Index

Symbols
3D-CFD Model, 603
32-bit processor, 676
α-methylnaphthalene, 816
λ control, 29

A
Abort reaction, 593
Absolute accuracy, 961
Absolute muffler, 950
Absorber, 76
Absorption, 76, 951
Absorption section, 951
Absorption-type damper, 430
Acceleration
 free, 805
Acceleration enrichment, 518, 522
Acceleration knock, 831
Acceleration ramp, 465
Acceleration resistance, 918, 920
Accelerator pump, 516, 519
ACEA, 850, 917
ACEA specification, 851
Acid
 sulfurous, 818
Acoustic decoupling, 289
Acoustic energy, 952
Acoustic field transformation, 956
Acoustic intensity, 946, 955
Acoustic pattern, 952
Acoustic power, 946
Acoustics, 269, 271, 878
Acoustic velocity, 946
Activated carbon canister, 528
Activated charcoal tank, 731
Activation energy, 797
Actual 0.2% offset limit, 298
Actuator, 467, 729
 intelligent, 723
AC voltage ignition, 572
AdBlue, 818
Addition of fuel, 798
Additive ash, 803
Additive dosing, 804
Additive package, 835
Additives, 846
Additives for diesel fuel, 819
Additives for gasoline, 835
ADI austempered ductile iron, 162
Adjusting air nozzle, 517
Adjustment angle, 236
Aerodynamic drag, 918, 919
AFP steel, 161
Agglomeration, 789, 796
Aging stability, 843
Air baffles, 125
Airborne noise, 946, 950
Airborne noise route, 952
Air conditioning compressor, 954
Air cooling, 125
Air-Entrainment, 533
Air Expenditure, 23, 415, 434, 479
Air filter, 270, 863
Air filter element, 269
Air-fuel ratio, 40, 42, 813
Air-fuel-ratio, 598
Air–fuel ratio, 40, 42
Air-Fuel Ratio, 24
Air gap, 574
Air injection, 5
Air injector, 527
Air intake system, 268
Air mass, 533
 stoichiometric, 40
Air mass flow, 965
Air mass meter, 527
Air mass sensor, 717
Air path, 269
Air pulse valve, 1061, 1062
Air pumping, 953
Air requirement, 813
 stoichiometric, 24
Air spring, 420
Air stroke valve, 471
Air bearing alloy, 259
Alcohol, 824
Alcohol component, 825
Alcohol-diesel fuel mixture, 823
Alcohol fuel, 839
Alignment error, 250
Alkane, 589
Alkane, 589
Alkene, 589
Alkenes, 589
Alkines, 589
Alloy, 150
Alloys
 supereutectic, 93
Al-Si alloy, 120
Altitude compensation, 523
Aluminum, 147
Aluminum piston, 87
Aluminum screw, 298
Aluminum-silicon alloy, 83, 93
AMT, 698
Anergy, 39
Angle sensor, 964
Angular Velocity, 17, 383
Anti-foaming agents, 820
Anti-jerk function, 685
Anti-jerk regulation, 687
Anti-knock additive, 4
Anti-knock quality, 826
Antinoise, 959
Antinoise system, 959
Antioxidant, 836, 848
Apex seal, 382
API, 850
API classification, 852
Index

API TC, 859
APU system, 1048
ARAL (ARomates/ALifates), 833
Arc Phase, 569
Aromate, 824
Aromate content, 833, 834
Aromatics, 589, 590
Arrangement
longitudinally symmetrical, 68
pressure-side, 867
suction-side, 867
Array technique, 956
asbestos-free, 281
Aspirated engine, 11
Assembly techniques, 294
Assessment of the Fuel Cell, 1046
ASTM standard D 3306, 861
ASVP (Air Saturated Vapor Pressure), 833
Asymdukt® piston, 88
Asynchronous machine, 991, 992, 1037
Asynchronous motor, 705, 1037
ATC Code of Practice, 856
ATIEL, 845
ATIEL Code of Practice, 856
Atkinson cycle (cycle), 231
Atomization quality, 529
Attachment shells, 950
Attenuation, 947
Autoignition, 12, 574, 578, 592, 595, 928
Automated manual transmission, 698
Automated quality control, 291
Automatic multi-stage transmission, 664
Automobile manufacturer specification, 855
Automotive industry (ACEA) European, 818
Auxiliary Power Unit = APU, 1047
Auxiliary unit, 932, 954
Auxiliary unit drive, 249
Auxiliary units, 950
Average pressure, 40
Axial bearing, 226, 227, 253
Axial Scale, 596
Integral, 596
Axle drive electric only, 1031

B
Background, 463
Balance equation, 43, 45, 46
Balance shaft, 952, 959
Balancing mass, 66, 69
Ball calibration, 163
Barium NOx adsorber, 772
Base circle, 226, 227
Base circle diameter, 252
Base circle fault, 227
BASF test engine, 817
Basic material balance, 44
Battery capacity, 934
Battery charging, 1055
Battery management, 1003, 1037
Battery monitoring, 1003
Battery service life, 1003
Battery status sensor, 1055
Bead, 277, 288
Bead force, 283
Beamforming technique, 956
Bearing, 227, 251
open, 225, 226
Bearing brackets, 4
Bearing clearance, 256
Bearing damage, 267
Bearing diameter, 232
Bearing end, 257
Bearing engineering, 256
Bearing failure, 267
Bearing journal displacement path, 255
Bearing loading, 236, 254
Bearing location, 257
Bearing material, 238
Bearing metal, 259
Bearing play, 252, 257
Bearing version, 262
Beat frequencies, 954
Beehive spring, 188
Bell housing, 953
Bell-shaped curve, 19
Belt drive, 243
Belt-driven starter-alternator, 251, 703
Belt pulley bolt, 292, 296
Belt tensioning system, 174, 246
Bending moment, 70, 233
Benz Karl, 3
Benzene content, 826, 833
Bergrässer, 187
Bernoulli equation, 516
BET surface, 789
Beveled-edge oil control ring, 103
Bevel edge ring, 102
Bio diesel, 814, 821
Biofuel, 918
Biomass, 840, 943
BLDC motors, 674
Blind-hole nozzle, 553
Block height, 80, 188
Blow-by, 120
Blow-by gas, 230
Blow-by gas measuring technology, 965, 969
BMW, 1035
Boiling curve, 826, 832
Boiling curve (distillation), 832
Bonding technology, 120, 122
Booming noise, 952
Boost, 703
Boost mode, 985, 1031
Bore ratio, 79
Borgi-Diagram, 597
Boundary friction, 389
Boxer engine, 12
Brake, 962
Braking energy, 1055
Braking energy recuperation, 922
Branching reaction, 592
Brayton
George Bailey, 3
Breakdown, 569
Break-in oil, 850
Brush honing, 124
Bulkhead surface area, 918
Burn-through speed, 511
Bush chain, 240
Butane, 824
Bypass, 724, 726

