency identification (RFID), 237
Random forests, 38–39
Rate metrics, 78–80
Real-time health monitoring, 253–254
Receiver operating characteristic (ROC), 42–43, 79
Reciprocating, centrifugal, axial engines, 194–195
Regression, 36, 170
kernel, 39–40
Regularization, 41
Regulatory requirements, 159–160
Relative accuracy, 83
Reliability analysis metrics, 74–75

Remaining useful life online precision index (RUL-OPI), 84
Residuals, 28–29, 36
Response time metrics, 78, 82
Return on investment (ROI), 76
Risk priority number (RPN), 163–164
Robotics, application of, 200–201
Robustness of detection metrics, 78, 81–82
Rotating machinery, 178, 193–201
automating nondestructive examination, 200–201
current technology for IVHM, 195–199
electrical 193–194
emerging technologies for, 199–200
scope and diversity of application, 193–195
tribology applied to, 198
Rotor system CBM, 251
Rotors and blades, 218–219
Run-length compression, 135

SAE International IVHM Steering Group, 1
Safety-critical systems, 252–253
Sample standard deviation, 80
Sampling importance resampling (SIR), 54
Sampling, 10–13, 22
Scheduled-SHM (S-SHM), 180
Seals, 195
Self-aware and self-calibrating sensors, 241
Self-reacting and self-repairing sensors, 241–242
Sensitivity, 84
Sensor-level fusion, 120–123
Sensors, 6, 7–9, 22
acoustic, 8, 186–189
chemical, 8
cost of, 167
for damage detection, 184
deposited, 240–241
digital, 236, 250–251
electrical, 9
embedded, 239–240
emerging technologies, 236–242
fiber-optic, 189–190, 238, 240
high-temperature, 238
hydraulic, 8
mechanical, 8
microelectromechanical systems, 236, 250–251
multifunctional materials, 239
noncontact, 238
for operational and environmental monitoring, 183
optical, 8
pitch-catch transducer sensor arrays, 184–186
Index

Sensors (cont.)
reliability of, 167
requirements of, 166–167
self-aware and self-calibrating, 241
self-reacting and self-repairing, 241–242
system requirements, 8–9
thermal, 8
for wireless systems, 237, 243
Service-oriented architecture (SOA), 103–104
Shafts, 195
Short-time Fourier transform (STFT), 20–21, 22
Signal conditioning, 22
Signal processing, digital, 7
Signal-to-noise ratio, 18
Slip angle, 204
Software
configurable, 104–107
blackboard, 106–107
entry points, 104–106
functions, 106
message queues, 106
for onboard condition-based maintenance, 102–109
testing and validation of, 173–174
Solid-state power distribution, 99–100
Stakeholders and user objectives, 72–73
State-based prognostics, 198
Static analysis, 197–198
Statistical prognostics, 56–57
Structural health monitoring (SHM), 249–250
aerospace applications of, 178–192
emerging technologies, 183–192
example applications and benefits, 181–182
for improved structural design, 190–192
military applications of, 182–183
rationale for aircraft maintenance, 180–181
sensors for damage detection, 184
sensors for operational and environmental monitoring, 183
uses of, 178–180
Subsystem technologies, 246–251
electrical power and wiring, 250
gas turbine, 250–251
HUMS/drivetrain monitoring, 250–251
introduction to, 246–247
platform-level diagnostic fusion, 251
rotor system CBM, 251
structural health monitoring, 249–250
Supervised learning methods, 30, 36–41, 149
System-level technologies, 251–255
autonomous/real-time health monitoring, 253–254
cloud-hosted applications, 254–255
safety-critical applications, 252–253
unmanned vehicles, 251–252
System modeling and residuals, 28–29
performance modeling, 62–63
Technical value, 77t
Testing, 170–174
accelerated, 172–173
software, 173–174
Thermal sensors, 8
Thermography, 196
Thévenin circuit transformation, 61, 62
Time domain feature extraction techniques, 19–20
Time frequency extraction techniques, 20–21
Time synchronous averaging, 22
Time to detect, 82t
Time to failure, 43–44
Time to isolate, 82t
Tire performance, 204
Total value, 77t
Transducers, 6, 7–9
system requirements, 8–9
Transfer function, 17
Transient analysis, 197
Tribology applied to rotating machinery, 198
True positive, 42
Unbalance localization case study, 21–25
Uncertainty characterization, 50, 51–53
Unmanned vehicles, 251–252
action, 252
cause isolation, 252
monitoring, 252
Unsupervised learning methods, 30–36
Validation set, 41
Valley of death, 93
Vehicle integrated prognostic reasoner (VIPR), 148–149
mathematical basis, 149–152
Vehicle-level reasoning systems (VLRSs), 139–154
anomaly detection methods, 145–146
approaches for, 142–147
architecture of, 147–148
background of, 140–142
case-based reasoning, 145
vs. component diagnostics and prognostics, 146–147
conclusions, 153–154
economic and safety consequences, 152–153
implementation example, 148–152
introduction to, 140
model-based reasoning, 144–145
probabilistic approximation-based, 144–145
standards for, 148
system model based, 144
vehicle integrated prognostic reasoner, 148–152
Verification and validation (V&V), 173–174
Vibration analysis, 196
Virtual qualification (VQ), 170–171
Wavelet transforms, 21
Wind turbines
commercial condition-monitoring systems, 220–222
components of, 208–214
control system, 211–213
drivetrain, 209–210
condition monitoring of, 219
failures, 214–217
generators, 210
introduction to, 208
nacelle, 210–211
pitch and yaw system monitoring, 220
power electronics and electrical systems, 213–214
condition monitoring of, 219–220
prognostics and health management for, 208–229
implementation strategies, 222–229
rotor and blade monitoring, 218–219
tower structure and foundation, 211
Windowing, 15–16
Wire fault detection and location applications, 100–101
Wireless communications, onboard, 98–99
Wireless data systems, 242–246
aviation industry examples, 246
certification of, 245–246
legacy systems, 242–243
mobile systems, 245
motes, 245, 246
networks and protocols for, 243–245
sensors for, 243
technology for, 243–246
wireless SDU, 246
Wireless networks and protocols, 243–245
Wireless SDU, 246
Wireless sensors, 237
integrated data transfer and power generation, 237
About the Authors

