#1 Edge grind, 85
#2 Edge grind, 86
#3 Edge grind, 86
#4 Edge grind, 87

Acceptance criteria, legal requirements, and
test descriptions, 59–60

Acrylonitrile, 36

Adhesive bonding
 interface control, 30
 locating scheme, 30
 primers, 31–32
 surface preparation, 30–31
 temperature, 29–30
 types of, 29
 urethane application, 31

Adhesives
 clean-up, 31
 storage, 31

Aerodynamics, 5–6
 Air side out, 3
 Aluminosilicates, 2
 Annealed glass, 7, 8, 9
 ANSI Z26.1–1996
testing, 56
 coding system for model numbers, 56
 tests, 57

Antennas, 88, 99

Arc length, 22

AS designations, 89

Aspect ratio, 76

Asymmetrical design, 13

Automotive water pressure testing, 54

Banded edge of glass, 97

Blank size, 71

Bodyglass, toughened, global comparison,
106–107

Box furnace, 22

Box method, 24

Bucks, 17

Bus, 19
 sidelites, 15
 window benchmarking, 55
 windshield, 43

Butadiene, 36

Camber, 16, 22

Center of gravity, 19, 25–26
Design rule tables (continued)

field failure
- delamination, 95t
- fogging, 95t

forming a laminated windshield, 72t

forming tempered or laminated sidelites, 72t

frit, 75t, 102t

frit and primer dimensions, 103t

gaskets—windshield, 81t

glass curvature, 85t

glass deflection upon installation, 104t

glass form, 99t

glass support
- fixed position, 82t
- windshield, 82t

glass tolerance, 89t

heated glass systems, 79t

heated windscreen, 87t

horizontal depth of chord, 73t

infrared-reflective glass, 79t

inside contamination, 101t

joint movement, 84t

laminated sidelites, 92t

lamination inspection guidelines
- antenna, 99t
- edge quality, 100t
- frit, 102t
- glass form, 99t
- inside contamination, 101t
- other visual defects, 101t

light transmission, 79t

locating pin, 94t

manually applied windshield installation, 98t

material storage, 96t

meeting ABC wipe zones based on SAE J198, 83t

minimum flange length, 76t

mold release—encapsulation, 103t

molding criteria, 81t

moldings—fixed glass, 80t

optical considerations, 85t

photovoltaic glass, 93t

pillar radius, 74t

pillar rise, 74t

polycarbonate glazing, 96t

primer path, 92t

product validation for wired parts, 88t

rate of change in drop glass, 104t

regulatory requirements, 90t

requirements for glass and wipers, 90t

seal construction
- coating areas, 94t
- horizontal seals, 93t
- Y seals, 94t

seal deflection—door systems, 98t

seals, 92t

vent window, 81t

support glass systems, 82t

technical properties
- of glass, 90t
- of polyvinyl butyral, 91t

tempered glass criteria, 91t

thermal shock, 84t

tolerances for curved and flat glass, 89t

urethane bead height, 30, 80t

UV transmission, 78t

validating wired parts, 88t

vertical depth of chord, 74t

windshield, 95t

aspect ratio, 76t

deflection, 78t

horizontal depth of chord, 73t

infrared-reflective glass, 79t

installation angle, 78t

pillar rise, 74t

vertical depth of chord, 74t

windshield forming, 96t

windshield installation tooling, 97t, 98t

windshield maximum length in flat, 71t

windshield racking, 98t

windshield shape, 73t

windshield surface, 73t

wiper key points, 83t

wiper quality
- interface control document, 82t
- interface, 83t

wiper zones
- multiple panes, 83t
- single pane, 83t

Design, validation, planning, and responsibility matrix example, 58t

Designed interference, 78t

Distortion, 5, 16–17

Dolomite, 2

Door glass, 16

seal deflection, 98t

Drop glass, rate of change in, 104t

ECE R43, 15, 105–107t

Economic Commission for Europe, 15

Edge finish, 7–8, 9–10, 20, 25, 77t
Edge grinds
 #1, 85
 #2, 86
 #3, 86
 #4, 87

Edge of glass (EoG), 17
to edge of hole (EoH), 77
Edge quality, 100
Edge stress, 20, 25
Encapsulated glass capabilities, 84
Encapsulation, 41–45, 103
EPR/PP (ethylene propylene rubber/polypropylene), 39

Ergonomics, 5–6
Ethylene propylene diene monomer (EPDM) rubber, 34, 36, 42
EVA (ethylene vinyl acetate), 21
Extrusion molding, 34–35
 thermoplastic, 39–40
Extrusions, 91

