advanced product quality planning (APQP), 29, 117–118
agile methodologies, 148
agile practices applied to conventional projects, 100, 101f
agile scrum methodology, 32, 33f
anti-lock brake specification, 34
APQP. See advanced product quality planning (APQP)
assembly line, 81, 81f
assumptions, 84, 148
Automotive Industry Action Group (AIAG), 117
standards, 29, 30f

bottom-up approach
estimation, 7
multi-layer time plan, 61
budget estimation, 6–7
build-to-print manufacturing site local, 133
burn down chart, 32, 32f
business case and phases, 35–36, 36f
business justification, 40
cash flow impact, 26–27
internal rate of return (IRR), 27
legal demands, 27–29, 28f
legal projects, 25
model accuracy for, 26, 26f
payback period, 27
profitability, 25
project manager, 25–26
return on investment (ROI), 26
shareholder, new market and strategic projects, 29
capacity planning, 53
cash flow impact, 26–27
CC. See critical characteristics (CC)
cell form, assembly, 81f
certifications, 136–137
change management, 43–46, 44f, 45f, 148
Cloud, 62
co-location, 56
communication
challenges, 20
failing project recovery, 152
plan, 20–21
plan revision, 21
project communication protocol (PCP), 20
project manager, 20–21
protocol, 17
reports and documentation, 21–22
risk register, 21, 22f
during the test phases
status report to management, 103, 103f
status report to project team, 102, 103f
tracking report, 101, 102f
transition from project to operations, 124
competition, 54, 76, 148
competitive intelligence, 38–39
complexity, 4, 54, 62, 93, 126, 158, 939
computer-aided design (CAD) tools, 56
configuration management plan, 47–48, 48f
calculation, 10, 16, 62, 80, 96, 144
constant turmoil, 72
consultancy, 73–75
continuous conformance testing, 108–109
contract, 138
testing, 109–110
types, 22
control charts, 125
control plan, 89f
cost management, 6–7
cost of the product, 76
critical characteristics (CC), 76, 87
critical deadlines, 59
critical path, 61–62
time and schedule, 13
critical requirements., 75, 76f
“current production team,” 129
customer. See also voice of customer (VOC)
delivering end units to, 131, 131f
specification and standard, 98
visits and weekly communication, 152–153
customization impact, 134
cycle time, 87

3-D printer, 106
Daimler-Chrysler production, 130
defects, 80
reporting, 150
delta installation time, 113
dependencies, 8, 9f, 59, 60, 68, 73, 85
design for assembly (DFA), 113, 115
design for manufacture and assembly (DFMA), 115
development models
Toyota model (or set based), 35

V (W) model – prototype models, 34, 34f
waterfall model, 33
development mules, 64
DFA. See design for assembly (DFA)
discounted cash flow (DCF) model, 126
durability, 106–107
eyearly production
customization impact, 134
export vehicles, 132–133
labels, certifications, and manuals, 136–137
missing hardware strategy, 136
OEM sampling strategies, 135–136
post-vehicle launch activities, 137
product production quality, prediction of, 133–134
tier 1 and OEM, statistical process control, 135
tier 1 and vehicle operations, 129–132, 131f
transition from project to customer service group, 138–140
vehicle and part field failure recovery, 137–138

EDI. See electronic data interchange (EDI)
EDM. See electronic data management (EDM)
effective product testing. See product testing
efficiency, 14, 46, 56, 64, 71, 81f, 92, 98, 125
electromagnetic compatibility (EMC), 65
electronic data interchange (EDI), 112, 136
electronic data management (EDM), 136
EMC. See electromagnetic compatibility (EMC)
empowerment, 31
end-to-end process, 84
escalation, 20–22, 147, 150
estimated time of arrival (ETA), 12
evaluation team, 52, 55
export vehicles, 132–133
extreme testing, 98, 107