Michael Augustin
Mr. Augustin is president and principal investigator at IVHM Inc., an aerospace consulting business focused on advanced sensors and systems for aerospace applications. He retired from Bell Helicopter in 2011, where he obtained 25 years of experience with advanced systems and sensors, particularly in the HUMS/CBM and enhanced safety areas. Prior to joining Bell Helicopter Textron, he worked in radio frequency communications at Motorola for 17 years. Mr. Augustin has been the chief investigator on a number of research programs dealing with advanced technology. He is the author of numerous papers dealing with the development and implementation of advanced technologies.

Michael H. Azarian
Dr. Michael Azarian is a research scientist and member of the graduate faculty at the Center for Advanced Life Cycle Engineering (CALCE) at the University of Maryland. Prior to joining CALCE, he spent over 13 years in the data storage, advanced materials, and fiber optics industries. His research focuses on the analysis, detection, prediction, and prevention of failures in electronic and electromechanical products. He advises companies on reliability of electronic products, and is the author or co-author of numerous publications. Azarian holds a Masters and PhD in materials science and engineering from Carnegie Mellon University, and a BS in chemical engineering from Princeton University.

Raj Mohan Bharadwaj
Raj Bharadwaj is principal R&D scientist in the vehicle health management group at Honeywell Aerospace Advanced Technologies. His work is centered on Prognostics Health Management (PHM), algorithms, and system design. Prior to joining Honeywell, Bharadwaj was with the General Electric Global Research Center, where he worked on diagnostics for power system equipment and locomotives. He received a PhD in electrical engineering from Texas A&M University.

Chaochao Chen
Dr. Chaochao Chen is a member of the research staff at the Center for Advanced Life Cycle Engineering (CALCE). His research areas include fault diagnosis and failure prognosis, focusing on data-driven approaches such as machine learning and statistical methods; prediction uncertainty management; prognostics and health management (PHM) software implementation, verification, and validation; and fault-tolerant control and their applications to robotics, electronics, batteries, and mechanical systems. Prior to joining CALCE, Dr. Chen was a research fellow at the University of Michigan and Georgia Institute
of Technology, working in PHM areas in collaboration with industry and military. He has published numerous technical papers. Chen received his PhD in mechanical engineering from Kochi University of Technology, Japan.