Fabrication plants, 2
Failure mode effects and analysis, 61–62
Federal Motor Vehicle Safety Standards, 15
Field failure
 delamination, 95
 fogging, 95
 potential issues, 52–53
Finishing, 20
Flange length, minimum, 76
Float plants, 2, 3
Float process, 2–3
Fluoroelastomer, 38–39
FMVSS 205, 15, 105–107
Fogging, 51–52, 95
Forming, 11
 sidelites, 20, 72
 laminated glass, 11–13
 windshield, 96
 capability matrix, 23
 laminated, 72
Frit, 27–28, 75, 102, 103

Gaskets, windshield, 81
Glass curvature, 85
Glass
 deflection upon installation, 104
 requirements for, 90
 technical properties of, 90
Glass-ceramics, 1–2
Glass form, 99
Glass processing, 9–10
 laminating, 12

Glass strength, 9
Glass support
 fixed position, 82
 windshield, 82
Glass tolerance, 89
Global comparison
 laminated windscreens, 105–106
 toughened bodyglass, 106–107
Glossary, 63–70
 infrared reflecting glass terms, 49–50
 photovoltaic glass terms, 51
Grinding, 20

Hardening, 24
Hardware, 20
Heated glass, 51, 79
 windshield, 87
Heat-strengthened glass, 8, 9
HNBR (hydrogenated nitrile butadiene rubber), 37–38
Horizontal depth of chord, 22, 73
Horizontal seals, construction of, 93

Infrared reflecting (IRR) glass, 49–50, 79
Inside contamination, 101
Inspection, 47
Inspection notes, laminated windshield, 108–109
Installation, 47–48
 glass deflection upon, 104
 manually applied windshield, 98
 windshield installation tooling, 97
Installation angle, 16
 windshield, 78
Interfaces, 25
 interface control document, wiper quality, 82
 wiper quality, 82, 83

Japan Safety Regulations for Road Vehicles,
 Article 29, 105–107
Johnson Matthey, 28
Joint movement, 84

Key slot, 43

Laminated glass, 7, 8
 forming for specific vehicle positions, 11–13
 manufacturing processes, 21
 sidelites, 51, 92
 windshield
Laminated glass (cont.)
 forming, 72t
 global comparison, 105–106t
 inspection notes, 108–109
Lamination inspection guidelines
 antenna, 99t
 edge quality, 100t
 frit, 102t
 glass form, 99t
 inside contamination, 101t
 other visual defects, 101t
Lamino method, 24
Legal requirements, test description, and
 accepted criteria, 59–60t
Light transmission, 79t
Limestone, 2
Lithium, 2
Load, 25–26
Locating pins, 47, 94t
Manually applied windshield installation,
 98t
Manufacturing process, 2–3
Mass, 19–20
Material storage, 96t
Model numbers, coding system for, 56t
Mold release/encapsulation, 103t
Moldings, 33–34, 78t
 criteria for, 81t
 extrusion, 34–35
 fixed glass, 80t
 puckering of, 42
 rubber compression, 35
 rubber injection, 35
Multiple panes wiper zones, 83t
Neoprene (DuPont), 37
Nitrile rubber, 36
Non-laminated glass, 13
Optical considerations, 85t
Packaging, 19
Passenger vehicle sidelites, 19
Photovoltaic glass, 50–51, 93t
Pilkington, Alastair, 3
Pillar
 radius, 74t
 rise, 74t
Plasma-enhanced chemical vapor deposition
 (PECVD), 18
Plastic materials for extrusion and molding,
 40–41
Polyacrylate rubber, 38
Polycarbonate glazing, 18–19, 96t
Polychloroprene, 37
Polyester (PET) interlayer, 21
Polyvinyl butyral (PVB), 8, 11
 technical properties of, 91t
Press bend furnace, 22
Press bending, 23
 for windshields or other laminated
 position, 24
Primer path, 52, 92t
Primer, 31–32
 concerns regarding, 52
 dimensions, 103t
 failure of, 48
 plant applied, 48
Processing
 basic considerations, 25
 sidelite, 23–26
 windshield, 21–26
Product flow from production to assembly,
 109
Product validation for wired parts, 88t
PVC (polyvinyl chloride), 39
Quality control, 48
Rate of change, 16, 104t
Raw materials, 1–2
Regulatory requirements for glass and
 wipers, 90t
Rubber compression molding, 35
Rubber injection molding, 35
Rubber materials for extrusion and
 molding
 EPDM, 34, 36, 42
 fluoroelastomer, 38–39
 HNBR rubber, 37–38
 Neoprene rubber, 37
 nitrile rubber, 36
 polyacrylate, 38
 silicone rubber, 38
SAE J198, 17, 83t
Safety glass, 13
Sag bending, 24
Seals, 92t
 coating areas, 94t
 deflection, door systems, 98t
 horizontal, 93t
 vent window, 81t
 Y, 94t
Seaming, 20
Shadebands, 28
Shape considerations, 5–6
Sheet method, 2–3
Sidelites
 bus, 15, 19
 forming, 72t
 laminated glass, 51, 92t
 passenger vehicle, 19
 processing, 23–26
 shaping and forming, 20
 truck, 19
Silica sand, 2
Silicone rubber, 38
Silk screening, 27–28
Single-box furnace, 21–22
Single pane wiper zones, 83t
Soda ash, 2
Standard automotive water pressure testing, 54t
Storage, material, 96t
Support systems, 82t
Surface preparation for adhesive bonding, 30–31