failing project recovery. See also project management breakdown of, 151, 151f communication, 152 customer visits and weekly communication, 152–153 interview team members and stakeholders, 152 project manager role, 151–152 root cause, 151–152 set up clear objectives, 152 set up short- and long-term goals, 152 failure mode effects analysis (FMEA), 29, 109 failure rate, 99–100, 138. See also vehicle and part field failure recovery fault frequency, 125 FEA. See finite element analysis (FEA) feedback, 29, 39, 49, 50, 64, 68, 84, 96f, 104, 116, 152 financial and earned value reporting, 21 finite element analysis (FEA), 43, 108 firefighting, 72 fit, 84–85 floor plan layout, 88 FMEA. See failure mode effects analysis (FMEA) form, 85 front loading, 69 full-vehicle electromagnetic compatibility (EMC), 65 function, 85 Gantt chart, 11–12, 12f gate criteria, 63–64, 63f gate reviews and pauses, 156 Gauge R &R, 89, 90f gauge repeatability and reproducibility (Gauge R & R), 89–90, 90f Gemba walk, 155 gliders, 132 global positioning system (GPS), 12 global technology vs. local application, 148 goof-proof, 90 HALT. See highly accelerated life testing (HALT) hard equipment, 73 hard features of the product, 76 highly accelerated life testing (HALT), 98, 106–107 hiring and training, 72 historical and analogous estimation, 7 human potential, 80 human resources, over-utilization, 11 hyper focusing, 156 IMDS. See International Material Data System (IMDS) information description, 21 distribution, 21 schedule, 21 inspections, 110 interchangeable item, 85 interdependencies, 59 project, 62, 63f types, 8, 9f interface, 85 control, 85 internal rate of return (IRR), 27 internal testing, 109 International Material Data System (IMDS) automotive OEMs, 118 benefits, 119 Bill of Materials (BOM), 119 Dodd-Frank Wall Street Reform and Consumer Protection Act, 119 Material Data Sheets (MDS), 119–120 material information, 119 sustainable materials review, 119 tolerance, 119 interview team members and stakeholders, 152 inventory, 80 key control characteristics (KCC), 87 key milestones, 60 key performance indicators (KPIs), 125, 139
key product characteristics (KPC), 75–77, 76f, 87
knowledge management, project closure efficiency dip, 145, 146f
process change trigger, 146
project management, 145
strategy and risk, 146
labels, 136–137
lean manufacturing approach (5S), 88
lean project management (agile), 30–32, 32f, 33f
legal demands, 27–29, 28f
legal project, 7–8, 25, 147
line organization and project managers, 71
line sequenced, 130
list of work packages, 59
live prototyping, 68
local country adaptations, 148
logistics and current product order, 113
low profitability products, 147
low-cost market, 148
mailbox project managers and reactive sponsors, 150–151
maintainability, 76, 77, 126
maintenance, 54, 83, 139, 142
manuals, 136–137
manufacturability, 76, 116, 122
manufacturing facility, 92
manufacturing line, 81–82
manufacturing process development, 82
manufacturing specific deliverables, 86
characteristics, 87
floor plan layout, 88
gauge repeatability and reproducibility (Gauge R & R), 89–90
packaging standards, 92–93
Poke Yoke, 90
process
control plan, 88–89
failure mode and effects analysis, 88
flow chart, 87
instructions, 89
product/ process quality system review, 86
run at rate, 92
trial production run, 91–92
matrix organization structure, 70
matrix vs. line organization
balanced, 16
decision-making process, 16
functional organizations, 15
line manager, 16
matrix models, 15, 15f
project manager, 14–16, 16f
project-driven organization, 16
resource managers, 15
risks and conflicts, 17
MBR. See model based requirement (MBR)
measurement, ramp up production design, 125
measurement system assessment (MSA), 29
megaprojects, 147
methods build area, 116
missing hardware strategy, 136
model based requirement (MBR), 43
motion, 80
muda, 79–80
multi-layer time plan, 61, 68, 69f
multiple projects, 9–10
mura, 80
muri, 80
net present value (NPV), 27
network diagram, 11, 11f
OEM. See original equipment manufacturer (OEM)
OEM and Top-Tier supplier selection
statement of work, 53–54
supplier quality, 55–56
supplier selection
cost, 50
employment plunge and automotive establishment, 50, 51f
evaluation process, 52f, 53–53, 53f
financial failure and the inter-relationship, 50, 51f
Index

relationship, 50
risk, 50
supplier procurement, 49
off-shore production, 126
operations manager, risk assessment, 116
organization change or shakedown, 148
