Index

Note: Page numbers followed by ‘f’ and ‘t’ represent figures and tables respectively.

abrasion, 89
accuracy, 62–63
adaptability, 68–69
selected criteria and targets, 68f
advanced planning, 118
advanced product quality planning (APQP), 118
foundation with process form, function and fit characteristics, 119f
joint process manageability and improvability, 119f
affective development levels, 251, 252f
affordability, 96–97
attributes, and criteria based on, 97f
amenities, 94–95
attributes and criteria based on, 94f
appeal, 80–81
attributes and criteria based on, 80f
APQP product quality planning process, 22f
architectural integration, 257
architecture
attributes, 56–60
characteristics and attributes, 79
appeal, 80–81
comfort, 81–82
harmony, 82–83
assembling
attributes and criteria based on, 85f
assembly, 85–86
attractive requirements, 109
attributes, criteria, and targets, 79f
augmented reality perceptual validation simulation, 180
avoidance, 93
Bloom’s development domains, 248–249, 250f–251f, 251
business innovations
leaps in, 131f
levels, 131f
business/marketing strategy, 169
capability, 66–67
climate control, 95
cognitive development levels, 250f
comfort, 81–82
attributes and criteria based on, 81f
component technical specifications (CTS), 79
conception realization phase, 41f
concurrency, 60–61
selected criteria and targets, 60f
connecting, 85–86
connectivity, 95
construction, 83–85
continuity, 61–62
selected criteria and targets, 61f
continuous improvement approach, 113–116
fishbone diagram, 116–117
Kaizen, 118
value stream mapping, 116
corrosion, 89
craft production and development process, 3–4, 3f, 4f
“cross-functional” team monitoring, 118
 crushability, 93
customers’ loyalty analysis, 167
delivery, 86–87
 attributes and criteria based on, 86f
 dependability, 97–98
 characteristics, 98f
design (creation), 36–37
 reviews and verification, 224
design FMEA (DFMEA), 202
design–build–test, 29
drift/shift in vehicle development process, 18–19, 19f
 risky production system, 19–20, 19f, 20f
 drive attributes, 92
durability, 87–89
 attributes and criteria based on, 88f
dynamic resistance, 88
education (research), 36
 environmental resistance, 88
 ergonomics, 95
 execution team experience, 170
 exterior appeal, 80
 exterior perceptual concept sketch, 177f
 exterior shape and style, 80
facilities, equipment, and tooling
 requirements, 226
fading, 89
failure mode and effect analysis, 123–124
fatigue loading, 88
finishing, 86
fishbone diagram, 116–117
fit, form, and function process
 characteristics and attributes, 69f
Ford mass production vehicle development process, 8–9, 9f
Ford Model A, 6, 6f
Ford Model T 1913, 7, 7f
Ford Model T 1926, 8, 8f
Ford Model T Prototype, 6, 7f
Ford Production System (FPS)
 continuous improvement, 11, 12f
 framework, 10, 10f
 principles, 11, 11f
 and vehicle development process, 12, 12f
form and function process characteristics and attributes, 55f
forming, 84
framework for vehicle form and function characteristics, 78f
front end of innovation models, 141–144
preinception model, 145–147
 environmental screening, 147–148
 idea generation, 147
 idea kernel conception, 150
 idea kernel inception, 150
 idea kernel maturation, 150–153
 opportunity identification, 148–150
 organizational pursuit, 147
front-end activities, 148f
 outputs for, 149f
 fueling, 91
full product realization process, 146f
gauges/testing requirements, 226
GM Autonomy, 139–140, 139f
handling, 85
 attributes, 92
 harmony, 82–83
 attributes and criteria based on, 82f
health attributes, 63–65
health characteristics and attributes
 durability, 87–89
 reliability, 89–90
 serviceability, 90–91
historical warranty and quality data, 169
house-of-quality sequence, 173f
human innate abilities, 248
Husig et al.’s model, 144f
idea generation, 147
idea kernel, 164–165
conception, 150
inception, 150
maturation, 150–153
immersive visualization, 180–182
implementation attributes, 60–63
improvability, 72–73
inception realization phase, 40, 40f
initial quality, 98–99
characteristics, 98f
models, 107–110
initial quality study (IQS), 110
innovation levels, 130–134
in auto industry, 134–135
GM Autonomy, 139–140
Toyota Camry, 135–139
input excitations, 88
inspecting, 86
integration, product realization enablers
architectural conflicts, 264
architectural integration, 258
area structure, 259, 260f
classification, 257
conflict resolution, 262f
conflicts and establish priorities, 263
frontal and oblique crashes, 265