Tanglass method, 24
Technical properties
 of glass, 90t
 of polyvinyl butyral, 91t
Tempered glass, 8–9, 13, 24
criteria, 91t
Testing, 20, 53–62
coding system for model numbers
 required by ANSI Z 26.1–1996, 56t
design, validation, planning, and responsibility matrix example, 58t
failure mode effects and analysis, 61–62t
standard automotive water pressure testing, 54t
test descriptions, legal requirements, and accepted criteria, 59–60t
tests according to ANSI Z 26.1–1996, 57t
window benchmarking, 55t
Thermal expansion coefficient (TEC), 2
Thermal shock, 84t
Thermal stress, 7–10
Thermoplastic elastomer (TPE), 34, 40–41
Thermoplastic extrusion, 39–40
Thermoplastic Polyolefin (TPO), 40
Tin side out, 3
Tolerances for curved and flat glass, 89t
Tooling, 16
 windshield installation, 97t
Tooling costs, 24–25
 frit, 28
Top-hat furnace, 21–22
Toughened glass, 7, 8, 9–10
global comparison, 106–107t
TPU (thermoplastic polyurethane), 21
Truck windows, 19
Tumblehome, 19
Two-part primer, 32
Ultraviolet (UV), 8, 11, 27, 50
 and polycarbonate glazing, 18, 19
transmission, 78t
Urethane, 29–32, 42
 bead height, 30, 80t
Vacuum stage, 24
Value-added engineering, 49–52
Vent window seal, 81t
Vertical depth of chord, 74t
Water pressure testing, automotive, 54t
Windows
 benchmarking, 55t
 multi-pane, mitigating fogging on, 51–52
 vent, seal, 81t
Windshield, 13, 15, 16
 applications, 21–22
 aspect ratio, 76t
 blank size, 71t
 bus, 43
 deflection, 78t
 design rule, 95t
 design technical assumptions, 108t
 forming, 96t
 gasket, 81t
 glass support, 82t
 heated, 87t
 horizontal depth of chord, 73t
 infrared-reflective glass, 79t
 installation angle, 78t
 installation tooling, 97t, 98t
 laminated
 forming, 72t
 global comparison, 105–106t
 inspection notes, 108–109
 locating and mounting, 30
 maximum length in flat, 71t
 pillar rise, 74t
 processing, 23–26
 racking, 98t
 shape, 73t
as structural component, 48
Windshield (cont.)
 surface, 73t
 vertical depth of chord, 74t
Windshield forming capability matrix, 23f
Wiper chatter, 18
Wiper key points, 83t
Wiper quality, 82t

Wiper zones
 multiple panes, 83t
 single pane, 83t
Wipers, requirements for, 90t
Wired parts, validating, 88t
Y seals, construction of, 94t
About the Author

A mechanical engineer and automotive glass specialist, Lyn R. Zbinden began his career with Saturn Corporation in the U.S., where he designed the first Saturn windshield and backlite. He then led General Motors’ glass and glazing efforts, with a multinational team responsible for the design, engineering, manufacturing, and sourcing of its product portfolio for the next decade.

Among the many new processes he implemented, one that made history in the industry was the development and successful use of dedicated design software.

The gains in productivity and competitive edge supported by this project made Lyn the General Motors’ recipient of the “Outstanding Engineering Achievement of the Year” award in 1997. He was also responsible for the modernization of assembly plants in Europe and Mexico, optimizing plant layout, improving material handling and reducing waste.

His designs can be seen from military vehicles to Formula One race cars.

Lyn R. Zbinden currently consults to the transportation industry, and is an active member of SAE International.