C
CAD methods, 145
CAFE, 1031
Calculating Charge Cycles, 448
Calculation kinematic, 235
Calculation example inertial torque, 65
Calculation of cooling circuits, 890
Calculation of oil circuits, 890
Calculation of rotational oscillation, 73
Calorific value, 46, 591, 816, 819, 941
bottom, 42, 819
top, 819
Cam, 225
Cam angle, 235, 1077
Cam contour, 231, 236, 454, 1078
Cam flank, 226, 234
Cam follower, 166, 225, 229, 230, 231, 232, 234, 235, 417
Cam follower valve train, 166
Cam lift, 227
Cam lobe, 225
Cam material, 229
Campbell diagram, 164, 954
Cam profile, 233, 234
Cams, 223, 226, 227, 232, 233, 234, 235
Cam segment, 231
Camshaft, 155, 224, 225, 226, 227, 229, 230, 232, 233, 417, 418
assembled, 227, 229, 232, 235
below head, 225
CamInCam, 230
forged, 227
hollow, 226
hollow cylinder, 232
hollow-profiled, 232
injection-molded plastic, 231
mached, 227
on rolling bearings, 230
solid, 226
special design, 229
variable, 230
Camshaft adjustment, 30, 469
Camshaft angle, 423
Camshaft bearing, 155, 225, 226, 227, 232
Camshaft bearing cap bolt, 292
Camshaft Drive, 419
Camshaft loading, 233, 234
Camshafts from cast iron, 227
<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camshaft shifter</td>
<td>448, 449</td>
</tr>
<tr>
<td>dual effect</td>
<td>230</td>
</tr>
<tr>
<td>Camshaft shifter system</td>
<td>236</td>
</tr>
<tr>
<td>Camshaft timing devices</td>
<td>226, 446</td>
</tr>
<tr>
<td>Camshaft tube</td>
<td>230</td>
</tr>
<tr>
<td>Cam tip</td>
<td>226</td>
</tr>
<tr>
<td>Cam width</td>
<td>232</td>
</tr>
<tr>
<td>Cancellation</td>
<td>959</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>753, 917</td>
</tr>
<tr>
<td>Carbon dioxide emissions</td>
<td>1029</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>753</td>
</tr>
<tr>
<td>Carbon residue</td>
<td>819</td>
</tr>
<tr>
<td>Carburetor fuel CF</td>
<td>824</td>
</tr>
<tr>
<td>Carburetor icing</td>
<td>835</td>
</tr>
<tr>
<td>Carburetor</td>
<td>electronically controlled</td>
</tr>
<tr>
<td>Carnot</td>
<td>electrical</td>
</tr>
<tr>
<td>Carnot efficiency</td>
<td>1040</td>
</tr>
<tr>
<td>Carnot process</td>
<td>36</td>
</tr>
<tr>
<td>Car program</td>
<td>815, 826</td>
</tr>
<tr>
<td>Cassette-type recorders</td>
<td>951</td>
</tr>
<tr>
<td>Car program</td>
<td>815, 826</td>
</tr>
<tr>
<td>Car</td>
<td>1034</td>
</tr>
<tr>
<td>Carburettor</td>
<td>icing</td>
</tr>
<tr>
<td>Carburettor fuel CF</td>
<td>824</td>
</tr>
<tr>
<td>Carburettor icing</td>
<td>835</td>
</tr>
<tr>
<td>Carburettor</td>
<td>807</td>
</tr>
<tr>
<td>Cast</td>
<td>iron</td>
</tr>
<tr>
<td>Cast iron with nodular graphite</td>
<td>161</td>
</tr>
<tr>
<td>Cast manifold</td>
<td>300, 301</td>
</tr>
<tr>
<td>Cast tappet</td>
<td>232</td>
</tr>
<tr>
<td>Catalytic converter</td>
<td>531</td>
</tr>
<tr>
<td>monitoring</td>
<td>the</td>
</tr>
<tr>
<td>Near the engine</td>
<td>303</td>
</tr>
<tr>
<td>Catalytic converter concept</td>
<td>761</td>
</tr>
<tr>
<td>Catalytic converter deactivation</td>
<td>764</td>
</tr>
<tr>
<td>Catalytic converter design</td>
<td>760</td>
</tr>
<tr>
<td>Catalytic-converter protection</td>
<td>522</td>
</tr>
<tr>
<td>Catalytic converter substrate</td>
<td>metallic</td>
</tr>
<tr>
<td>Catalytic converter system</td>
<td>762</td>
</tr>
<tr>
<td>Catalytic converter temperature</td>
<td>531</td>
</tr>
<tr>
<td>Cavitation</td>
<td>220, 861</td>
</tr>
<tr>
<td>Cavity content</td>
<td>802</td>
</tr>
<tr>
<td>CCMC</td>
<td>850</td>
</tr>
<tr>
<td>CEC</td>
<td>851</td>
</tr>
<tr>
<td>Cell filter</td>
<td>ceramic monolithic</td>
</tr>
<tr>
<td>Center bolt</td>
<td>296</td>
</tr>
<tr>
<td>Center of gravity of combustion</td>
<td>624</td>
</tr>
<tr>
<td>Centipoise</td>
<td>843</td>
</tr>
<tr>
<td>Central tube</td>
<td>867</td>
</tr>
<tr>
<td>Centrifugal casting</td>
<td>91</td>
</tr>
<tr>
<td>Centrifugal force</td>
<td>230</td>
</tr>
<tr>
<td>Cetane</td>
<td>816</td>
</tr>
<tr>
<td>Cetane number</td>
<td>590</td>
</tr>
<tr>
<td>CFD</td>
<td>224, 599, 869</td>
</tr>
<tr>
<td>CFD simulation</td>
<td>44, 737, 1091</td>
</tr>
<tr>
<td>CFPP test</td>
<td>818</td>
</tr>
<tr>
<td>CFR single-cylinder knock test</td>
<td>engine</td>
</tr>
<tr>
<td>CFR test engine</td>
<td>817</td>
</tr>
<tr>
<td>Chain</td>
<td>225</td>
</tr>
<tr>
<td>Chain design</td>
<td>240</td>
</tr>
<tr>
<td>Chain drive</td>
<td>238</td>
</tr>
<tr>
<td>Chain explosion</td>
<td>592</td>
</tr>
<tr>
<td>Chainlike Hydrocarbons</td>
<td>589</td>
</tr>
<tr>
<td>Chain tensioner</td>
<td>243</td>
</tr>
<tr>
<td>Chain tensioning system</td>
<td>177, 231</td>
</tr>
<tr>
<td>Chain value</td>
<td>241</td>
</tr>
<tr>
<td>Change of contact</td>
<td>84</td>
</tr>
<tr>
<td>Channel</td>
<td>structured</td>
</tr>
<tr>
<td>Characteristic Time Scale Model</td>
<td>604</td>
</tr>
<tr>
<td>Characterizing Features</td>
<td>15</td>
</tr>
<tr>
<td>Charge cycle</td>
<td>36, 312, 415, 448, 929</td>
</tr>
<tr>
<td>Charge Cycle</td>
<td>7, 11</td>
</tr>
<tr>
<td>Charge cycle calculation</td>
<td>889</td>
</tr>
<tr>
<td>Charge cycle energy</td>
<td>425</td>
</tr>
<tr>
<td>Charge cycle loop</td>
<td>929</td>
</tr>
<tr>
<td>Charge cycle work</td>
<td>926</td>
</tr>
<tr>
<td>Charge dilution</td>
<td>627, 628</td>
</tr>
<tr>
<td>Charge mass</td>
<td>929</td>
</tr>
<tr>
<td>Charge movement</td>
<td>630</td>
</tr>
<tr>
<td>Charge pressure</td>
<td>726</td>
</tr>
<tr>
<td>Charge Pressure Curve</td>
<td>496</td>
</tr>
<tr>
<td>Chargers</td>
<td>Mechanical</td>
</tr>
<tr>
<td>Charge stratification</td>
<td>927</td>
</tr>
<tr>
<td>Charging</td>
<td>homogeneous</td>
</tr>
<tr>
<td>stratified</td>
<td>530</td>
</tr>
<tr>
<td>Chatter mark</td>
<td>382, 385</td>
</tr>
<tr>
<td>Chevrolet Silverado</td>
<td>1034</td>
</tr>
<tr>
<td>Chilled casting</td>
<td>227</td>
</tr>
<tr>
<td>Chilled-cast iron cams</td>
<td>229</td>
</tr>
<tr>
<td>Chilled-cast iron camshaft</td>
<td>228</td>
</tr>
<tr>
<td>Chlorine ion content</td>
<td>860</td>
</tr>
<tr>
<td>C/H ratio</td>
<td>813</td>
</tr>
<tr>
<td>Chrome plating</td>
<td>107</td>
</tr>
<tr>
<td>Chromium ceramic coating</td>
<td>107</td>
</tr>
<tr>
<td>Chromium-diamond coating</td>
<td>108</td>
</tr>
<tr>
<td>Classification</td>
<td>806</td>
</tr>
<tr>
<td>Clean air pipe</td>
<td>269, 270</td>
</tr>
<tr>
<td>Clearance adjustment</td>
<td>mechanical</td>
</tr>
<tr>
<td>Climbing resistance</td>
<td>918, 919</td>
</tr>
<tr>
<td>Closed-deck</td>
<td>112</td>
</tr>
<tr>
<td>Closed-deck design</td>
<td>120</td>
</tr>
<tr>
<td>Closing ramp</td>
<td>234</td>
</tr>
<tr>
<td>CNG</td>
<td>823, 836, 1029, 1030</td>
</tr>
<tr>
<td>CO2</td>
<td>1035</td>
</tr>
<tr>
<td>CO2 debate</td>
<td>934</td>
</tr>
<tr>
<td>CO2 emissions</td>
<td>917, 940, 941, 1035</td>
</tr>
<tr>
<td>Global</td>
<td>943</td>
</tr>
<tr>
<td>CO2 limit value</td>
<td>918</td>
</tr>
<tr>
<td>CO2 loop</td>
<td>821</td>
</tr>
<tr>
<td>CO2 tax</td>
<td>1031</td>
</tr>
<tr>
<td>Coalescence</td>
<td>868</td>
</tr>
<tr>
<td>Coating</td>
<td>catalytic</td>
</tr>
<tr>
<td>Coaxial-Vario-Nozzle</td>
<td>553</td>
</tr>
<tr>
<td>CO concentration</td>
<td>29</td>
</tr>
<tr>
<td>Coefficient</td>
<td>stoichiometric</td>
</tr>
<tr>
<td>Coefficient of friction</td>
<td>298</td>
</tr>
<tr>
<td>Coefficient of heat transfer</td>
<td>890</td>
</tr>
<tr>
<td>Coefficient of rolling resistance</td>
<td>920, 921</td>
</tr>
<tr>
<td>Coefficient of thermal expansion</td>
<td>192</td>
</tr>
<tr>
<td>CO emission</td>
<td>31</td>
</tr>
<tr>
<td>Coherence</td>
<td>959</td>
</tr>
<tr>
<td>Coil ignition system</td>
<td>Inductive</td>
</tr>
<tr>
<td>Coking</td>
<td>819</td>
</tr>
<tr>
<td>Cold knocking noise</td>
<td>951</td>
</tr>
<tr>
<td>Cold start</td>
<td>1045</td>
</tr>
<tr>
<td>Cold</td>
<td>Start</td>
</tr>
<tr>
<td>Cold start aid</td>
<td>585</td>
</tr>
<tr>
<td>Cold start aids</td>
<td>581</td>
</tr>
<tr>
<td>Cold-start behavior</td>
<td>817</td>
</tr>
<tr>
<td>Cold starting</td>
<td>832</td>
</tr>
<tr>
<td>Cold-start strategy</td>
<td>763</td>
</tr>
<tr>
<td>Cold start support</td>
<td>581</td>
</tr>
<tr>
<td>Collared screw</td>
<td>297</td>
</tr>
<tr>
<td>Combust</td>
<td>43</td>
</tr>
<tr>
<td>Combustion</td>
<td>589, 609, 896</td>
</tr>
<tr>
<td>Diesel Engine</td>
<td>602</td>
</tr>
<tr>
<td>Gasoline Engines</td>
<td>602</td>
</tr>
<tr>
<td>knocking</td>
<td>625, 828</td>
</tr>
<tr>
<td>normal</td>
<td>828</td>
</tr>
<tr>
<td>Combustion center</td>
<td>930</td>
</tr>
<tr>
<td>Combustion chamber</td>
<td>154, 508, 601</td>
</tr>
<tr>
<td>Combustion chamber deposit</td>
<td>831, 835</td>
</tr>
<tr>
<td>Combustion chamber design</td>
<td>140</td>
</tr>
<tr>
<td>Combustion chamber die</td>
<td>149</td>
</tr>
<tr>
<td>Combustion chamber plate</td>
<td>152</td>
</tr>
<tr>
<td>Combustion chamber pressure</td>
<td>sensor</td>
</tr>
<tr>
<td>Combustion chamber recess shape</td>
<td>617</td>
</tr>
<tr>
<td>Combustion chamber shape</td>
<td>632</td>
</tr>
<tr>
<td>Combustion chamber variant</td>
<td>139, 140, 141</td>
</tr>
<tr>
<td>Combustion delay</td>
<td>44</td>
</tr>
<tr>
<td>Combustion duration</td>
<td>44</td>
</tr>
<tr>
<td>combustion engine</td>
<td>first</td>
</tr>
<tr>
<td>Combustion engine</td>
<td>9, 10, 1040</td>
</tr>
<tr>
<td>Combustion function</td>
<td>43, 44</td>
</tr>
<tr>
<td>Combustion gas temperature</td>
<td>930</td>
</tr>
<tr>
<td>combustion-generated</td>
<td>805</td>
</tr>
<tr>
<td>Combustion model</td>
<td>896</td>
</tr>
<tr>
<td>Combustion Model</td>
<td>599</td>
</tr>
<tr>
<td>Combustion noise</td>
<td>950, 952</td>
</tr>
<tr>
<td>Combustion process</td>
<td>10, 35, 44, 139, 611, 928</td>
</tr>
<tr>
<td>Flameless</td>
<td>798</td>
</tr>
<tr>
<td>spray-guided</td>
<td>471</td>
</tr>
<tr>
<td>Combustion product</td>
<td>24, 40, 43</td>
</tr>
<tr>
<td>Combustion progress</td>
<td>930</td>
</tr>
<tr>
<td>Combustion rate</td>
<td>611</td>
</tr>
<tr>
<td>Combustion simulation</td>
<td>45</td>
</tr>
<tr>
<td>Combustion speed</td>
<td>44, 840</td>
</tr>
<tr>
<td>Combustion system</td>
<td>617</td>
</tr>
<tr>
<td>Common rail</td>
<td>925</td>
</tr>
<tr>
<td>Common-Rail</td>
<td>562</td>
</tr>
</tbody>
</table>
Index

Common Rail System, 546
Common-Rail-System, 537
Comparative process, 37
open, 40
Comparative stress according to Von Mises, 886
Comparison process engine, 39
Component calculation, 287
Component deformation elastic, 275
Component optimization, 879
Component protection, 33
Composite material, 281
Compressed natural gas, 1029
Compression Efficiency, 503
Compression height, 83, 84 variable, 80
Compression ignition homogeneous, 619
Compression ratio, 17, 37, 79, 625, 926 effective, 17 geometric, 17 Variable geometric, 1062
Compression Ratio, 16
Compression ring, 102 L-shaped, 102
Compression ring set, 85
Compression stroke, 225
Compression volumes, 16
Compressive load, 234
Compressor
Electrical, 506
Compressor efficiency, 510
Compressor map, 489, 492, 509
Computing time, 881
Concave radius, 234, 235
Conchoid, 28
Condensation nucleus counter CPC, 805
Cone spray valve, 532
Configuration, 11
Connecting rod, 49
Conrod, 880
Conrod angular travel, 50
Conrod bearing, 254
Conrod bearing force, 56
Conrod bolt, 292
Conrod bolt connection, 294
Conrod bolts, 294
Conrod eye, 83, 85
Conrod pattern, 61
Conrod ratio, 50, 952
Constant pressure combustion, 40
Constant pressure cycle, 37
Constant pressure turbocharging, 489
Constant vacuum carburetor, 522
Constant vacuum carburettor, 517
Constant volume combustion, 40
Constant volume cycle, 37
Construction step, 144
Consumption, 444
Consumption map, 938
Consumption Maps, 19, 28, 29
Consumption potential, 921, 928, 930
Consumption reduction, 237
Consumption saving, 939
Consumption savings in NEFZ cycle, 214
Contact and opposite side, 87
Contact corrosion, 861
Contact force, 233, 235 dynamic, 237, 1078 kinematic, 237, 1078
Contact pressure, 980
Contact radius, 234
Contact surface, 233
Contact width, 233
crowning, 233
Contamination, 866
Continuous knocking, 829 Continuously variable transmission (CVT), 700
Control desmodromic, 6
Control deviation, 683
Controlled intake manifold, 270, 449
Control mechanism, 312
Control piston, 85, 87
control sleeve inline fuel injection pumps, 540
Control valve, 237
Conversion, 762
Conversion of energy, 570
Conversion of pollutants, 776
Coolant, 860
Coolant circuit, 146, 1059, 1108
Coolant concentrate, 861
Coolant flow simulation, 146, 1068
Coolant radiator, 738, 739
Coolant temperature, 933
Coolant thermostat, 743
Cooling, 842
Cooling air flow, 125
Cooling-air inlet, 951
Cooling by coolant, 737
Cooling channel, 87
Cooling channel piston, 89
Cooling fins optimization, 125 shape, 125
Cooling module, 742
Cooling system, 12, 735
Coordinate, 735
Cooling water flow rate, 46
Coordinate measurement unit, 153
Copper alloy, 259
Copper loss, 989
Cordierite, 793
Core-casting machines, 148
Core package process, 149
Core plug, 151
Cores, 151
Corner edge seal, 385
Corporate Average Fuel Economy, 1031
Corrosion, 818, 847, 868
Corrosion inhibitor, 819, 836, 847, 848
Corrosion protection, 843, 860
Corrosion resistance, 109
Cosworth low-pressure sand-casting process, 148
Countermass, 61
Counterweight, 61
Counting criterion, 796
Cracking component, 814
Crankcase, 58, 119
Crankcase scavenging, 4
Crankcase venting, 126
Crank diagram, 63
Crank gear, 49, 52
Crank gear force, 53, 58
Crank pin, 55
offset, 71
Crank pin force, 56
Crankshaft, 58, 159 cast, 162 manufacturing, 160 vibration resistance, 163
Crankshaft angle, 50
Crankshaft angle , 50
Crankshaft drive, 12, 49, 52, 79, 950 desaxised, 51
shifted, 51
Crankshaft material, 161
Crankshaft rumbling, 952
Crankshaft starter generator, 921, 922, 988, 1063
Crankshaft start generator, 468
Crankshaft throw, 55
CRC F-28, 831
Creepr resistance, 148
Crescent-Type Oil Pumps, 205
Critical plane, 888
Critical plane method, 888
Cross-flow cooling, 143
CRT filter system, 799
Cruise control, 725
Cummins engine, 5
Current converter, 995
Curve, 27
curved radius, 225
Curve representation, 27
CVS bag analysis, 80
CVT, 938
cw value, 919, 920
Cycle consumption, 29
Cyclical process, 35
Cyclical processes ideal, 37
Cyclical process work, 36
Cyclical service life, 1003
Cyclic irregularity, 60, 952
Cylinder, 15
wet, 121
Cylinder arrangement, 11, 13
Cylinder charge, 23
Cylinder charge dilution, 627
Cylinder cooling, 124
Cylinder cutout, 155, 170, 472, 475
Cylinder engineering, 120
Cylinder head, 137, 139
casting process, 147
Cylinder Head, 80
Cylinder head assembly, 196
Cylinder head bolt, 147, 155, 292
Cylinder-head cladding, 950
Cylinder head cooling, 143
Cylinder head cover, 950
Cylinder head development, 137, 146
Cylinder head geometry, 196
Cylinder head prototype, 144
Cylinder head shape, 138
cylinder power indicated, 21
Cylinder pressure characteristic, 623, 626
Cylinder running surface, 120, 123
Cylinders, 119
Cylinder shutdown, 79
Cylinder shutoff, 922, 931
Cylinder warping, 120, 275

