Index

Abnormal Situation Management Consortium (ASMC), 144, 146
Access and repair, 151
ACMS (Aircraft Condition Monitoring System), 147–148, 155, 188
AHEAD (Aircraft Health Analysis and Degradation), 46, 188
AHEAD-PRO system, 46–56, 188
AHM (Airplane Health Management), 72, 73–77, 186
AHMS (Aircraft Health Management System), 181–183, 186, 189
AHS International, 124
AHTMS (Aircraft Health and Trend Monitoring System), 165–176, 189
Air/ground connectivity, 158
Airbus IVHM implementation, 153–164, 188–189
A300/A310, 154
A320 to A330/340, 154–155
A380 and A350XWB, 156–158
airborne segment, 154–159
design and verification, 158–159
eyears, 154
extended centralized maintenance system, 156–158
first-generation centralized ground crew maintenance systems, 154–155
ground segment, 159–163
current implementation, 160–163
historical perspectives, 159–160
from unplanned to predictive maintenance, 163–164
Aircraft Condition Monitoring System (ACMS), 147–148, 155, 188
Aircraft engine monitoring, 39
Aircraft Health Analysis and Degradation (AHEAD), 188
Aircraft Health and Trend Monitoring System (AHTMS), 165–176, 189
Aircraft Health Management System (AHMS), 181–183
Aircraft maintenance support, 169
AIRMAN (AIRcraft Maintenance ANalysis), 159–160, 188
AIRMAN-Web, 160–163, 188
functional capabilities, 161–163
IT implementation, 161
users targeted, 163
Airplane Health Management (AHM), 72, 73–77, 186
Alarm classifications, 135
Apache helicopters, 130–142
APU, see Auxiliary power unit
ASMC (Abnormal Situation Management Consortium), 144, 146
Asset configuration control, 38
Asset management, 186–187
eamples, 39–41
lessons learned, 34–39
Automation, 102–104, 164
Auxiliary power unit (APU), 149, 186
health management
cultural change, 69–70
lessons learned, 63–67
making the business case, 68–69
ed for, 60
offboard implementation challenges, 62–63
onboard implementation challenges, 61–62
In-Flight Start program, 71–77
brief overview, 73–74
plementation, 74–76
performance metrics, 76
planning manually, 74
regulatory requirements, 72–73
Avianca Flight 72, 7
Aviation Applied Technology Directorate (AATD), 123
Baseline for comparison, 37
Big data, 38
Biotechnology, reproducible, 101–109, 186
industrial examples, 105
instrumentation case study, 107–108
manufacturing system design, 106–107
pipette, 103–105
Boeing Airplane Health Management (AHM) system, 72–77, 186
Built-in test equipment (BIPE), 155, 158–159
Business case studies, 9
Business model, 88–89
Cell phone, data acquisition of, 98–99
Central Integrated Checkout (CIC), 112–113, 187
Central maintenance computer (CMC), 147–148, 149, 188
Integrated Vehicle Health Management

Centralized Fault Display System (CFDS), 154–155
Certification, 61
Chinook, 122–123
Combustion chamber failure, 65–66
COMETE (COoordination Maintenance End-To-End), 159, 188
Computer forensics, 91–99, 187
case studies
 acquisition of a USB memory stick, 97
data acquisition of cell phone, 98–99
data acquisition and reproducibility, 94–97
contemporaneous note taking, 94, 97
hashing algorithms, 96
software, 96–97
write-blocker, 96
evidence management, 92–94
 continuity and integrity, 93
methods of ensuring continuity, 93–94
 at seizure, 93
seizure, 92, 93
Condition-based maintenance (CBM), 112, 122–124, 164, 187
 methodology for development of, 139–140
Contemporaneous note taking, 94, 97
Continuity, methods of ensuring, 93–94
Contractual and legal relationships, 84–5
Coordination Maintenance End-to-End (COMETE), 159, 188
Cost, 38
Cost-benefit analysis, 47–48, 179, 181
Cost model, 88–89
Crew Alerting System (CAS), 166, 167, 171–172, 189
Cultural transformation, 140
Customers, 35–36, 53

Data, vs. information, 36
Data Acquisition and Recorder System (DARS), 178–179, 189
Data acquisition and reproducibility, 94–97
 contemporaneous note taking, 94, 97
hashing algorithms, 96
software, 96–97
write-blocker, 96
Data analysis, 169–170
Data capture, 39, 148–149, 150
Data flow, 132–133
Data-level services, 88
Data mining, 40, 67, 142
Data quality, 16–17
Data sampling rates, 120–121
Data shelf life, 121
Data specification, 36–37
Data transmission, 166, 167, 170–172
 priority categories, 171–172
Database setup tool, 146
Degradation levels, 49
Deployment platforms, 151
Design and verification, 158–159
Digital investigations, 92–99
Digital Twin, 184
Dispatch function, 156–157
Document control system (DCS), 93–94
Drivetrain, 116, 144