organization size and footprint, 17
organizational influences
 executive’s role, 19–20
 matrix vs. line organization, 14–17, 15f, 16f
organization size and footprint, 17
stakeholder and sponsor
 management, 17–18
 roles and responsibility, 18–19, 18f, 19f
original equipment manufacturer (OEM), 118
product handling, 84
 part numbering revisions, 84–86
sampling strategies, 135–136
outsource testing facility, 75
over-committed resources, 72
over-processing, 80
over-production, 80

packaging standards, 92–93, 93f
parametric estimation, 7
payback period, 27
pay-on-production, 130
PCP. See process control plan (PCP); project communication protocol (PCP)
pet (strategic) projects, 147
phases and delivery, time plan, 60
pilot run, 91
Poke Yoke, 90
 for electrical connector, 91f
poorly aligned project, 147
post-vehicle launch activities, 137
power or status quo, 149
PPAP. See production part approval process (PPAP)
prioritization and plan, 156
problem areas prioritization, 151
process
 change, 86f
defined, 73
 flow chart, 87
 instructions, 89
 verification, 107
process control plan (PCP), 88–89
process development, 79
 activities, 82
 manufacturing line, 81–82
 process areas of focus, 82–83
 product and process synergies, 82
 waste, 79
 muda, 79–80
 mura, 80
 muri, 80
process failure mode and effects analysis (PFMEA), 88, 115–116
product
 backlog, 31
 design personnel, 8
 process quality system review, 86
 and process synergies, 82
 production quality, prediction of, 133–134
 profitability, 5
 validation, 105
product development
 key product characteristics, 75–77
 processes and schedule, 157–158
 project schedule, time plan, 59–64
 prototype delivery and risk, 64–65
 resources allocation, 70–75
 virtual testing and prototype in, 66–70
product life cycle and testing
 agile practices applied to conventional projects, 100, 101f
 communication during the test phases, 101–103, 102f, 103f
 continuous conformance testing, 108–109
 fundamentals, 95–97, 96f
 pillars of, 95, 96f
 process verification, 107
 product validation, 105
test modes
 contract testing, 109–110
 inspections, 110
 internal testing, 109
project management, three dimensions of, 5f
project manager (PM), 4
project profile, 4–5, 5f
scope creep, 6
Work Breakdown Structure (WBS), 6
project team
responsibility, 157
time and schedule, 7
prototype, 159
delivery and risk, 64–65
testing, 56
Pugh matrix, 28, 28f
quality, 85
system, 29
tools, 115
quality system assessment (QSA), 29
quantified requirements, 38
ramp up production design
activities from design board to production floor, 114–117, 117f
cost, 112
delta installation time, 113
electronic data interchange, 112
environmental impact, 127
International Material Data System (IMDS), 118–120
logistics and current product order, 113
production line, 111, 112f
production part approval process (PPAP), 112, 117–118
scale of, 113
supply chain decisions, 126
Tier 1 and 2 suppliers, 113–114, 114f
transition from project to operations communication plan, 124
manufacturing investment, 120
material flow, 120
measurement, 125
risk analysis, 120
size and purpose, 120–122, 122f
software handling, 123–124
validation, 122–123
transition from prototype to production checklist, 126
suppliers, 125
recurring risk assessment, 147
reliability, 106
requirements
and change management, 43–46, 44f, 45f
traceability, 40–41
traceability plan, 46–47, 46f, 47f
resources
allocation, product development
hiring and training, 72
line organization and project managers, 71
matrix organization structure, 70
outsourcing testing facility, 75
project leadership, 71
project management office (PMO), 71
project schedule, 71
resource utilization, 71
tools, 72–73
work packages transfer for consultants, 73–75
utilization, 71
responsibility, time plan, 60
retrospective, 32
return on investment (ROI), 26
right skill set and motivation, 73
risk
management, 13–14, 14f
register, 21, 22f
run at rate, 92
5S (lean manufacturing approach), 88
sales and marketing team, time and schedule, 7
scope
creep, 6
for the supplier, 52
shareholder, new market and strategic projects, 29