D
Daimler
Gottlieb, 3
DaimlerChrysler, 1035
Damage accumulation of the piston, 885
Damage index, 887
Damage mechanism, 803
Dam charcoal number, 597
Damping, 72, 76, 950
Damping filter, 273
Danger classification, 817
DC
B, 15
T, 15
DC brushless motor, 1037
DC/DC converter, 704
DC machine, 1037
DC motor, 722, 1037
Brushless, 1037
Deactivation thermal, 785
Dead volume, 16
Deaxising, 52
Decoupling system, 289
Deep-bed filter medium, 867
DEF, 851
Deformation thermal, 886
Degree of absorption, 948
Degree of fraction separation, 865
Degree of radiation, 947
Degree of separation, 792, 863
Degree of transmission, 947
Delta-Control, 457
Denitrification, 803
Density, 826
Density sensor, 816
Deparaffination, 845
Deposit, 861
deposition effects, 794
deposition mechanism, 794
Deposits, 847
depth filters, 796
depth of Discharge, 1003
design, 139
engineering, 83
stopper-less, 280
design cylinder pressure, 885
design of the PEM Fuel Cell, 1042
desmodromic system, 225
desulphurization temperature, 788
detector, 972, 973
Paramagnetic, 973
detergent and dispersant additives, 819
detergents, 835, 836, 847
detergents/dispersants, 847
deh-throttling, 926
dethrottling, 237, 472
diameter aerodynamic, 790
di combustion process, 928
die, 149
die-cast aluminum oil pan, 953
die casting, 91, 149
die casting process, 120, 151
diesel
Rudolf, 3, 36
diesel combustion, 607
diesel engine, 922, 925
diesel engine, 10
Diluting agent rotating, 807
dilution, 807
dilution controlled combustion system, 620
dimethyl ether, 823
DIN EN 228, 826
DIN EN 590, 815
Direct cooling, 12
Direct-current motor, 722
Direct drive, 937
Direct injection, 11, 526, 894, 922, 924, 925, 926, 952
direct-injection, 7, 139, 471
Direct Injection
Air-supported, 527
Direct Numerical Simulation, 603
Dirt storage capacity, 867
discharge port variant, 142
dispersants, 847
displacement
Variable, 1062
displacement line, 491
displacement magnet, 447
displacement pump, 562, 565
distance-related fuel consumption, 921
distillation atmospheric, 845
distribution
bimodal, 791
distribution of lubrication film, 255
distributor injection pump, 541, 542
disulfide sulfur, 834
dividing characteristics, 796
DNS, 603
DOHC, 225, 231
DOHC engine, 226
double-beveled oil control ring, 103
double-layer capacitors, 706
double overhead camshaft, 225
double overhead camshaft = DOHC, 164
double stopper, 279
double trapezoid ring, 102
downdraft carburetor, 517, 518
down sizing, 479, 920, 922, 1030, 1062, 1063
downsizing, 924, 1062
DPF, 898
drag coefficient, 918
drive-by-wire, 725
drive control software, 678
drive element, 227
drive flange, 226, 227
drive machines, 9
drive moment, 233
driven machines, 9
drive past test legal, 952
driver behavior, 939
drive shaft, 952
drive sprocket, 226
drive train, 77, 685
driving
Electric-only, 1031
driving mode, 935
driving resistance, 918
driving speed, 921
driving style, 938
drop in viscosity, 844, 856
droplet size, 532
Exhaust gas recirculation valve, 728, 729
Exhaust gas system, 430
Exhaust gas temperature, 33, 300
Exhaust gas temperature map, 33
Exhaust gas threshold current, 746
Exhaust gas treatment, 897
Exhaust Gas Treatment for gasoline Engines, 761
Exhaust gas turbocharging, 7, 493
two-stage, 506
Exhaust Manifold, 299, 878
Exhaust measurement in the combustion chamber, 750
Exhaust measuring technology, 746
Exhaust muffler, 950
Exhaust muzzle noise, 949
Exhaust opens, 433
Exhaust port valve seat insert, 195, 1071
Exhaust side adjustment, 236
Exhaust slot, 384
Exhaust system, 965
Exhaust system seal, 282
Exhaust treatment in Diesel Engines, 782
Exhaust treatment systems such as particle filters, 818
Exhaust turbochargers, 444, 489
Exhaust valve, 138, 419, 950
Expansion
isentropic, 36
isothermal, 36
isothermic, 36
Experiment design, 893
Explosion
isentropic, 36
isothermal, 36
thermal, 234
Explosion limit, 824
Explosion Limit, 593
External air pipe, 269
External Gear Pump, 206
Extraction
isokinetic, 805
Extrusion casting, 91

F
FAME, 814
Fan drives, 741
Fans, 741
Fast-off detection, 700
Fatigue limit, 187
FCKW, 823
FEM, 879
FEM calculations, 236
Fermentation, 840
Ferrotherm® piston, 90
FLA analysis, 824
Fiber rope filter, 793
Fiber rope, 818
Filing capacity, 103
Filling level measuring, 566
Filling method, 437
Filling process, 148
Filter, 537
open, 778
Filter candle, 793
Filter characteristics, 796
Filter depth, 795, 802
Filter element, 269
Filter fabric, 864
Filter felt, 794
Filter fineness, 865, 866
Filter fleece, 794
Filter head, 868
Filtering, 564
Filter medium, 792
Filter paper, 794
Filter surface area, 867
Filter testing machine, 804
Filtration, 268, 863, 870
Filtration velocity, 865
Final drive systems, 706
Fine dust, 789
Fines, 918
Finger follower, 146, 168
Finite element analysis, 880
Finite element method, 875
Finite Elements, 6
Finite elements mesh, 881
Finite volume method, 891
Fire land, 84
Firing channel, 385
Firing sequence, 69, 71
Firing sequences, 71
First-order inertial force, 61
oscillating, 63
First ring land, 84
Fischer-Tropsch synthesis, 814, 834
Fixed air funnel carburetor, 517, 519, 523
Flaked graphite, 227
Flame
Non pre-mixed, 596, 598
Partial pre-mixed, 598
Pre-mixed, 596, 597
Flame front, 43
Flame ignition, 3
Flamelets-Model, 604
Flame path, 930
Flame propagation, 623
Flame Propagation, 596
Flame speed, 627
Flame Speed, 591
Flame Type, 596
Flange concepts for tube manifolds, 304
Flap valve, 729
Flash point, 817
Flat-based tappet contact, 236, 1078
Flat seal, 280
Flat-tube coolers, 740
FlexRay, 673
FlexRay bus, 673
FlexRay fieldbus, 673
Flexural load, 233
Float artery valve, 517
Float chamber, 516, 519, 522
Floating axle, 464
Flow
dynamic, 532
static, 532
Flowability, 818
Flow calculation, 889
Flow Cross Sections, 435
Flow determination, 436
Flow factor for the valve, 436
Flow function, 438
Flow improver, 818
Flow measuring technology, 965
Flow noises, 950
Flow process
stationary, 46
Flow property, 847
Flow pump, 562, 565
Flow range
linear, 532
Flow simulation, 146, 889
Flow turbulence, 891
Fluctuation
cyclical, 624
Fluid or viscous friction, 389
“Flying lawn chair” by Baumm, 382
Flywheel, 952
Flywheel bolt, 292, 296
Flywheel energy storage device, 1039
FM method, 622
Foam, 950
FON, 829
Force
acting on the conrod, 55
on crankshaft drive, 52
on piston, 54
on wristpin, 54
Forced-feed lubrication, 858
Ford
Henry, 4
Forged conrod, 294
Forging, 91, 160
Forked lever, 225
Formula
analytical, 880
Formula 1 piston, 89
Fossil fuels, 917
Four-cycle engine, 803
Four-stroke process, 11
Four-valve cylinder head, 141, 154
Four-valve technology, 930
Free burning temperature, 574
Free-piston linear generator, 1047, 1050
Freezing suitability, 1045
Frequency range, 592
Fresh charge mass
theoretical, 23
Fresh oil lubrication, 838
Friction, 154, 842
Crankshaft, 396
Frictional power, 880
Frictional Power, 389
Friction loss, 225, 847
Friction map, 933
Friction Mean Pressure, 22
Index

Friction modifiers, 835, 836, 847
Friction vibration, 385
Front octane number, 832
Frost protection, 860
FTP, 926
FTP 75 Test cycle, 748
Fuel, 10, 24, 589, 1029
 Gaseous, 10
 liquid, 10
 reformulated, 834
 solid, 11
 sulfur-free, 799
Fuel and drive strategy, 1030
Fuel atomization quality, 529
Fuel cell, 704, 1031, 1042
Fuel Cell as an APU, 1047
Fuel cell concept vehicles, 1045
Fuel cell drive system, 1042, 1044
Fuel cell in the vehicle, 1043
Fuel cell stack, 1043
Fuel cell vehicle, 1044
Fuel charge, 224
Fuel Chemistry, 589
Fuel conditioning, 965, 968, 969
Fuel consumption, 917, 921
 effective specific, 19
 specific, 19
Fuel Consumption, 7, 19, 79, 917, 919, 927, 934, 942
Fuel consumption lead, 1061
Fuel consumption measurement, 965
Fuel consumption measuring technology, 961
Fuel consumption potential, 919, 1061
Fuel consumptions, 1033
Fuel consumption saving, 934
Fuel economy oil, 849
Fuel filters, 866
Fuel hydraulic circuit, 890
Fuel injection (IDI)
 Indirect, 614
Fuel mass flow, 965
Fuel rail, 483
Fuel return, 523
Fuel saving potential, 936
Fuel-saving potential, 926, 936
Fuel savings, 472
Fuel supply systems, 557
Fuel Supply Systems, 560
Fuel Tanks, 557
Full bead, 277, 283
Full-flow burner, 797
Full flow dilution system, 974
Full hybrid, 703, 987, 1031
Full-load, 28, 32, 531
Full-load curve, 27
Full-load enrichment, 928
Full lubrication, 842
Full-skirt piston, 89
Function
 model-based, 681
 torque-based, 680
Function verification
 virtual, 889
Fundamentals of Thermodynamics, 35