minimum front overhang concept, 264, 264f
operation integration, 258–259
partial resolutions through iterative solutions, 263–264
product fit characteristics, 256
for product health and life cycle, 257–258
product manufacturability, 257
production process areas, 261, 261f
health and life cycle, 259, 260f
utility, 259
realization phase, 263
resolutions through creative alternatives, 263
multiobjective optimization, 263
teams, 256
interior comfort, 81
interior ideation sketches, 165f
interior perceptual concept sketch, 176f
interior shape, 81
interior size, 82
interior surfaces materials, 82
JIDOKA, 113, 114
joined manageability and quality fit characteristic, 73f
joining, 84
joint perceptual realization, 162f
just-in-time (JIT), 113
Kaizen, 118
Kano model for customer satisfaction, 109, 109f
Khurana and Rosenthal front-end model, 143
lean production system, 15–18, 15f–18f
lean thinking, 17
long-term quality models, 110–111
maintainability, 64, 91
selected criteria and targets, 64f
manageability, 71–72
selected criteria and targets, 71f
management responsibility, 21
manufacturability, 83
integration, 257
manufacturing characteristics and attributes, 83
assembly, 85–86
construction, 83–85
delivery, 86–87
market research, 167
Marketing innovation levels, 132f
mass production realization processes, 54f
and vehicle development process, 6–10, 6f–10f
math data and engineering drawings, 225
maturation
augmented reality perceptual validation simulation, 180
immersive visualization, 180–182
realization phase, 42f
measurability selected criteria and targets, 62f
measurement, analysis, and improvement, QMS, 22
mobility, 91–93
attributes and criteria based, 92f
modularity, 58–59
selected criteria and targets, 58f
must-have requirements, 109

natural product realization process with assessment feedback, 48
phases, 43f
new concept development (NCD), 143
new product development (NPD), 141, 158–162
inputs to perceptual realization, 164f
new product realization process, 158f

opportunity identification, 148–150
organizational pursuit, 147
“over-the-fence” practices, 29
overtime, 97

packaging, 86
parallel realization process with portfolios, 44–45
perceptual conception
inputs and outputs, 177f
new product realization process, phase of, 175f
perceptual domain, 30–31
perceptual inception
inputs and outputs, 174f
new product realization process, phase of, 171f
perceptual maturation phase, new product realization process, 178f
perceptual modeling and simulation, 33f

perceptual phases, product realization, 40
perceptual realization, 157, 159f
conception, 174–178
inception, 170–174
inputs, 164
business/marketing strategy, 169
execution team experience, 170
historical warranty and quality data, 169
idea kernel, 164–165
market research, 167
product/process assumptions, 169
product/process benchmark data, 168
reliability studies, 169
technology report, 168
voice of the customer, 166
maturation, 178–180
augmented reality perceptual validation simulation, 180
immersive visualization, 180–182
model, 162–163
new product development, 158–162
quality planning cycle, 161f
perceptual realization model, 163f
performance, 89
capabilities, 254
physical conception, 231, 232f
inputs and outputs, 233, 234f
process form, 233
process function, 233
product form, 232
product function, 232–233
physical domain, 30
physical inception, 226, 227f
process form, 228
process function, 228, 229f
product form, 227
product function, 228
product/process fit, 230, 231f
physical maturation, 234, 235f
process form, 238
process function, 238, 239f
product form, 235
product function, 235–238, 236f–237f
product/process fit, 240–241
physical phases, product realization, 41–42
physical realization, inputs
design reviews and verification, 224
engineering specifications, 225
facilities, equipment, and tooling requirements, 226
gauges/testing requirements, 226
material specifications, 225
math data and engineering drawings, 225
production feasibility and management support, 226
product/process characteristics, 223–224
virtual modeling and simulations, 225
prototype build and control plan, 224
virtual process layout and flowchart, 225–226
plan-do-study-act product quality planning cycle, 160, 160f
planned and structured approach, 118–121
process methodologies and tools, 121–124
quality function deployment (QFD), 121
power information network (PIN), 110
preinception front-end innovation model, 145f
preinception model, 145–147
idea generation, 147