Charlie Dibsdale
Charlie Dibsdale began his engineering career in the Royal Navy, joining the submarine service and moving into operating and maintaining nuclear propulsion and electrical power and distribution systems. The broad range of equipment and the independence on patrols combined to form a solid foundation of operations and maintenance practice. On finishing a full service career, Charlie joined Rolls-Royce Marine with accountability for improving reliability and maintenance; he undertook Reliability-Centered Maintenance (RCM) training and was part of a team that successfully reduced (Trident) submarine maintenance by 20% for no loss of safety or reliability. When OSyS (then known as DS&S) was formed, Charlie moved over. OSyS delivers the predictive maintenance services in all of Rolls-Royce’s market sectors in support of the company’s product-based services. He has been part of and has influenced the fundamental changes involved as EHM matured and was part of the team that conceptualized the early development of the operations room. Charlie’s current roles are as Rolls-Royce global capability owner for Equipment Health Management (EHM), program managing Rolls-Royce IVHM research, and as Chief Engineer for EHM in OSyS, heavily involved with its fitness for purpose and development.

Charlie is active in development of Predictive Maintenance standards and processes, is a member of API 691 defining risk-based maintenance for rotating machinery in the oil and gas sector, and is a member of the SAE International HM1 committee. He has combined his engineering knowledge with a formal education with a BSc (Hons) in Computer Science and an MSc in Information systems.

Neil H. W. Eklund
Dr. Neil Eklund has been a research scientist in the Machine Learning Laboratory of General Electric Global Research since 2002. He has worked on a wide variety of research projects related to remote monitoring, diagnostics, and prognostics for military and commercial aircraft engines, medical devices, wind turbines, manufacturing systems, ground-based gas turbines, and other platforms. Eklund has also been an adjunct professor of electrical engineering and computer science at Union Graduate College since 2005. He was one of the co-founders of the PHM Society and the first editor-in-chief of the International Journal of Prognostics and Health Management. He has authored numerous technical publications.

Peter Foote
Peter Foote is professor of sensors for through-life engineering, and head of the Composite Centre in the School of Applied Sciences at Cranfield University, in the UK. He recently joined the university after spending 25 years at BAE Systems developing new concepts for vehicle health management. During that time he spearheaded company efforts on embedded
optical fiber sensors for structural monitoring. He is continuing efforts for developing sensors concepts at Cranfield University, and also leads an SAE International Technical Committee developing guidelines for implementation of SHM for the aerospace industry.

Dr. Kai Goebel
Dr. Kai Goebel is a senior scientist working at NASA Ames Research Center where he leads the Prognostics Center of Excellence. He is the Technical Lead for Prognostics and Decision Making in NASA’s System-wide Safety and Assurance Technologies Project. Prior to joining NASA in 2006, he was a senior research scientist at General Electric Corporate Research and Development Center since 1997. He has carried out applied research in the areas of real-time monitoring, diagnostics, and prognostics. He has fielded numerous applications for aircraft engines, transportation systems, medical systems, and manufacturing systems. He holds 15 patents and has co-authored more than 200 papers in the field of IVHM. Dr. Goebel was an adjunct professor of the CS Department at Rensselaer Polytechnic Institute (RPI), Troy, NY, between 1998 and 2005 where he taught classes in Soft Computing and Applied Intelligent Reasoning Systems. Dr. Goebel is a member of ASME, AAAI, AIAA, IEEE, VDI, SAE, and ISO. He was the General Chair of the Annual Conference of the PHM Society, 2009 and held numerous chair positions at the PHM conference and the AAAI Annual Meetings series. He is currently a member of the board of directors of the PHM Society and associate editor of the International Journal of PHM.