G
Gap corrosion, 861
Gap width, 106
Gas composition, 44
Gas constant
 general, 40
Gas diesel engine, 623
Gas engine oil, 850
Gas escaping, 83
Gas exchange, 145, 225, 269
Gas exchange control system, 11
Gas exchange cycle, 79, 231
Gas force, 52, 225, 235, 952
Gas fuel, 836
Gasket testing, 287
Gasoline, 824, 1030
alternative, 836
Gasoline direct injection, 529, 927, 928
Gasoline engine, 922, 926
Gasoline filters, 866
Gasoline fuel in-tank pump, 565
Gasoline hybrid drive system, 1024
Gasoline supply systems, 563
Gasoline tank, 557
Gasoline vapor, 731
Gas port, 138
Gas pressure, 225
Gas-switching element, 139
Gas torsional force, 75
Gas turbine, 1031, 1041
Gas turbine engine, 6
Gas work, 20
Gauge pressure tank diagnosis pump, 732
Gear pump, 216
Gear rattle, 950
Gear set design, 216
Gear shift speeds, 939
Gearshift strategy, 699
Gearwheel oscillations, 950
Generating electricity, 1056
Generator, 922, 1104
 Thermoelectric, 1013
 Generator control, 1055
 Generator Operation Mode, 494
 Generator whistling, 952
German monopoly administration for spirits, 814
GH2, 836
Glass fiber, 870
Glow discharge
 Glow Discharge, 569
 Glow Plug, 582
 Glow System, 581
glow tube ignition uncontrolled, 3
Glycerides and glycerins, 821
Glycols, 860
GM, 1035
Gray-cast camshaft, 232
Gray cast iron, 147
Gray cast iron running surface, 122
Gray cast iron sleeve, 122
Gray cast structure, 227
Greenhouse gas emissions, 821
Greenhouse gases, 821
Grooved bearingsTM, 263
Gross reaction equation, 591
G-Rotor pump, 562
GTL (gas-to-liquid), 836
GTL Gasto Liquid, 823
Gümbel-Holzer-Tolle procedure, 74
H
H2–O2 System, 593
Half bead, 277, 283
Half-shell manifold, 302
Hammering, 952
Hard anodizing, 92
Hardening radii
 inductive, 163
H bridge circuitry, 674
HCCI, 594, 928
HCCI Process, 594
HC/CO conversion, 772
HC emission, 16, 30
HC emissions map, 30
HCF, 886
HC-storage catalytic converter, 764
Head contact area, 296
Head gasket, 275
Heated catalyst
 electrical, 763
Heat engine, 35
Heating flange, 584
Heating Flange, 584
Heating system
 sequential, 798
Heat loss, 46
Heat management, 934, 1059
Heat management method, 934
Heat Range, 574
Heat removal, 35, 125
Heat stress, 803
Heat supply, 35
Heat throughput, 736
Heat transfer, 12
Heat transfer coefficient, 736
Heat transfer model, 600
Heat transfer process, 35
Heavy gasoline, 3
Heavy oil operation, 623
Height offset of the balance shaft, 69
Height profiling, 278
Helical compression spring, 187
Helical slide honing, 123
Helical toothing, 237
Helmholtz resonator, 273, 428, 951
Herztian pressure, 225, 232, 234, 235, 1077
dynamic, 235, 1077
 kinematic, 235, 1077
HFRR test, 820
Index

Hydraulic valve clearance compensation element (HVA), 227
Hydraulic valve lifter (HVA), 234
Hydrocarbon aromatic, 833
Hydrocarbon (alkane) paraffinic, 814
Hydrocarbon indexing, 752
Hydrocarbon (PAH) polycyclic aromatic, 818
Hydrocarbons, 753
Hydrofinishing, 845
Hydrogen, 7, 838, 943, 1030, 1043, 1044
Hydrogen combustion, 593
Hydrogen direct injection, 386
Hydrogen engine oil, 850
Hydrogen infrastructure, 1047
Hydrogen production, 1046
Hydrogen rotary piston engine, 386
Hydrogen storage system, 1043
Hydrogen storage technology, 1042
Hydrogen sulfide (H2S), 834
Hydrogen treatment, 818
Hydrothermatik® piston, 88
Hydrothermik® piston, 87
Hypocycloids, 383
HYZEM driving cycle, 920

Icing, 523
Idle revolutions, 520
Idle-speed control, 724
Idle-speed control in SI engines, 724
Idling air nozzle, 517
Idling fuel consumption, 921
Idling nozzle, 517
Idling rpm control, 523
Ignitability, 816
Ignition, 569, 609
Ignition coil, 571
Ignition delay, 580
Ignition delay time, 594
Ignition jet method, 622
Ignition lag, 609, 816, 817
Ignition map, 32
Ignition pressure, 275
Ignition system, 12, 930
Ignition systems alternative, 572
ILSAC certification, 852
Immersion lubrication, 4
Impaction, 794
Impact load damping, 724, 725
Impregnating agent, 867
Impression of comfort, 959
Impulse counting procedure, 963
Impulse turbocharger valve, 479
Inclusion, 188
Increase azeotropic, 825
Indexing method, 391
Individual Pump Systems with a Line, 538
Individual valve system, 147
Inertial force, 52, 60, 61, 62, 63, 235, 952
first order, 63
oscillating, 52, 61
rotating, 52, 61
Inertial torque, 61, 64
oscillating, 65
rotating, 65
Infinite variability, 470
Influence of ignition angle, 624
Injection Fuel Metering, 532
Injection mechanical, 6
Injection map, 32
Injection nozzles and nozzle-holder assemblies, 551
Injection orifice design, 554
Injection pressure, 533, 926
increase, 551
Injection process, 535
Injection pump cam, 227
Injection rate, 534
Injection system adjusting, 553
Injection System, 534
Injection time, 535, 556
Injection timing system, 537
Injection valve, 537
Inlet closes, 434
Inlet opens, 434
Inlet timing, 231, 449
Inlet valve, 138
Inline engine, 3, 12
Inline filter, 867
Inline fuel injection pumps, 539
Inner contour profiled cavity, 232
Input invariance, 948
Insert, 276
Insertion insulation increment, 947
Insertion technique, 120, 121
In-situ exhaust measurement, 749
In-situ measuring technology, 803
Installation space, 803
Installation thickness, 277
Installed flexure tension, 106
Installing in the Cylinder Head, 202
Insufficient lubrication, 229, 868
Insulation, 947
Intake Air Duct, 518
Intake air volumetric flow measurement, 965
Intake manifold, 950
Intake manifold charging model, 681
Intake manifold injection, 11, 895
Intake manifold injection systems, 523
Intake manifold pipe variables, 428
Intake manifold pipe cross section, 428
Intake manifold pipe length, 428
Intake muffler, 950
Intake opening, 269
Intake opening noise, 949
Intake port variant, 142

Higher NOx emissions, 16
High Pressure Direct Injection, 526
High-pressure fuel injector, 530
High-pressure fuel pump, 530
High Pressure Injection, 528
High pressure line, 537
High-pressure pump, 529, 546
High-pressure rail, 548
High-pressure regulator, 529
High-pressure sensor, 716
High-pressure storage tank, 838
High pressure system, 537
High-speed engine, 14
High-temperature aging, 772, 773
High-temperature battery, 999
High-temperature electronics, 1030
High-temperature fuel cell, 1048
High-temperature high-shear viscosity, 849
HNBR material, 243
Hole nozzles, 552
Hollow casting cylindrical, 232
Hollow drilling, 232
Holography acoustic, 956
homogeneous self-ignition, 928
Homogenous Charge Compressed Ignition, 928
Honda IMA concept, 1034
Honda MMC process, 122
Honeycomb cooler, 3
Honeycomb stopper, 277
Hooke’s Law, 287
Horizontal draft carburetor, 518
Hot cooling, 1063
Hot driving, 832
Hot gas generator, 508
Hot gas simulation, 291
Hot operation, 522
Hot water corrosion, 861
Housing-type fuel filter, 868
HTD profile, 244
HTHS, 849
HVOF layers, 108
Hybrid Parallel, 1030, 1031
Series, 1030, 1031
Hybrid battery, 703
Hybrid concept, 934
Hybrid drive system, 983, 1029, 1030, 1039
Fuel consumption, 1016
power-split, 987
Power-split, 1031
Hybrid engine, 10
Hybrid propulsion system, 703
Hybrid vehicle, 934, 1030
Hydraulic element, 167
Hydraulic pump, 932
Hydraulic tappet, 466
Hydraulic valve, 451
Hydraulic valve clearance compensation element (HVA), 227
Internal Combustion Engine Handbook | 1117
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>268</td>
</tr>
<tr>
<td>462</td>
</tr>
<tr>
<td>867</td>
</tr>
<tr>
<td>701</td>
</tr>
<tr>
<td>695</td>
</tr>
<tr>
<td>794</td>
</tr>
<tr>
<td>490</td>
</tr>
<tr>
<td>740</td>
</tr>
<tr>
<td>227</td>
</tr>
<tr>
<td>952</td>
</tr>
<tr>
<td>928</td>
</tr>
<tr>
<td>623</td>
</tr>
<tr>
<td>867</td>
</tr>
<tr>
<td>701</td>
</tr>
<tr>
<td>695</td>
</tr>
<tr>
<td>236</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>455</td>
</tr>
<tr>
<td>784</td>
</tr>
<tr>
<td>585</td>
</tr>
<tr>
<td>589</td>
</tr>
<tr>
<td>212</td>
</tr>
<tr>
<td>1034</td>
</tr>
<tr>
<td>490</td>
</tr>
<tr>
<td>926</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>596</td>
</tr>
<tr>
<td>227</td>
</tr>
<tr>
<td>952</td>
</tr>
<tr>
<td>566</td>
</tr>
<tr>
<td>203</td>
</tr>
<tr>
<td>847</td>
</tr>
<tr>
<td>523</td>
</tr>
<tr>
<td>512</td>
</tr>
<tr>
<td>928</td>
</tr>
<tr>
<td>623</td>
</tr>
<tr>
<td>203</td>
</tr>
<tr>
<td>950</td>
</tr>
<tr>
<td>928</td>
</tr>
<tr>
<td>989</td>
</tr>
<tr>
<td>989</td>
</tr>
<tr>
<td>161</td>
</tr>
<tr>
<td>585</td>
</tr>
<tr>
<td>867</td>
</tr>
<tr>
<td>1034</td>
</tr>
<tr>
<td>114</td>
</tr>
<tr>
<td>886</td>
</tr>
<tr>
<td>143</td>
</tr>
<tr>
<td>220</td>
</tr>
<tr>
<td>820</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>531</td>
</tr>
<tr>
<td>531</td>
</tr>
<tr>
<td>136</td>
</tr>
<tr>
<td>286</td>
</tr>
<tr>
<td>84</td>
</tr>
<tr>
<td>85</td>
</tr>
<tr>
<td>1038</td>
</tr>
<tr>
<td>1038</td>
</tr>
<tr>
<td>706</td>
</tr>
<tr>
<td>276</td>
</tr>
<tr>
<td>800</td>
</tr>
<tr>
<td>835</td>
</tr>
<tr>
<td>824</td>
</tr>
<tr>
<td>956</td>
</tr>
<tr>
<td>806</td>
</tr>
<tr>
<td>148</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>118</td>
</tr>
<tr>
<td>861</td>
</tr>
<tr>
<td>567</td>
</tr>
<tr>
<td>292</td>
</tr>
<tr>
<td>293</td>
</tr>
<tr>
<td>700</td>
</tr>
<tr>
<td>706</td>
</tr>
<tr>
<td>707</td>
</tr>
<tr>
<td>837</td>
</tr>
<tr>
<td>838</td>
</tr>
<tr>
<td>839</td>
</tr>
<tr>
<td>836</td>
</tr>
<tr>
<td>806</td>
</tr>
<tr>
<td>842</td>
</tr>
<tr>
<td>123</td>
</tr>
<tr>
<td>956</td>
</tr>
<tr>
<td>800</td>
</tr>
<tr>
<td>385</td>
</tr>
<tr>
<td>892</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>281</td>
</tr>
<tr>
<td>512</td>
</tr>
<tr>
<td>531</td>
</tr>
<tr>
<td>456</td>
</tr>
<tr>
<td>597</td>
</tr>
<tr>
<td>218</td>
</tr>
<tr>
<td>235</td>
</tr>
<tr>
<td>456</td>
</tr>
<tr>
<td>598</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>830</td>
</tr>
<tr>
<td>79</td>
</tr>
<tr>
<td>632</td>
</tr>
<tr>
<td>190</td>
</tr>
<tr>
<td>32</td>
</tr>
<tr>
<td>477</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>236</td>
</tr>
<tr>
<td>79</td>
</tr>
<tr>
<td>683</td>
</tr>
<tr>
<td>706</td>
</tr>
<tr>
<td>707</td>
</tr>
<tr>
<td>707</td>
</tr>
<tr>
<td>419</td>
</tr>
<tr>
<td>233</td>
</tr>
<tr>
<td>230</td>
</tr>
<tr>
<td>849</td>
</tr>
<tr>
<td>1000</td>
</tr>
<tr>
<td>73</td>
</tr>
<tr>
<td>255</td>
</tr>
<tr>
<td>255</td>
</tr>
<tr>
<td>792</td>
</tr>
<tr>
<td>803</td>
</tr>
<tr>
<td>707</td>
</tr>
<tr>
<td>1038</td>
</tr>
<tr>
<td>1030</td>
</tr>
<tr>
<td>707</td>
</tr>
<tr>
<td>836</td>
</tr>
<tr>
<td>253</td>
</tr>
<tr>
<td>253</td>
</tr>
<tr>
<td>792</td>
</tr>
<tr>
<td>803</td>
</tr>
<tr>
<td>700</td>
</tr>
<tr>
<td>706</td>
</tr>
<tr>
<td>707</td>
</tr>
<tr>
<td>1038</td>
</tr>
<tr>
<td>1038</td>
</tr>
<tr>
<td>283</td>
</tr>
<tr>
<td>118</td>
</tr>
<tr>
<td>861</td>
</tr>
<tr>
<td>567</td>
</tr>
<tr>
<td>302</td>
</tr>
<tr>
<td>622</td>
</tr>
<tr>
<td>302</td>
</tr>
<tr>
<td>303</td>
</tr>
<tr>
<td>367</td>
</tr>
<tr>
<td>700</td>
</tr>
<tr>
<td>934</td>
</tr>
<tr>
<td>567</td>
</tr>
</tbody>
</table>