idea kernel
conception, 150
inception, 150
maturation, 150–153
opportunity identification, 148–150
organizational pursuit, 147
problem solving (restoration), 36
process architecture attributes, 56
modularity, 58–59
simplicity, 56–58
transparency, 59–60
process capability, 122–123
process characteristics, 66
attributes, and criteria, 55f
process fit attributes, 69–70
improvability, 72–73
manageability, 71–72
profitability, 70–71
process form attributes, 56
architecture attributes, 56–60
implementation attributes, 60–63
process function attributes, 63
health attributes, 63–65
utility attributes, 65–69
process health attributes
maintainability, 64
reparability, 65
robustness, 63–64
process implementation attributes, 60
accuracy, 62–63
concurrency, 60–61
continuity, 61–62
process improvability, 111–113
continuous improvement approach, 113–116
fishbone diagram, 116–117
Kaizen, 118
value stream mapping, 116
planned and structured approach, 118–121
process methodologies and tools, 121–124
quality function deployment (QFD), 121
process maturation phase, 111
process methodologies and tools, 121–124
process utility attributes, 65
adaptability, 68–69
capability, 66–67
productivity, 67–68
processing, attributes and criteria based on, 84f
producer’s linear and exponential potential gains and losses, 108
product
characteristics and attributes, 78–79
conception phase, 40–41
gaps, 106f
inception phase, 40
innovation levels, 133f
manufacturability, 257
maturation phase, 41–42
utility, 257
product quality gaps, 104–107
initial quality models, 107–110
long-term quality models, 110–111
product realization, 22, 38–39
defined, 38–39
phases, 39
perceptual, 40
physical, 41–42
virtual, 40
sequential and parallel implementation, 42–48
product realization enablers
learning outcomes, 271–272
people
advantages, 254
affective development levels, 251, 252f
Bloom’s development domains, 248–249, 250f–251f, 251
cognitive development levels, 250f
commitment, 254
human innate abilities, 248
performance capabilities, 254
psychomotor domain, 252, 253f
process
analysis, 255–256, 256f
integration, 256–265
management, 265–266, 265f
provisions
hardware, 268–269, 269f, 269t
research and development, 266–267, 268f
time, 270, 270f, 271f
product realization process (PRP), 21, 22f, 23–24, 24f
production assessment feedback and corrective actions, 241–242, 242f
production feasibility and management support, 226
production process and product, 112f
productivity, 67–68
selected criteria and targets, 67f
product/process assumptions, 169
benchmark data, 168
characteristics, 223–224
virtual modeling and simulations, 225
product’s characteristics, attributes, and criteria, 78f
product’s domain, 105
profitability, 70–71
selected criteria and targets, 70f, 72f
protection, 93
prototype build and control plan, 224
PRP. see product realization process (PRP)
psychomotor domain, 252, 253f
quality, 104
domains, 105f
improvement through quality management, 113f
planning cycle, 161f
quality function deployment (QFD), 121
quality management system (QMS), 120, 120f
actions and responsibilities, 21–22
APQP product quality planning process, 22f
model, 21, 21f
product realization process (PRP), 21, 22f, 23–24, 24f
realization, 29–30, 34. see also product realization
activities, 35–37
levels, 45f
mapping processes, 32f
objectives, 34–35
and cognitive domain maturity, 35f
outcomes, 48
knowledge, 49
paradigm/attitude, 50
skills, 49
phases, 37
conception, 38
inception, 38
maturation, 38
process characteristics and attributes, 54–56
learning outcomes, 73–75
process fit attributes, 69–70
improvability, 72–73
manageability, 71–72
profitability, 70–71
process form attributes, 56
architecture attributes, 56–60
implementation attributes, 60–63
process function attributes, 63
health attributes, 63–65
utility attributes, 65–69
reality domains, 30–31
modeling, 31
simulation, 31–33
sequential process, 43f
receiver’s domain, 105
reliability, 89–90
attributes and criteria based, 89f
studies, 169
rendered virtual interior and exterior, 179f
reparability, 65, 91
selected criteria and targets, 65f
resource management, 22
ride attributes, 92
risky production system (RPS), 19–20
robustness, 63–64, 89
selected criteria and targets, 63f
rubbing friction, 88
safety, 93–94
attributes and criteria based on, 93f
self-propelled vehicles, 4, 5f
sender’s domain, 105
sequential realization process, 43f
service life, 89
serviceability, 90–91
attributes and criteria based, 90f