Keith Jackson
Prof. Keith Jackson is the director of technology at Meggitt PLC and a visiting professor at Sheffield University in the UK. He first became involved with SAE International when his team in Cambridge started developing engine control systems for the U.S. heavy-duty diesel market and later for the global automotive market. As the company also provided data-logging equipment for the motorsports industry, it was a natural extension to introduce health-monitoring and data-gathering systems into the road vehicle control systems. Subsequently, he worked for Rolls-Royce PLC, advancing aerospace control and health-monitoring technologies. Jackson is a graduate from University College London.

Ian K. Jennions
Ian K. Jennions is a Professor and Director of the IVHM Centre, Cranfield University, UK. He joined the Centre, which is funded by a number of industrial partners, when it was founded in 2008 and has led its development and growth in research and education over the last three years. Previously, Ian had worked for a number of companies in the gas turbine industry over a 30-year career. He worked for Rolls-Royce, General Electric, and Alstom in a number of technical roles, gaining experience in aerodynamics, heat transfer, fluid systems, mechanical design, combustion and, more recently, IVHM. He has a Mechanical Engineering degree and a Ph.D. in CFD, both from Imperial College, London. He is a Director of the PHM Society.
contributing member of the SAE IVHM Steering Group and HM-1 IVHM committee, and a Fellow of IMechE, RAeS, and ASME. He was also the editor of SAE International’s Integrated Vehicle Health Management: Perspectives on an Emerging Field.

Kirby Keller
Dr. Keller is a Technical Fellow for the Boeing Company. He has over 35 years of experience in the health management, mission systems, and decision-aiding systems for air and space vehicles. His current work includes technical leadership, new business capture, and project management for Integrated Vehicle Health Management (IVHM) programs. He is the principal investigator and system designer for several projects that are focused on the development of architectural concepts to integrate IVHM processing onto new and legacy platforms. He holds a PhD in mathematics from Iowa State University and is the author of numerous technical papers, conference presentations, and technical reports.

Seth S. Kessler
Dr. Kessler is the president and founder of Metis Design Corp. He guest lectures for advanced graduate courses on composite mechanics in the aerospace department at MIT. He has worked at the Lockheed Martin Skunk Works as an advanced concepts engineer on the X33/VentureStar/JSF programs, and was a Draper Fellow working on the DARPA seedling WASP program. Kessler received an SB in aerospace engineering at MIT, studying the effects of a cryogenic environment on composite materials; and an SM in aerospace engineering, creating and validating a design tool to analyze composite structures subjected to extreme inertial loading. He completed his PhD researching structural health monitoring techniques that use piezoelectric devices to detect damage in composites. He has published more than three dozen technical publications.

Ranjith Kumar
Ranjith Kumar received his BE in mechanical engineering from the College of Engineering, Guindy, Anna University, India. He is currently working toward a PhD in mechanical engineering at the University of Maryland, College Park. Kumar is a graduate research assistant with the Center for Advanced Life Cycle Engineering, University of Maryland. His research interests include reliability, dynamics, vibration, tribology, and prognostics and health management.

Robert W. Mah
Robert W. Mah is the Project Scientist for the SSAT Project, one of three projects under the NASA Aviation Safety Program. He has a Ph.D. in Applied Mechanics and Biomedical Engineering from Stanford University. He was PI and head of the Smart Systems Research Laboratory at NASA Ames which developed innovative software solutions and tools for space, aeronautics, and medicine. His experience spans a broad range of research and development work ranging from adaptive control of spacecraft, FT/RM architecture for CEV GN&C, FDIR, and fault tolerant control of the 2.5-m Artificial Gravity Research Centrifuge for the International Space Station, advanced signal
processing and precision tools for airborne and ground-based telescopes, high-performance multi-axis motion control capabilities for biological and human research, astronaut space motion sickness research, to novel medical technologies for detection, diagnosis, and prognosis of cancer.

Sony Mathew
Sony Mathew is currently pursuing his PhD at the Center for Advanced Life Cycle Engineering (CALCE) in the mechanical engineering department at the A. James Clark School of Engineering of the University of Maryland. His research areas include reliability, and Prognostics and Health Management (PHM) of electronics. Previously, he managed the activities of the PHM group within CALCE. He developed, executed, and supervised research projects on prognostics of electronics and served as a liaison with CALCE’s industry and government partners. Mathew also serves on the editorial board of the International Journal of Prognostics and Health Management.