Index

Intake system, 268
Intake valve lift curve, 462
In-tank unit, 867
Integrated powertrain management (IPM®), 701
Integrated starter/alternator (ISG), 695
Interception, 794
Intercooling, 490, 740
Interior high-pressure forming, 227
Interior noise, 952
Internal cooling, 928
Internal efficiency, 623
Internal Gear Pump, 203
Internal noise levels, 950
Internal pressure simulation hydraulic, 290
Intervention Mechanism, 595
Ionic Current Measurement, 585
Iron loss, 989
IRP, 212
ISAD system, 161, 1034
Isentropic exponent, 37, 490, 926
Isentropic relationship, 40
Isocyanate, 40
Isoparaffin, 824
IT material, 281
IV. Quadrant, 512

J
jet-directed method, 928
Jet direction, 531
just-in-time, 6

K
Karlovitz number, 597
Key oil pump value, 218
Kinematics, 423
Kinematics calculation, 235
Kink lever, 456
Klimov-Williams Criteria, 598
Knight sleeve valve engines, 4
Knocking control, 688
Knocking sensitivity, 79, 830
Knocking signal, 688, 689
Knock sensor, 829
Kolmogorov Axis, 596
KS Lokasil® process, 122

L
Laboratory testing procedures, 290
Lacquer formation, 847
Lambda closed-loop control, 523
Lambda control, 684
Lambda-control, 521
Lambda sensor, 7, 713
Lambda window, 683
Lancaster balancing, 952, 959
Lane angle of ascent, 920
Lapping, 124
Large-Eddy Simulation, 603
Laser double-pulse holography, 956
Laser-induced incandescence, 976
Laser texturing, 123
Laser vibrometry, 956
LASP lubricating oil, 800
Lateral exhaust, 385
Lattice gas theory, 892
Law of thermodynamics, 40
Law of thermodynamics, 40
Layer approach, 677
Layered-metal head gasket Metaloflex®, 276
LCF, 886
Lead-acid, 1038
Lead-acid accumulator, 706
Lead-acid battery, 998
Lead as anti-knocking agent, 835
Lead compound, 824
Leaded bronze, 259
Leak Rate, 532
Lean-burn concept, 926
Lean-burn operation, 926
Lean operation, 530
homogeneous, 531
Length reduction, 73
LES, 603
Lever-type sensor, 566
Lexus GS 450 h, 1034
Lexus RX 400 h, 1034
LH2, 836
Lifetime filter element, 867
Lifetime fuel filter, 867
Load bearing capacity of the lubricating film, 236
Load change valve, 225
Load controlling, 444, 471
Load cycle loss, 79
Load distributions, 188
Load influence, 632
Load on valve seat inserts, 190
Load range, lower, 32
Load step, 477
Locating bearing, 253
Locus diagram, 62, 64
Longitudinal flow cooling, 143
Longitudinal frame concept, 114
Long-time fatigue, 886
Loop scavenging, 441
Loop scavenging cylinder, 313
Loss analysis, 632
Loss of contact, 236
Lost-foam process, 150
Lost-Motion Element, 455
Loudness, 957
Low-pressure die-casting, 114
Low-pressure sand-casting process, 148, 151
Low-pressure system, 536
Low-speed engine, 14
Low speed concept, 925
Low-temperature behavior, 818
Low temperature oxidation, 594
Low-temperature pump viscosity, 849
Low-voltage impactor ELPI, 806
LPG, 836, 1029, 1030
I regulation, 683
LS 600 h, 1034
Lubricant, 842
Lubricating film pressure maximum, 255
Lubricating gap smallest, 255
Lubricating oil ash, 792, 803
Lubrication, 842
Lubrication film pressure
Lubricity additives, 820
Lubricity improvers, 835
Lubrifier modifiers, 836

M
Mach number, 599
Macro-sealing, 283
Magnesium, 118
Magnesium ion, 861
Magnetic Passive Position Sensor, 567
Main bearing cap bolt, 292, 293
Main bearing force, 58
Main bearing pin force, 58
Main injection, 32
Main nozzle, 516
Manifold absolute pressure sensor, 715
Manifold and turbocharger module, 303
Manifold components, 304
Manifold design, 299
Manifolds
Air Gap Insulation, 302
MAN-M process, 622
Manual starter, 520
Manual transmission automated, 700
Map-controlled thermostat, 934
MAPPS, 567
Marginal condition
thermal, 881
Masking, 462
Mass
moving, 232
oscillating, 51
static, 232
Mass air-flow sensor, 717
Mass balancing, 66, 67, 68, 952
Mass criterion, 796
Mass reduction, 73
Mass spectrometry, 749
Material balance, 41
Materials for piston rings, 109
Mating material
tribologic, 123
Maximum pressure, 37
Maximum pressure limit, 38
maximum speed, 937
Maybach
Wilhelm, 3
Mean friction pressure, 389
Mean pressure, 491, 923, 928
effective, 16, 21, 415, 487
indicated, 20
indicated, 21, 479
Mean pressure curve, 493
Mean stress correction according to
Smith or Haigh., 887
Measureand, 961, 963
Mechanical, 963
Thermodynamic, 964
Measurement, 961, 963, 964, 965, 966,
969, 972, 973, 975, 976
Dynamic, 965
opacimetric, 805
Stationary, 965
Measurement data evaluation, 976
Measurement data processing, 976
Measurement principle
capacitive, 716
Measurement techniques, 976
Measuring technology, 961, 972, 973
Blow-by, 965, 969
Blow-by gas, 965
Fuel consumption, 965
Medium-pressure sensor, 716
Medium-speed engine, 14
MEOH, 836
Mercaptan sulfur, 834
Mercaptan (thioalcohol), 834
Mercedes-Simplex-Motor, 3
Meshing, 881
Metal abrasion, 857
Metal-containing additive, 820
Metal deactivator, 836
Metal-elastomer gasket, 285
Metal-elastomer head gasket, 276
Metal-elastomer seal, 281
Metal foam, 792
Metal head gasket, 120
Metal hydride storage tank, 838
Metaloseal, 282
Methanol, 1030
Method
gravimetric, 789
MF system, 104
Micro hybrid, 987
Micro-hybrid, 703
Middle distillate, 814
Mild hybrid, 703, 987, 1031, 1032
Mileage, 942, 943
MIL-L, 851
Miller cycle (cycle), 231
Miller Process, 471
Miller-Process, 477
Miner rule, 888
Minimum Ignition Energy, 569
Minimum injection functionality, 535
Minimum requirement, 815, 826
Minimum start speed, 580
Minimum wrap angle, 250
Minimum wristspin play, 85
Mixed friction, 253, 389
Mixed hybrid, 1030, 1031
Mixed octane number, 829
Mixing pipe, 517
Mixure
lean, 25
rich, 25
uncombusted, 43
Mixture enrichment, 521
Mixture formation, 11, 520, 608, 894
Mixture Formation in Diesel Engine,
532
Mixture generation
external, 623
Mixture homogenization, 619
Mixture Ignition, 576
Mixture leanness, 926
Mixture preparation homogeneous, 623
stratified, 623
Mobility, 795
Mobility analyzer
differential, 805
Mobility diameter, 790
Modal analysis, 956
Model
multidimensional, 44
Phenomenological, 599, 601
Thermodynamic, 599
zero-dimensional, 43
Zero-dimensional, 599
Model calculation, 35, 42
Model Development, 598
Model manufacturing, 151
Modified Unintown Method, 831
Modular graphite, 227
Modulation, 947, 952
Module, 286
Multi-functionality of, 287
Moles
specific, 40, 43, 44
Molybdenum coating, 108
Moment
dynamic, 235
resulting, 233
transferable, 235
Momentary combustion chamber, 16
MON, 829
Monoethyleneglycol, 860
Monolithic design, 120
Monopropylene glycol, 860
Monotherm® piston, 90
Mounting system, 275, 285
Movement equation, 73
Muffler, 803
Muffler system, 430
Multi-body simulation, 236
Multi-function layer design, 278
Multigrade, 869
Multi-grade oil, 849
Multi-layer steel gasket, 276
Multiple injections, 534, 535
Multiple power driver, 291
Multi-point fuel injection, 831
Multi-rib V-belt, 249
Multi-stage charging principle, 926
Multi-stage regulation, 210
Multi-valve engine, 137, 225
Multi-valve technology, 137
Multizone model, 35
Muzzle noise, 950
MVEG, 214

N
Natural bending frequency, 953
Natural frequency, 73, 236
Natural gas
compressed, 823
Natural gas or synthetic gas, 823
Natural oscillation mode, 74
Natural torsion frequency, 953
Navier-Stokes equation, 891
NEDC, 214, 919, 939
Needle bearing, 236
Needle guide
doubled, 554
Needle nozzle, 517
Needle seat, 532
NEFZ cycle, 212, 213
Neutralization of acids, 847
Newtonian liquid, 843
Newton's shear stress law, 845
Nickel-cadmium, 1038
Nickel-metal hydride, 1033, 1034, 1038
Nickel-metal hydride battery, 998,
1033
NiMH, 1038
NiMH battery, 706
Nitric oxide formation, 592
Nitriding, 108, 163
Nitrite amine phosphate, 860
Nitrocarburizing, 108
Nitrogen oxide emission, 728
Nitrous oxide, 754
Nitrous oxide mass emissions, 748
Noble metal electrode, 577
NO formation, 35
Noise characteristic, 952
Noise emission, 220, 817, 945
Noise-insulation materials, 959
Index

Noise radiation, 947, 950, 953
Noise reduction, 952
Noise-reduction provisions, 950
Noise source, 949
Noise suppression, 803
Noncombusted, 43
Nonferrous-metal deactivator, 847
Nonlip condition, 804
Non-woven cotton fabric, 950
Non-woven fiber fabric, 951
Normal balance, 67
NOx Adsorber, 786
NOx emission, 30, 31
Noxious diesel, 782
NOx reduction, 767
NOx storability, 770
NOx storage catalytic converter, 769, 927
Nozzle carburetor, 3
Nozzle-holder assembly, 554
Nozzle-holder combination, 555
Nozzle-hole cross section geometrical, 556
Nozzle hole diameter, 534
Nozzle needle conical, 517
Nozzle-needle stroke, 555
Nozzles, 519
NSU Spider, 382
NTC, 593