simplicity, 56–58
selected criteria and targets, 57f
specified exterior sketch, 172f
stage-gate model, 141–142, 142f
start of development (SOD), 4
start of production (SOP), 4
static resistance, 88
steam-powered vehicle, 4, 5f
suitability selected criteria and targets, 66f
technology innovation levels, 133f
technology report, 168
Toyota Camry, 135–139
innovation history, 136f–137f
production history, 138f
Toyota Production System (TPS), 113
and lean thinking
framework, 13, 14f
JIDOKA concept, 12–13
Just-in-time (JIT), 13–14
lean production system, 15–18, 15f–18f
limit production waste, 13
principles, 13–15, 14f, 15f
production continuous improvement, 15f
principles, 114f
transition from attributes to targets, 56f
transparency, 59–60
selected criteria and targets, 59f
transporting, 86
treating, 84
utility
attributes, 65–69
characteristics and attributes, 91
amenities, 94–95
mobility, 91–93
safety, 93–94
value stream mapping, 116
vehicle development process, evolution
craft production and development
process, 3–4, 3f, 4f
design phase in, 4–5, 4f, 5f
drift/shift in, 18–19, 19f
risk production system, 19–20, 19f
ford production system (FPS), 10–12, 10f–12f
learning outcomes
knowledge, 24–25
paradigm/attitude, 25
skills, 25
mass production and, 6–10, 6f–10f
quality planning and management,
21–24, 21f–24f
Toyota production system and
lean thinking
lean production system, 15–18, 15f–18f
principles, 13–15, 14f, 15f
vehicle production, 2–3, 2f
vehicle fit characteristics and attributes,
95–96
affordability, 96–97
affordability and quality characteristics,
99f
dependability, 97–98
framework, 96f
initial quality, 98–99
vehicle form characteristics and
attributes, 79
vehicle architecture characteristics and
attributes, 79
appeal, 80–81
comfort, 81–82
harmony, 82–83
vehicle manufacturing characteristics
and attributes, 83
assembly, 85–86
construction, 83–85
delivery, 86–87
vehicle function characteristics and
attributes, 87
health characteristics and attributes
durability, 87–89
reliability, 89–90
serviceability, 90–91
utility characteristics and attributes, 91
amenities, 94–95
mobility, 91–93
safety, 93–94
vehicle physical realization
inputs
design reviews and verification, 224
engineering specifications, 225
facilities, equipment, and tooling
requirements, 226
gauges/testing requirements, 226
material specifications, 225
math data and engineering drawings,
225
production feasibility and
management support, 226
product/process characteristics,
223–224
product/process virtual modeling
and simulations, 225
prototype build and control plan, 224
virtual process layout and flowchart,
225–226
learning outcomes, 242–243
model, 222–223
in new product development, 218–221
physical conception, 231, 232f
inputs and outputs, 233, 234f
process form, 233
process function, 233
product form, 232
product function, 232–233
physical inception, 226, 227f
process form, 228
process function, 228, 229f
product form, 227
product function, 228
product/process fit, 230, 231f
physical maturation, 234, 235f
process form, 238
process function, 238, 239f
product form, 235
product function, 235–238, 236f–237f
product/process fit, 240–241
production assessment feedback and corrective actions, 241–242, 242f
vehicle safety value stream mapping, 116f
vehicle technical specification (VTS), 77, 79
virtual conception, 196–198
of door system for styling, safety, and manufacturability, 198–199
process form, 201
process function, 202
product form, 199–200
product function, 200
product/process fit, 202
thinning of A-pillar section, 202–205
virtual domain, 31
virtual inception, 193–194
of process, 195–196
of product, 194–195
virtual maturation, 205–207
process form, 209–210
process function, 210–211
product form, 207–208
product function, 208–209
virtual phases
in new product realization, 187–190
product realization, 40
virtual process layout and flowchart, 225–226
virtual reality modeling and simulations, 179f
virtual realization inputs
concept goals, 192
customers' reviews, 192
management support, 193
preliminary bill of materials, 192
preliminary matrix of product characteristics, attributes, criteria, and targets (bill of product), 192
preliminary production process characteristics, attributes, criteria, and targets (bill of process), 193
project management, product development, and product assurance plans, 193
renderings and virtual data, 192
virtual realization model, 190–192
voice of the customer (VOC), 107, 166