Dinkar Mylaraswamy
Dr. Dinkar Mylaraswamy is the Technology Fellow for condition-based maintenance within Honeywell’s Advanced Technology organization. His areas of expertise are fault diagnosis and process monitoring, modeling, and control. In his current role, Dr. Mylaraswamy is responsible for identifying and maturing strategic health management technologies that cut across multiple products and services, providing inputs for strategic technology investments, and mentoring.

Dr. Mylaraswamy joined Honeywell in 1997 after completing his Ph.D. from Purdue University. His Ph.D. thesis on blackboard-based architectures was adopted by the Abnormal Situation Management® Consortium as the basis of an operator tool for addressing the $16B loss suffered by the petrochemical industry from abnormal situations and equipment malfunctions. Dr. Mylaraswamy spent his first six years in Honeywell developing and deploying an Early Abnormal Event Detection application at six refinery sites in North America.

On the Aerospace side, he was the technical lead for Honeywell’s Predictive Trend Monitoring program, a web-based application for monitoring aircraft engines. He continues to serve as the technical lead on various health management programs—within Honeywell as well the U.S. Army, NASA, UK-MOD, and Navair—to support the Aerospace Services business within Honeywell.

As the Technology fellow, he routinely works with academic institutes and small businesses, seeking cutting-edge technologies to support the condition-based service business within Honeywell. Dr. Mylaraswamy has authored over 30 papers and holds 14 patents in the area of fault diagnosis and its applications.

Marcos E. Orchard
Dr. Marcos Orchard is associate professor with the department of electrical engineering at Universidad de Chile, associate researcher at the Advanced Mining Technology Center, and project leader at the Lithium Innovation Center. His research interest is the design, implementation, and testing of real-time frameworks for fault diagnosis and failure
prognosis, with applications to battery management systems, mining industry, and finance. His fields of expertise include statistical process monitoring, parametric/nonparametric modeling, and system identification. His research work at the Georgia Institute of Technology was the foundation of novel real-time fault diagnosis and failure prognosis approaches based on particle filtering algorithms. Orchard received a PhD and MS from The Georgia Institute of Technology, as well as a BS and a civil industrial engineering degree with electrical major from Catholic University of Chile. Dr. Orchard has published numerous papers in his areas of expertise.

Michael Pecht
Prof. Michael Pecht is a world-renowned expert in strategic planning, design, test, prognostics, IP, and risk assessment of electronic products and systems. In 2010, he received the IEEE Exceptional Technical Achievement Award for his innovations in the area of prognostics and systems health management. In 2008, he was awarded the highest reliability honor, the IEEE Reliability Society’s Lifetime Achievement Award. Prof. Pecht has an MS in Electrical Engineering and an MS and PhD in Engineering Mechanics from the University of Wisconsin at Madison. He is a Professional Engineer, an IEEE Fellow, an ASME Fellow, an SAE Fellow, and an IMAPS Fellow. He has previously received the European Micro and Nano-Reliability Award for outstanding contributions to reliability research, 3M Research Award for electronics packaging, and the IMAPS William D. Ashman Memorial Achievement Award for his contributions in electronics analysis. He served as chief editor of the IEEE Transactions on Reliability for eight years and on the advisory board of IEEE Spectrum. He is chief editor for Microelectronics Reliability and an associate editor for the IEEE Transactions on Components and Packaging Technology. He is the founder and Director of CALCE (Center for Advanced Life Cycle Engineering) at the University of Maryland, which is funded by over 150 of the world’s leading electronics companies at more than US$6M/year. The CALCE Center received the NSF Innovation Award in 2009. He is also a Visiting Professor in Electronics Engineering at City University of Hong Kong, and a Chair Professor in Mechanical Engineering and a Professor in Applied Mathematics at the University of Maryland. He has written more than twenty books on product reliability, development, use, and supply chain management and over 400 technical articles. He has also written a series of books on the electronics industry in China, Korea, Japan, and India. He consults for 22 international companies.