O
OBD II legislation, 731
OCPTM-air injector, 528
OCPTM injector, 528
Octane number, 590, 824, 829
Octane number requirement, 830
Odor improvers, 820
OEM, 851
Offset limit, 299
Offsetting, 85
OHC, 6, 225, 226
O–H–C-balance, 35
OHC equilibrium, 43
OHC-System, 592
OHV, 6, 226, 231
Oil
naphtene-based, 844
paraffin-based, 844
Oil carbonization, 86
Oil consumption, 143, 411, 969
Oil consumption measurement technology, 968
Oil control ring, 85, 103
Oil cooling, 741
Oil dilution, 857
Oil feed geometry, 256
Oil mist separation integrated, 230
Oil oxidation, 847
Oil pan, 950
Oil pan fixing bolt, 292
Oil pan screw, 297
Oil program, 815, 826
Oil pump, 202, 933
Oil requirement, 143
Oil separation rate, 230
Oil slotted ring, 103
Oil stripping system three-part, 104
Olefin, 824
Olefin content, 834
On-board power supply, 921
Opacity measurement, 975
Open-deck design, 120
Operating characteristic, 465, 1082
Operating ramp, 234
Operating stress, 106
Operating time variation, 453
Operating characteristics, 15
Operating map, 28
Operating optimum, 938
Operating point, 494
Operating point shift, 80, 922, 923
Operating principle, 11
Operating strategy, 1014
engine, 28
Operating time difference, 63
Operational strength, 881, 886
Operational strength calculation, 879
Operational vibration analysis, 956
Opposed piston uniflow scavenging, 441
Optimization of geometry, 879, 1093
Optimization procedure, 877
Order, 947, 954
Order curve, 955
Origin, 818
OSEK operating system, 677
Otto Nikolaus August, 1
Outlet timing, 231
Output maximum, 18
Ovality, 106
Oval sprocket, 247
Oval sprocket technology, 247
Overall acoustic level, 272, 946
Overall efficiency, 921
Overall process analysis, 891
Overall transmission ratio, 924, 937
Overdrive, 924
Overhang, 256
Overhead camshaft, 225
Overhead valve = OHV, 164
Overhead valves = OHV, 225
Overlapping, 449
Overlay
electroplated , 261
sputtered, 262
Overrun, 523
Overrun fuel cut-off, 522
Overrunning, 536
Overshooting, 188
Overspeed design, 937
Oxidation catalytic converter, 799
Oxidation catalytic converters, 818
Oxidation inhibitor, 847
Oxygen, 1043

Oxygen compound, 839
Oxygen storage unit, 762

P
Package model, 602
Panel resonator, 951
Panic valve, 209
Paraffin, 824
Parallel crank gear, 80
Parallel hybrid, 703, 1031
Parameter fractal, 790
psycho-acoustic, 957
Partial flow dilution system, 974
Partial load, 78, 433
Partial load mode, 425
Partial-load range, 931
Partial lubrication, 842
Particle concentration, 866
Particle definition, 789
Particle erosion, 866
Particle filter catalytic, 808
Particle filter regeneration, 724
Particle Filters, 788
Particle mass, 818
Particle measuring technology, 805
Particle property, 789
Particles, 788
Particulate emission, 32
Particulate formation, 32
Particulate measurement, 974
PASS, 975
Passage of dust, 863
Passenger car fuel-cell drive system, 1043
Passenger cars, 1053
Past accelerating, 272
Patent application, 447
Peak-and-hold, 669
Peak combustion temperature, 728
Peak pressure, 16
PEM, 1042, 1048
PEM fuel cell, 1042, 1048
PEM fuel cell stack, 1043
Pencil coils, 572
Pencil stream valve, 532
Pendulum-slider pump, 207
Penetration, 796
Performance effective, 415, 487
Performance class, 850
Performance increase, 237
Performance test, 804
Permanently-excited synchronous motor, 706
Phase diagram, 72
Phase direction diagram, 75
Phase rotation angle, 225
Phases of the spark, 569
Phasing, 462, 463
Phlegmatization, 1016
Phosphating, 92
Plasma spatter layers, 108
Plastic oil pan, 126
Plateau honing, 123
Play, 234
Play adjustment, 155
Plated construction, 867
Plating star, 867
Plug-in hybrid, 703
PM filter catalytic converter, 778
PM-Metalit®, 779
Pneumatic screwdriver, 298
Point contact, 233
Poise, 843
Polar diagram, 57
Polar diagram of forces, 254
Pollutant component, 29
Pollutant emissions impermissible, 564
Pollutant formation, 611
Pollutant reduction gasoline engine, 756
Polymer electrolyte membrane, 1042
Polyethylene casting cluster, 150
Pore size, 795
Porosity, 148
Port closing, 428
Port deactivation, 726, 727
Port development, 139
Port fuel injection engine, 623
Port of water, 866
Port liner, 385
Position control, 721
Positive Displacement Superchargers, 491
Post mortem analyses, 786
Post start-up phase, 520
Potassium catalytic converter, 771
Potential chemical, 41
Pour point, 860
Pour point depressant, 847
Power indicated, 21
Power curves, 20
Power density, 997
Power electronics, 704, 995
Power hyperbola, 27
Power-MOSFET, 482
Power pack test bench, 962
Power split, 703
Power station mix, 943
German, 943
Power steering pump, 954
Power-to-weight ratio, 19, 922
Powertrain test bench, 962
POX reformer, 1049
Practical fuel consumption, 1033
Pre-chamber system, 614
Precision-casting, 157
Preforms, 122
Preinjection, 32
Preliminary catalytic converter, 692
Preload force, 281, 298
Press fit friction, 227
Pressure, 844
Hertzian, 233
Pressure build-up dynamic, 253
Pressure loss, 802
Pressure measurement, 961, 964, 965, 972
Dynamic, 965
Pressure oil supply, 230
Pressure regulating, 565
Pressure regulating valve, 867
Pressure sensor, 529
Pressure switch, 716
Pressure wave supercharging, 480
Pressurized carburetor, 518
Prestrainer, 868
Prethrottle actuator, 726
Prevention of lacquer formation, 847
Prime mover, 962
Process electrostatic, 794
gravimetric, 805
irreversible, 45
Rotation-angle-controlled, 294
Seiliger, 38
Process control, 38
Process efficiency, 35, 36
Process work, 42
Product calculation, 288
Product development virtual, 879
Profile steel ring, 104
Project management, 144
Protection from deposit, 843
Prototype manufacturing, 152
Prototypes, 144
Provision concerning emitted noise, 948
Provision for noise reduction, 950
Pulsating turbines impingement, 512
Pulse turbocharger-aspiration module, 483
Pulse turbocharger-control device, 482
Pulse turbocharger-valve, 481
Pulse turbocharging, 471, 472, 473, 479, 1061, 1062
Pumpability, 818
Pump Angle Time Signal, 541
Pump limit, 509
Pump nozzle, 225
Pump nozzle injection system, 562
Pump Nozzle System, 544
Pump nozzle technique, 156
Pump threshold temperature, 849
Pump-up, 227, 236
Push rod, 225, 422
Pushrod, 140, 225, 422
Push rod drive, 455
Push rod ratio, 15
p-v diagram, 36
p-V-Diagram, 20
Reflection-type sound damper, 430
Reflection-type muffler, 430
Reference fuel n-heptane, 829
Reference fuel i-octane, 829
Reed valve control, 442
Reed valve, 442
Reduction of Mass, 232
Reduction of fuel consumption, 931, 941
Reduction of friction, 922
Reduction of fuel consumption, 931, 941
Reduction of friction, 922
Reduction of Mass, 232
Reed valve, 442
Reed valve control, 442
Reference fuel i-octane, 829
Reference fuel n-heptane, 829
Reflection-type muffler, 430
Reflection-type sound damper, 430
Reformate, 824
Regeneration, 796
Regeneration additives, 798
Regeneration aids, 820
Regeneration help, 797
Regeneration process, 797
Regenerative braking, 985, 1030, 1039
Regulating principle, 208
Regulating pump, 211
Regulation circuit, 237
Relaxation, 278
Reluctance machine, 993, 1037
Reluctance motor Switched, 1037
Removal efficiency, 866
Repeatability, 961, 968
Replacement component, 824
Reproduction reaction, 592
Required Ignition Voltage, 575
Requirement, 735
Requirement-Based Energy Management, 1055
Residual compressive force, 189
Residual exciter moment curve, 74
Residual exhaust gas, 40, 43
Residual gas scavenging, 480
Residue, 797
Resistance characteristic curve, 511, 512
Resistance to thermal shock, 148
Resonance, 954
Resonance charging, 426, 428
Resonance oscillation, 626
Resonator, 270
Response, 924
Response Behavior, 498
Response time, 801
Restricted exhaust component diesel engine, 755
gasoline engine, 753
Return rail, 136
Reversed head scavenging, 441
Reynold's number, 516
Rf b and pipe system, 737
Ring break, 107
Ring carrier, 87
Ring carrier material, 89
Ring carrier piston, 89
Ring gap, 106, 107
Ring set, 104
Ring type, 103
Ring with inner chamfer, 102
Ring with inner shoulder, 102
Rise in viscosity, 844, 856
RME, 1030
Ro 80, 382
Road-surface/tire noise, 949
Rocker arm, 164, 166, 225, 417, 420, 457, 463
RockeR arm actuation, 156
RockeR arm components, 453
RockeR arm module, 454
RockeR lever valve train, 167
Rod force, 54, 55
Roller bearing steel, 232
Roller cam follower, 166, 234, 236, 421, 455, 456, 463
Roller cam follower design, 455
Roller chain, 240
Roller lever, 234
Roller tappet, 234
switchable, 170
Roller test bench, 962
Rolling bearing, 230
Rolling circle, 383
Rolling contact, 225, 228, 229, 232, 235, 236
Rolling fatigue strength, 225
Rolling resistance, 918, 920, 921
RON, 829
Roots blower, 4
Rotary axis, 383
Rotary compressor, 444
Rotary-disk valve, 416
Rotary displacer engine, 9
Rotary piston engine, 6, 10, 382, 384
Rotary piston engines, 3
Rotating body, 383
Rotational irregularity, 952
Rotational oscillation, 72
Rotational oscillation damper, 77
Rotational oscillation state, 76
Rotational oscillation system, 72
Rotation angle technique, 296
Rotation-controlled tightening, 299
Rotor, 385
Rotor-type pump, 10
Roughness, 952, 957
Round filter element, 866
RSG, 251
Rubber vibration damper, 77
Run-down ramp, 226
Running-resistance curve, 27
Running surface coating, 107
Run-up ramp, 226
RVP = Reid Vapor Pressure, 833
RX 400 h, 1032, 1034
S
SAE range, 844
SAE viscosity class, 848
Safety factor, 887
Safety strategy, 692
Sampling, 805
Sand-casting process, 122, 148
Sauter mean diameter, 528
Schräuge reverse or loop scavenging, 4
SCR catalytic converter, 818
active, 769
SCR catalytic converters, 818
passive, 768
Screaming noise, 953
Index