simulation, 69–70, 70f
simultaneous engineering, 82
smooth drive, 38
soft equipment, 73
soft features of the product, 76
software handling, ramp up production
design, 123–124
speed bump effect, 46, 47f
sprint, 31
sprint backlog, 31
stage gate process, 63
stake, 3–4
stakeholders
 expectations, 132
 and sponsor
 management, 17–18
 roles and responsibility, 18–19, 18f, 19f
standard templates, 73
Standish Group International, 3
statement of work, 53–54
statistical process control (SPC), 29, 56
stove pipe, 15
strategy to objective, 147
subject matter experts (SMEs), 42
sunk cost trap, 149, 150f
supplier quality, 55–56
supplier quality assurance (SQA), 138
suppliers
 partnered, 148
 requirements, 52
 selection, timing of, 52–53
supply chain decisions, 126
support/ recommendation/ escalation, 22
Takt Time, 87
talent erosion, 10
team’s assumptions, time plan, 60
technical and business requirements, 52
technical reviews, vehicle concept
 development and selection, 48–49
technology readiness, 73
test cases, 99
test modes
 contract testing, 109–110
 inspections, 110
 internal testing, 109
test mules, 64
testing process
 attention to time plans, 97
 automated, 97
 effective product testing
 customer specification and standard,
 98
 extreme testing, 98
 failure rate, 99–100
 test cases, 99
 key performance metrics, 97–98
 project team verification, 98
 third-party consultants, 74–75
 services, 73
tier 1 and OEM, statistical process control,
 135
tier 1 and 2 suppliers, 113–114, 114f
tier 1 and vehicle operations, 129–132, 131f
tier 1 production line and prototypes, 83–84
tier 1 supplier, 87
time and schedule
 critical path, 13
 estimated time of arrival (ETA), 12
 Gantt chart, 11–12, 12f
 global positioning system (GPS), 12
 government role, 7
 human resources, over-utilization, 11
 interdependency types, 8, 9f
 legal projects, 7–8
 multiple projects, 9–10
 network diagram, 11, 11f
 priorities, constant juggling, 10
 product design personnel, 8
 project team, 7
 sales and marketing team, 7
 talent erosion, 10
 WBS method, 8
time dependent, transition from project to
 operations, 140
time plan
 critical deadlines, 59
 critical path, 61–62
 dependencies, 60
 gate criteria, 63–64, 63f
 interdependencies, 59
 interdependency project, 62, 63f
 key milestones, 60
list of work packages, 59
multi-layer time plan, 61
phases and delivery, 60
project manager, 61
project profile, 60
responsibility, 60
team’s assumptions, 60
TIMWOOD, 80
top-down
approach, multi-layer time plan, 61
estimation, 7
Toyota model (or set based), 35
tracking report, 101, 102f
training, 148
transportation, 80
trial production run (TPR), 91–92
use fact-based metrics, 156–157
V (or W) model – prototype models, 34, 34f
validation, 66
ramp up production design, 122–123
verification vs., 104
value project, 148
value realization, 159
vehicle and part field failure recovery, 137–138
vehicle concept development and selection
competitive intelligence, 38–39
configuration management plan, 47–48, 48f
OEM and Top-Tier supplier selection,
49–57
project coordination or program management, 39, 40f
requirements and change management,
43–46, 44f, 45f
requirements, specifications, and drawings, 40–43, 41f, 42f
requirements traceability plan, 46–47, 46f, 47f
technical reviews, 48–49
voice of customer (VOC), 37–38
vehicle documentation, 139
vehicle integration, 53
verification, 159
durability, 106–107
extreme testing, 107
reliability, 106
through simulation, 108
vs. validation process, 104
virtual manufacturing, 108
virtual testing and prototype in product development
CAD tools, 66
incremental product growth, 67
iterative testing, 67, 68f
limitations, 66
live prototyping, 68
modeling, 66, 69
multilayer time plan, 68, 69f
performance, 66
project manager, 67, 69
purpose of, 66, 67f
simulation, 66, 69–70, 70f
validation, 66
voice of customer (VOC), 37–38. See also customer
waiting, 80
warranty repairs, 125
waste, 79
muda, 79–80
mura, 80
muri, 80
waterfall model, 33
Work Breakdown Structure (WBS), 6
method, 8
work package leader, 75
zero mile, 138