Suresh Perinpanayagam
Dr. Suresh Perinpanayagam is a lecturer at the IVHM Centre, Cranfield University. He leads the Electronic Systems’ Reliability, Prognostics and Health Management (ERPHM) Group at Cranfield University, in the UK. This group develops data-mining techniques for anomaly detection, diagnostics, prognostics, information fusion, predictive maintenance, and logistical support for electronic systems from the aerospace, rail, automotive, critical infrastructure, and renewable energy sectors. Suresh teaches the sensors and instrumentation module for several MSc courses at Cranfield University and has served in industry as a signal processing expert specializing in vehicle systems applications. He has an ME and PhD from Imperial
College London. He has published widely in academic and professional journals, and has presented many papers at national and international conferences.

Ravi Rajamani
Dr. Ravi Rajamani joined Meggitt in 2011 as an engineering director, after spending nearly 11 years with United Technologies Corporation, first at the Research Center, and then with its Pratt & Whitney division. Before this he was with GE for ten years. His primary focus has been in the area of controls and diagnostics of gas turbines for aerospace and industrial applications. Rajamani has a BTech (ME) from IIT Delhi, an MS (Automation) from IISc, Bangalore, and a PhD (EE) from the University of Minnesota. He also has an MBA from the University of Connecticut. He has published numerous papers in refereed journals and conference proceedings.

Karl Reichard
Dr. Reichard has over 25 years of experience in the design and development of advanced measurement, control, and monitoring systems. He received PhD, MS, and BS degrees in electrical engineering from the Virginia Polytechnic Institute and Virginia Tech. Dr. Reichard is a research associate with the Pennsylvania State University Applied Research Laboratory, and an assistant professor of acoustics with the Penn State graduate program in acoustics. His research experience includes the development of embedded and distributed sensing and control systems for machinery and system health monitoring, acoustic surveillance and detection, active noise and vibration control, and electro-optics. He is the author of numerous papers and articles published in journals and conference proceedings.

Michael J. Roemer
Michael J. Roemer is currently a Technical Fellow with Sikorsky Aircraft with over 20 years’ experience in the development of automated health monitoring, diagnostic, and prognostic systems for a wide range of military and commercial applications. He was previously the co-founder and Director of Engineering at Impact Technologies prior to its acquisition by Sikorsky/UTC. His experience includes a wide range of integrated vehicle health management system implementations to detect and predict system faults in real time and perform automated troubleshooting and maintenance planning. He has developed several diagnostic and prognostic capabilities utilizing technologies such as dynamic signature analysis, artificial intelligence, aero-thermal performance monitoring, finite element modeling, probabilistic remaining life analysis, and risk assessment methods. He is the co-founder and Vice President of the PHM Society, Chairman of the SAE HM-1 Integrated Vehicle Health Management Committee, board member and past Chairman of the Machinery Failure Prevention Technology (MFPT) Society, Prognostic Lead for the SAE E-32 Engine Condition Monitoring Committee, Member of the IGTI Marine Committee and ASME Controls and Diagnostics Committee, and Adjunct Professor of Mechanical Engineering at the Rochester Institute of Technology. He is the co-author of a recent book titled *Intelligent Fault Diagnosis and Prognosis for Engineering Systems* and has written or co-authored more
About the Authors

than 100 technical papers related to inte-
grated systems health management.

Abhinav Saxena
Abhinav Saxena is a research scientist at the Prognostics Center of Excellence, NASA Ames Research Center. He has been involved in the field of IVHM since 2003 and has published numerous research articles in scientific journals, conference proceedings, and book chapters. His research focuses on developing and evaluating health management algorithms for various engineering systems. He also develops systems engineering processes and methods for verification and validation for health management systems. Mr. Saxena is chief editor of the *International Journal of Prognostics and Health Management*. He has a PhD in electrical and computer engineering from Georgia Institute of Technology. He earned his B.Tech. in 2001 from Indian Institute of Technology, Delhi, and his Masters degree in 2003 from Georgia Tech.

Tarapong Sreenuch
Dr. Tarapong Sreenuch is conducting research at the IVHM Centre at Cranfield University in the UK, focusing on projects related to software architecture and systems integration for IVHM systems. He has many years of experience in engineering software design and distributed systems. He is a lead developer at the IVHM Centre in design and development of IVHM-related data processes and software. Tarapong is an instructor in MSc in IVHM and MSc in autonomous vehicle dynamics and control at Cranfield University. He has published in many academic publications. He has a BEng in electronics and electrical engineering from the University of Surrey, and a PhD in control engineering from Cranfield University—Defence College of Management and Technology.