Screw
DIN EN ISO 24014, 299
Shafted, 296
Threaded, 296
Screw Compressor, 488
Screws
Amenable to assembly, 292
Screw tightening
Torque-controlled, 298
SEA
statistical energy analysis, 959
Seal, 275
metallic, 282
Seal compatibility, 843
Sealing, 383, 842
Sealing gap fluctuation
dynamic, 276, 277
Sealing pressure, 281
Sealing system, 275, 288
acoustically decoupled, 285
Seat contact area, 190
Seat-hole nozzle, 553, 554
Seating velocity, 234
Seat width, 195
Secondary airborne noise, 950
Secondary air injection, 764
Secondary emission, 801
Secondary piston motion, 85, 880
Secondary piston motion calculation, 880
Secondary radiation, 950
Second order inertial force
oscillating, 63
Second-order inertial force, 61
Segmented camshaft, 229
Selloper
Myron, 37
Seizure, 296
Selective catalytic reduction, 768
Self-balance, 68
Self-diagnosis, 691
Semi-downdraft carburetor, 518
Semi-surface gap, 574
Sensitivity to water, 825
Sensor, 868
Sensors, 468
Sensor system, 280
Separately-excited synchronous motor, 706
Separating valve, 386
Separation system
active, 230
Sequential supercharging, 923
Sequential Turbocharger, 503
Serial hybrid, 705
Serpentine drive, 249
Serpentine stopper, 277
Service life
Calendrical, 1003
Service life analysis, 236
Service life prediction, 164
Service life test, 290
Severity, 831, 957
Shaft
centrally symmetrical, 68
Shaker, 291
Shaker cooling, 90
Shaped bore, 886
Shaped bore of piston boss, 881
Shear speed, 845
Sheet metal manifolds, 300
Sheet-metal oil pan, 950, 953
Shell Model, 595
Shifter unit
hydraulic, 237
Shifting, 52
Shifting the operating point, 984
Short-time fatigue, 886
Shoulder/bevel ring, 103
Shoulder ring, 103
Shrink-fit
thermal, 227, 230
Shrink-fit conrod, 85
Shunt resonator, 273
Shutting off the fuel, 522
Sidband, 947
Signal
redundant, 726
Signature analysis, 954
Signs of coking, 797
Silent chain, 241
Silicon carbide, 1030
Silicon crystal layer, 122
Simulation, 290, 598, 875
Cooler, 736
one dimensionally, 436, 438
thermodynamic, 881
Simulation of flow CFD, 222
Simulation process
integrated, 163
Simulation system, 43
Simulation tool
acoustic, 274
Single-barrel carburetor, 517
Single-cylinder crank gear, 61
Single-grade oil, 849
Single injection pump, 225, 538
Single power driver, 291
Single-shaft machine, 1042
Single-shaft turbine, 1042
Single-shaft machine, 1042
Single-valve drive model, 460
Single-zone model, 42
Sintered aluminum, 452
Sintered cams, 228, 229, 235
Sintered conrod, 294
Sintered material, 228, 229
Sintered metal plate, 793
Six port induction, 386
Size distribution of the particles, 790
Sleeve, 225
Sleeve concept, 121
Sleeve support surface, 121
Slide support, 454
Sliding contact, 225, 227, 229, 232, 235, 236
Slippage, 250
Slot control, 11
Smoke emission, 975
Smoke-emission value measurement, 975
Smoke meter, 975
SMPS method, 805
Snagged down, 296
Snagging moment, 298
Sodium-nickel-chloride battery, 999
SOFC, 1048
SOFC-APU, 1049
SOFC fuel cell, 1047, 1048, 1049
Software structure, 676
SOHC, 231
Solenoid valve needle, 543
Solid bearings, 263
Solid-borne engine noise, 948
Solid-borne noise, 943
Solid-borne noise contribution, 956
Solid-borne noise oscillation, 952
Solid-borne noise path, 952
Solid-borne noise transmission, 953
Solidification, 148
Solid Oxide Fuel Cell, 1048
Solid particle, 804
Solubilizers, 823
Solvent refinement, 845
Sommerfeld number, 252
SON, 829
Soot, 818
Soot combustion, 797
Soot emission, 975
Soot ignition temperature, 798
Soot regeneration, 809
Sound design, 950
Sound Engineering, 957
Sound package, 959
Sound pressure, 946
Sound volume, 957
Source of solid-borne noise, 952
Spark failure, 576
Spark ignition, 569
Spark-Ignition Engine, 10
Spark plug position, 931
Spark-ignition Engine, 10
Spark plug, 138, 154, 573
Design, 573
Spark plug position, 931
Spark Position
Advanced, 574
Normal, 574
Spatial velocity, 804
Special seals, 280
Specific fuel consumption, 923
Specific power output, 19
Spectrum, 947, 950
Speed
critical, 73
hydro-dynamic, 236, 1078
hydro-dynamically effective, 235
Speed fluctuation, 60, 72
dynamic, 72
static, 72
Speed measurement, 963, 964
Speed reduction, 495
Speed sensor, 718
passive, 718
Spiral turbocharger, 7, 488
Spiral V filter, 867
Index

Split-pin crankshaft, 71
Split stream valve (Split Stream), 532
Sports engine, 159
Spray cooling, 87
Spring characteristics, 188
Spring force, 186, 235
Sprocket, 241, 245
Sprue, 149
Sputter bearing, 263, 265
Squeeze Casting, 122
SS50 system, 104
Stage-regulating pump, 210
Standard honing, 123
Standardized Mass Flow, 509
Standardized Volumetric Flow, 509
Standard pressure, 40
Start automatic, 520
Start behavior, 579
Start control, 33
Starter-alternator, 251
Starter-alternator system, 251
Starter/Generator, 1031
Starter/Generator function, 1031
Starting control, 519
Start quality, 581
Start reaction, 592
Start/Stop, 1011, 1031
Start-stop system, 251
State change, 37
State equation
thermal, 40, 44
State of Charge, 1003
Status vector, 437
Stationary engine, 229
Stator, 384, 385
Status vector, 437
Steam engine, 3
Steel cams, 228, 229
Steel camshaft, 229
forged, 229
solid material, 229
Steel die, 149
Steel spring
cylindrical, 420
Steel strip ring, 104
Stepping motor, 722
Stiffness, 225, 226, 953
Stirling engine, 10, 1031, 1040, 1041
stoichiometric full-load operation, 928
Stopper, 277, 289
coincd, 277
topographic, 277, 278
Stop/start, 984
Stop/Start, 703
Stop/start system, 939
Storage capacity, 792
Storage time, 804
Strainer, 867
Strain under Load, 187
Stratified charging, 530
Street evaluation number, 831
Street octane number, 831
Strength analysis, 147, 1069
Stress
mechanical, 231
thermal, 231
thermo-mechanical, 879
Streibek curve, 253
String oscillation, 953
Strip apex, 383
Strip method, 390
Stroke Changeover, 169
Stroke function, 15
Stroke offset, 71
Stroke ratio, 79
Stroke variation, 457
Structural resonance, 953
Structural stiffening provision, 953
Substance
absorbed, 791
Substance component, 40
Substitute combustion characteristic, 42, 43
Substitute Combustion Process, 599
Substitute fuel, 590
Substrate sintering, 766
Sudden load, 234
Sulfate, 818
Sulfate ash content, 846
Sulfate decomposition, 774
Sulfate regeneration, 774
Sulfur content, 818, 826, 834
Sulfur dioxide, 818
Sulfurization reaction, 799
Sulfur Poisoning, 773
Summer quality, 833
Sump pump, 217
Sunfuel, 1029
Sunfuel, 836, 1029
SunFuel, 1030
Synthetic material, 453
Synthetic material aspiration pipe, 483
System
acoustically decoupled, 288
Cam-edge-controlled, 537
Central Pressure Reservoir, 545
closed, 37, 40, 42
electro-mechanical, 467
Electronic on-demand regulated, 566
nozzle-time controlled, 537
On-demand regulated, 564
with Injection-Synchronous
Pressure Generation, 537
System block diagram for CR, 550
System integration, 482
System limit, 46

T
Takeoff, 226
Takeoff element, 227
TAME, 826
Tandem turning, 107
Tangential force, 55, 105
average, 58, 59
Tangential force characteristic, 55, 58, 59
Tangential force curve, 75
Tank diagnosis, 732
Tank-to-wheel, 1042
Tank ventilating valve, 730
Tank venting system, 560
Tappet, 225, 417, 422
Tappet chamber, 466
Targeted motion, 235
Target value generator, 469
Temperature coefficient
More negative, 593
Temperature distribution, 880
Temperature map, 880, 882
Tensile strength, 229, 232
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-stroke SI engine, 6, 650</td>
</tr>
<tr>
<td>Two-valve cylinder head, 138</td>
</tr>
<tr>
<td>Two-zone model, 43</td>
</tr>
<tr>
<td>Type test, 804</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultracap, 1001</td>
</tr>
<tr>
<td>UltraCaps, 1039</td>
</tr>
<tr>
<td>Underbody catalytic converter, 762</td>
</tr>
<tr>
<td>Undershield, 951</td>
</tr>
<tr>
<td>Underspeed design, 937</td>
</tr>
<tr>
<td>UNIAIR system, 172</td>
</tr>
<tr>
<td>Uniflow scavenging, 313, 314, 441</td>
</tr>
<tr>
<td>Uniscope system, 539</td>
</tr>
<tr>
<td>UniValve, 463</td>
</tr>
<tr>
<td>UniValve-Valve train, 464</td>
</tr>
<tr>
<td>Valve, 225, 234, 419</td>
</tr>
<tr>
<td>opening time, 231</td>
</tr>
<tr>
<td>Valve actuation, 11, 226</td>
</tr>
<tr>
<td>electro-mechanic, 468</td>
</tr>
<tr>
<td>fully-variable, 230, 234, 456</td>
</tr>
<tr>
<td>hydraulic, 467</td>
</tr>
<tr>
<td>hydraulic variable, 466</td>
</tr>
<tr>
<td>partially-variable, 230, 234</td>
</tr>
<tr>
<td>variable, 444</td>
</tr>
<tr>
<td>Valve actuation dynamic, 879</td>
</tr>
<tr>
<td>Valve angle, 138, 139</td>
</tr>
<tr>
<td>Valve area, 416</td>
</tr>
<tr>
<td>Valve break, 466</td>
</tr>
<tr>
<td>Valve clearance, 227, 234</td>
</tr>
<tr>
<td>Valve clearance compensation, 423</td>
</tr>
<tr>
<td>mechanical, 234</td>
</tr>
<tr>
<td>Valve contouring switching, 454, 470</td>
</tr>
<tr>
<td>Valve cover fixing bolt, 292</td>
</tr>
<tr>
<td>Valve cross section, 140</td>
</tr>
<tr>
<td>Valve diameter, 139, 234</td>
</tr>
<tr>
<td>Valve disk, 140</td>
</tr>
<tr>
<td>Valve drive friction, 229</td>
</tr>
<tr>
<td>Valve drive kinematics, 233</td>
</tr>
<tr>
<td>Valve flow number, 436</td>
</tr>
<tr>
<td>Valve guide, 196, 201</td>
</tr>
<tr>
<td>material, xiii</td>
</tr>
<tr>
<td>Valve guide clearance, 197</td>
</tr>
<tr>
<td>Valve guide load, 196</td>
</tr>
<tr>
<td>Valve guide material, 201</td>
</tr>
<tr>
<td>Valve lever, 417, 421</td>
</tr>
<tr>
<td>Valve lifter, 225</td>
</tr>
<tr>
<td>defeatable, 169</td>
</tr>
<tr>
<td>hydraulic, 164, 165</td>
</tr>
<tr>
<td>mechanical, 164</td>
</tr>
<tr>
<td>Valve lift modes, 173, 1070</td>
</tr>
<tr>
<td>Valve linkage, 225, 236</td>
</tr>
<tr>
<td>Valve opening area, 416</td>
</tr>
<tr>
<td>Valve opening time, 234</td>
</tr>
<tr>
<td>Valve overlap, 24, 234, 236</td>
</tr>
<tr>
<td>Valve play adjustment</td>
</tr>
<tr>
<td>hydraulic, 227, 236</td>
</tr>
<tr>
<td>mechanical, 168, 227</td>
</tr>
<tr>
<td>Valve play compensation</td>
</tr>
<tr>
<td>hydraulic, 168</td>
</tr>
<tr>
<td>Valve seat, 194, 234</td>
</tr>
<tr>
<td>Valve seat insert contour, 194</td>
</tr>
<tr>
<td>Valve seat ring, 189</td>
</tr>
<tr>
<td>material, 191</td>
</tr>
<tr>
<td>Valve setting down velocity, 469</td>
</tr>
<tr>
<td>Valve shaft end, 236</td>
</tr>
<tr>
<td>Valve shroud module, 286</td>
</tr>
<tr>
<td>Valve spring, 186, 225, 420</td>
</tr>
<tr>
<td>Valve spring force, 424</td>
</tr>
<tr>
<td>Valve stem seal, 197</td>
</tr>
<tr>
<td>Valve stroke, 225, 227, 234, 235, 1077</td>
</tr>
<tr>
<td>kinematic, 227</td>
</tr>
<tr>
<td>theoretical, 236, 237, 1078</td>
</tr>
<tr>
<td>Valve stroke change, 227, 231</td>
</tr>
<tr>
<td>Valve stroke curve, 234, 235</td>
</tr>
<tr>
<td>Valve stroke height, 234</td>
</tr>
<tr>
<td>Valve stroke variation, 459</td>
</tr>
<tr>
<td>Valve timing, 137, 225, 227, 229, 234, 236, 467</td>
</tr>
<tr>
<td>variable, 137</td>
</tr>
<tr>
<td>Valve train, 164, 234, 416, 952</td>
</tr>
<tr>
<td>electro-mechanic, 468, 1082</td>
</tr>
<tr>
<td>fully-variable, 172</td>
</tr>
<tr>
<td>mechanically fully-variable, 231</td>
</tr>
<tr>
<td>variable, 169, 172, 227</td>
</tr>
<tr>
<td>Valve train component, 143, 146, 164</td>
</tr>
<tr>
<td>Valve train configuration, 226</td>
</tr>
<tr>
<td>Valve train design, 142</td>
</tr>
<tr>
<td>Valve train system</td>
</tr>
<tr>
<td>partially-variable, 231</td>
</tr>
<tr>
<td>Valve train type, 234</td>
</tr>
<tr>
<td>Valve tronic, 438, 461</td>
</tr>
<tr>
<td>Valve velocity, 225, 235, 1077</td>
</tr>
<tr>
<td>Vane pumps, 206</td>
</tr>
<tr>
<td>Valve shifter, 238</td>
</tr>
<tr>
<td>V-angle, 71</td>
</tr>
<tr>
<td>natural, 71</td>
</tr>
<tr>
<td>Vapor bubble formation, 832</td>
</tr>
<tr>
<td>Vapor cushion, 832</td>
</tr>
<tr>
<td>Vapor pressure, 826, 833</td>
</tr>
<tr>
<td>Variable valve actuation, 930</td>
</tr>
<tr>
<td>variable valve actuation times, 929</td>
</tr>
<tr>
<td>Variable valve train, 929</td>
</tr>
<tr>
<td>VarioCam Plus, 227</td>
</tr>
<tr>
<td>VARIOVALVE, 463</td>
</tr>
<tr>
<td>V crank gear, 62</td>
</tr>
<tr>
<td>Vehicle category, 920</td>
</tr>
<tr>
<td>Vehicle curb weight, 917</td>
</tr>
<tr>
<td>Vehicle mass, 920</td>
</tr>
<tr>
<td>Vehicle test bench, 962</td>
</tr>
<tr>
<td>Vehicle weight, 917, 919, 920</td>
</tr>
<tr>
<td>V-Engine, 12</td>
</tr>
<tr>
<td>Venturi section, 516</td>
</tr>
<tr>
<td>VF system, 104</td>
</tr>
<tr>
<td>Vibe function, 43</td>
</tr>
<tr>
<td>Vibe Function, 599</td>
</tr>
<tr>
<td>Vibration, 952, 959</td>
</tr>
<tr>
<td>Vibration damper, 77</td>
</tr>
<tr>
<td>Vibration generator, 959</td>
</tr>
<tr>
<td>Vibration nodes, 72</td>
</tr>
<tr>
<td>Vibratory testing system, 291</td>
</tr>
<tr>
<td>V.I. determination, 844</td>
</tr>
<tr>
<td>V.I. improver, 845, 846, 847</td>
</tr>
<tr>
<td>V.I. scale, 844</td>
</tr>
<tr>
<td>Viscose vibration dampers, 77</td>
</tr>
<tr>
<td>Viscosity, 817</td>
</tr>
<tr>
<td>kinematic, 849</td>
</tr>
<tr>
<td>Viscosity-temperature behavior, 843, 847</td>
</tr>
<tr>
<td>Viscosity/viscosity index (V.I.), 843</td>
</tr>
<tr>
<td>Viscous coupling, 743</td>
</tr>
<tr>
<td>Viscous damper, 77</td>
</tr>
<tr>
<td>Volatility, 825</td>
</tr>
<tr>
<td>Volatility class, 833</td>
</tr>
<tr>
<td>Volume</td>
</tr>
<tr>
<td>specific, 40</td>
</tr>
<tr>
<td>Volume ratio, 79</td>
</tr>
<tr>
<td>Volumetric Efficiency, 23, 415</td>
</tr>
<tr>
<td>Volumetric flow measurement, 965</td>
</tr>
<tr>
<td>W</td>
</tr>
<tr>
<td>Waisted-shank bolt, 293</td>
</tr>
<tr>
<td>Waisted-threaded screw, 293</td>
</tr>
<tr>
<td>Wall film, 895</td>
</tr>
<tr>
<td>Wall flow, 792</td>
</tr>
<tr>
<td>Wankel Engine, 10</td>
</tr>
<tr>
<td>Wankel engine oil, 858</td>
</tr>
<tr>
<td>Warm-up, 519, 520</td>
</tr>
<tr>
<td>Warm-up phase, 939</td>
</tr>
<tr>
<td>Washcoat, 784</td>
</tr>
<tr>
<td>Washer, 293</td>
</tr>
<tr>
<td>Waste gate function, 726</td>
</tr>
<tr>
<td>Water</td>
</tr>
<tr>
<td>specific heat, 46</td>
</tr>
<tr>
<td>Water cooling, 124, 143</td>
</tr>
<tr>
<td>Waterfall diagram, 954</td>
</tr>
<tr>
<td>Water hardness, 860</td>
</tr>
<tr>
<td>Water jacket, 122, 124</td>
</tr>
<tr>
<td>Water jacket depth, 124</td>
</tr>
<tr>
<td>Water outlet, 868</td>
</tr>
<tr>
<td>Water removal, 868</td>
</tr>
<tr>
<td>Water sensor, 868</td>
</tr>
<tr>
<td>Wax Anti-Settling Additive (Wasa), 818</td>
</tr>
<tr>
<td>Wear, 225, 870</td>
</tr>
<tr>
<td>Wear at the flanks, 109</td>
</tr>
<tr>
<td>Wear characteristics, 161</td>
</tr>
<tr>
<td>Wear mechanism, 577</td>
</tr>
<tr>
<td>Wear protection, 836, 843</td>
</tr>
<tr>
<td>Wear-protection layer, 107</td>
</tr>
<tr>
<td>Weight increase, 920</td>
</tr>
<tr>
<td>Weighting curve, 946</td>
</tr>
<tr>
<td>Weight reduction, 920</td>
</tr>
<tr>
<td>Weight trend, 921</td>
</tr>
<tr>
<td>Term</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Well-to-wheel</td>
</tr>
<tr>
<td>W-Engine</td>
</tr>
<tr>
<td>Wet sump lubrication system</td>
</tr>
<tr>
<td>Wheel hub drive</td>
</tr>
<tr>
<td>Wheel hub motor</td>
</tr>
<tr>
<td>Wheel resistance</td>
</tr>
<tr>
<td>Whirl chamber diesel engine</td>
</tr>
<tr>
<td>Whirl chamber system</td>
</tr>
<tr>
<td>Wiese scale</td>
</tr>
<tr>
<td>Winding</td>
</tr>
<tr>
<td>window</td>
</tr>
<tr>
<td>Window method</td>
</tr>
<tr>
<td>Winter quality</td>
</tr>
<tr>
<td>Wire cross section</td>
</tr>
<tr>
<td>Wöhler curve</td>
</tr>
<tr>
<td>Work</td>
</tr>
<tr>
<td>indicated</td>
</tr>
<tr>
<td>Work area</td>
</tr>
<tr>
<td>Work fluctuation</td>
</tr>
<tr>
<td>Working point</td>
</tr>
<tr>
<td>Work process calculation</td>
</tr>
<tr>
<td>Woschni</td>
</tr>
<tr>
<td>Wristpin</td>
</tr>
<tr>
<td>designs</td>
</tr>
<tr>
<td>flexure and oval distortion, floating</td>
</tr>
<tr>
<td>Wristpin bushing</td>
</tr>
<tr>
<td>Wristpin circlip</td>
</tr>
<tr>
<td>Wristpin diameter</td>
</tr>
<tr>
<td>Wristpins</td>
</tr>
<tr>
<td>Wristpin steel</td>
</tr>
<tr>
<td>WTW</td>
</tr>
<tr>
<td>Xylene</td>
</tr>
<tr>
<td>Zero Emission Vehicles</td>
</tr>
<tr>
<td>ZEV</td>
</tr>
</tbody>
</table>
About the Editors

Dr.-Ing. E.h. Richard van Basshuysen, VDI, was born in 1932 in Bingen/Rhein, Germany. Following vocational training with examination as a car mechanic, he studied at the technical college Braunschweig/Wolfenbüttel from 1953 to 1955 and obtained a degree as a mechanical engineer. In 1982, he was granted the degree “Diplom-Ingenieur.”

Between 1955 and 1965, he worked as a research associate for Aral AG in Bochum. In 1965, he joined NSU AG where he was employed on test management for engine and transmission development, including Wankel engine development, and was appointed deputy manager of vehicle testing. In this capacity, he was co-responsible for the development of the Prinz 4, NSU 1000 and 1200, RO 80 and K 70 cars. In 1969, NSU AG was taken over by what is today, Audi AG. As the development manager at Audi AG, he established the V8/A8 vehicle comfort class, became the manager responsible for engine and transmission development and, at the same time, the member of the Supervisory Board as the elected representative of the executive employees. His most important development was the worldwide first exhaust-purified diesel engine in a passenger car with direct injection and turbocharging which he pushed against major opposition within the company and the VW group. Because this engine consumed 20 % less fuel than its predecessor as a chamber diesel engine and is an engine with high performance and very high torque, it has succeeded worldwide. In Europe, its market share has grown from approximately 12 % in 1989 to about 50 % in just over a decade.

Following his active career in the automotive sector, Richard van Basshuysen founded an engineering consultancy firm in 1992 that he still manages. For twenty years, he was the publisher of the internationally-distinguished ATZ (Automobiltechnische Zeitschrift) and MTZ (Motortechnische Zeitschrift) technical/scientific professional journals. He consults for international automotive manufacturers and engineering service providers and is author and publisher of technical/scientific textbooks which have been translated into English and Chinese. Since 2006, he and Prof. Dr. Ing. Fred Schäfer have been publishers and co-authors of www.motorlexikon.de. In addition, he was council member and board member on various bodies such as the German Association of Engineers (VDI) and the Austrian Association for motor vehicle engineering. He is author and co-author of more than 60 technical/scientific publications. For his development of the pioneering diesel engine with direct injection, in 2001 he was awarded the prestigious Ernst-Blickle-Preis 2000 and the BENZ-DAIMLER-MAYBACH medal of honor of the VDI for “his outstanding engineering work in the development of the passenger car diesel engine with direct injection and his long-lasting commitment as publisher of ATZ/MTZ and member of the council of the VDI society vehicle and traffic engineering.” In 2004, the University of Magdeburg awarded him an honorary doctorate for his lifetime achievements.
Prof. Dr.-Ing. Fred Schäfer
was born in 1948 in Neuwied am Rhein, Germany. After vocational training as a machine builder, he studied mechanical engineering at the State School of Engineering in Koblenz. Following this, he completed a course of studies at the University Kaiserslautern in the subject of motors and machines and was granted the “Dipl.-Ing.” degree. He received the Dr.-Ing. from the Institute for Motors and Machines at the University Kaiserslautern upon submission of his thesis on “Reaction-kinetic examinations of the hydrogen/methanol combustion in a spark-ignition engine.” His ongoing career led him to Audi AG in Neckarsulm, where he began as assistant to the development manager. Subsequent positions during his ten years with the company were principal group leader for engine testing and manager of the engine design department. In 1990, he was appointed professor for motors and machine at the then technical college in Iserlohn which is now a part of the technical college Südwestfalen located in Iserlohn. One of his responsibilities was the management of the laboratory for combustion engines and turbo-engines. Prof. Dr.-Ing. Schäfer was active in many bodies of the college, including the college senate. In his function as vice dean for teaching and research, he was a member of the management committee of the mechanical engineering department. Prof. Dr.-Ing. Schäfer is also active in freelance research and development in engine technology.

Amongst other things, he and Dr. van Basshuysen have been the publishers of the “Shell-Lexikon Verbrennungsmotor” magazine supplement until 2003, which was published in 2004 as a book with the title “Lexikon Motorentechnik.” He and Dr.-Ing. E.h. van Basshuysen are co-publishers and co-authors of www.motorlexikon.de and the “Internal combustion engine handbook.” Prof. Dr.-Ing. Fred Schäfer is a long-standing member of the VDI and SAE.