Ashok N. Srivastava
Ashok N. Srivastava, Ph.D. is the Project Manager for the System-Wide Safety and Assurance Technologies Project at NASA. He is formerly the Principal Investigator for the Integrated Vehicle Health Management research project at NASA. His current research focuses on the development of data mining algorithms for anomaly detection in massive data streams, kernel methods in machine learning, and text mining algorithms.

Dr. Srivastava is also the leader of the Intelligent Data Understanding group at NASA Ames Research Center. The group performs research and development of advanced machine learning and data mining algorithms in support of NASA missions. He performs data mining research in a number of areas in aviation safety and application domains such as earth sciences to study global climate processes and astrophysics to help characterize the large-scale structure of the universe.

Dr. Srivastava is the author of many research articles in data mining, machine learning, and text mining and has edited the book, *Text Mining: Classification, Clustering, and Applications* (with Mehran Sahami, 2009). He is currently editing two more books: *Advances in Machine Learning and Data Mining for Astronomy* (with Kamal Ali, Michael Way, and Jeff Scargle) and *Data Mining in Systems Health Management* (with Jiawei Han).
Dr. Srivastava has given seminars at numerous international conferences. He has a broad range of business experience including serving as Senior Consultant at IBM and Senior Director at Blue Martini Software. In these roles, he led engagements with numerous Fortune Global 500 companies including Bank of America, Chrysler Corporation, Saks 5th Avenue, Sprint, Chevron, and LG Semiconductor. He has won numerous awards including the IEEE Computer Society Technical Achievement Award for “pioneering work in Intelligent Information Systems,” the NASA Exceptional Achievement Medal for contributions to state-of-the-art data mining and analysis, the NASA Distinguished Performance Award, several NASA Group Achievement Awards, the IBM Golden Circle Award, and the Department of Education Merit Fellowship.

Kevin Swearingen
Kevin Swearingen has more than fifteen years of experience developing and integrating vehicle health management technologies in the research and technology division of the Boeing Company. Experience as principal investigator includes developing wireless sensor networking hardware for commercial aircraft, conducting maintenance effectiveness analysis for Army helicopters, sensor data interpretation algorithm development, and airborne parametric data management and analysis software production in support of health management. His expertise includes defining and implementing health management system architectures, data analysis, applications of intelligent software (fuzzy logic, neural network, expert rule-based, and Bayesian constructs), and aircraft hardware and software integration. Swearingen is a PhD candidate at the Missouri University of Science & Technology, and holds MS and BS degrees in electrical engineering from the University of Missouri. He is the author of over a dozen technical papers, conference presentations, and technical reports.

George Vachtsevanos
Dr. Vachtsevanos is serving as Chief Scientist at Impact Technologies and is Professor Emeritus at the Georgia Institute of Technology. He directs the Intelligent Control Systems Laboratory at Georgia Tech, where faculty and students are conducting interdisciplinary research in intelligent control, fault diagnosis, and failure prognosis of complex dynamic systems with emphasis on rotorcraft, and hierarchical/intelligent control of Unmanned Aerial Vehicles. His research in fault diagnosis and prognosis for condition-based maintenance began in 1984 with innovative fault detection and control technologies for the space station program. Under Office of Naval Research (ONR) sponsorship, he developed fault detection and fault-tolerant control systems for a turbojet engine. Jointly with Honeywell, he designed diagnostic and prognostic algorithms for shipboard machinery under ONR sponsorship. More recently, he has been an active participant in DARPA’s Prognosis Program, the Aging Aircraft Program, an Advanced Diagnostics Program for U.S. Army vehicles, a U.S. Navy program on Prognostic Enhancements to Diagnostic Systems, an Air Force Space Command Program for CBM Design of Ground Satellite Stations, and other industrial programs. He administers at Georgia Tech and on-site an intensive four-day short course on “Fault Diagnosis and Prognosis for Engineering Systems.” He has published over 350 technical papers.