Economic model, 81, 88–89
Electronic Centralized Aircraft Monitoring (ECAM), 154, 156
Embraer, 46, 188
Engine trend monitoring systems (ETMS), 119
Engineering and logistics support, 169, 170
Equipment Health Management (EHM), 16–28
 lessons learned from system failures, 17–18
 STRAPP application to Rolls-Royce EHM, 20–28
testing of, 18
European Aviation Safety Agency (EASA), 72–73
Evidence
 integrity of, 91–99
 management of, 92–94
 seizure of, 92, 93
Evidence aggregator, 147
Exhaust gas temperature (EGT), 63–66
Extended-range twin operations (ETOPS), 60, 72–73, 186
False alarms, 140
False positives, 17–18
Fatigue index, 80, 81–82, 86
Fault notification, 46
Fault tracking, 163
Fixed thresholding techniques, 123
Fleets, 40, 46, 82, 84, 120
Flight control, 173
Flight data recorder (FDR), 115, 118–119
Flight regime recognition, 133
Forensic computing analysts (FCA), 92
Fuel flow, 63–64
Fuel fluctuation, 173
Functional decomposition, 21–22
Funding, 53

GE Aviation IVHM, 177–184, 189
 aircraft health management systems, 181–183
data acquisition and recorders, 178–179
 future perspectives, 183–184
 history, 178
lessons learned, 183–184
rotorcraft IVHM, 179–181
Genetic sequencing, 102
Global IVHM developments, monitoring, 53–54
GPS, 40–41
Ground crew, 154
Ground station, 145
Ground Services Network (GSN), 181, 182
Ground Support Network (GSN), 166, 169–170
Gulfstream G650 Aircraft Health and Trend Monitoring System (AHTMS), 165–176, 189
benefits of, 173–176
data analysis and ground support network, 169–170
data transmission, 166, 167, 170–172
example events, 172–173
fuel fluctuation, 173
ground flight control issue, 173
high-priority CAS event over Pacific, 173
landing gear maintenance messages, 173
goals of, 167
overview of, 167
system functionality, 167–169
Hamilton Star liquid-handling platform, 107–108
Hashing algorithms, 96
Health and Usage Monitoring System, see HUMS
Health indicator (HI), 135, 136–139
Health management
auxiliary power unit (APU), 59–70
Boeing Airplane Health Management (AHM) system, 72–77
Health monitoring, biotechnology, 102–108
Helicopter Airworthiness Review Panel (HARP), 114
Helicopter Flight Data Monitoring (HFDM), 119
Helicopter Health Monitoring Advisory Group (HHMAG), 114–115, 116
Helicopter OEM branded systems, 116–121
High-throughput screening (HTS), 105, 106
Highly redundant system architecture, 156
HM-1 Technical Committee, 2, 11, 12
Honeywell IVHM history, 143–152, 188
example products and solutions, 144–150
health usage and monitoring system, 144–146
onboard maintenance systems (OMS), 144, 147–149
performance trend monitoring, 149–150
process equipment monitoring, 146–147
Human factors, 5–12, 74, 186–187
and ambiguous data, 11
decision making, 16, 17
effects on system concepts and intended use, 8–10
human limitations, 39
interaction with system and surrounding use environment, 7, 10–11
interpretation of information, 8
in IVHM, 16
solutions, 11–12
see also Trust
Human Genome Project (HGP), 102
Human health monitoring, 41
Human-machine interface (HMI), 157, 158
HUMS (Health and Usage Monitoring System), 112–124, 187–188, 189
Advisory Circular AC29 MG15, 114
barriers to application, 117
current research and recent developments, 123–124
data shelf life, 121
download frequency, 116
Federal Aviation Administration, 121–122
lessons learned, 121–122
GE Aviation, 179–181
ground station, 114
Honeywell, 144–146
Israeli Air Force, 130–139, 140–141
lessons learned, 140–141
maintenance credits, 121–122
military applications, 122–123
lessons learned, 122–123
North Sea developments, 114–116
lessons learned, 115–116
OEM branded systems, 116–121
lessons learned, 119–121
ongoing sources of technical data, 124
system management policies, 116
V-22 Osprey CIC/VSLED, 112–114
lessons learned, 113–114
Image duplication, 94–96
Individual aircraft tracking (IAT), 130
Inference engine, 148
Information-level services, 88
Integrated Vehicle Health Management, see IVHM
Integrated Vehicle Health Management: Business Case Theory and Practice, 2, 68, 184
Integrated Vehicle Health Management: Essential Reading, 3
Integrated Vehicle Health Management: Perspectives on an Emerging Field, 2
Integrated Vehicle Health Management: The Technology, 2–3
Integrity of digital evidence, 93, 99
Integrated Vehicle Health Management

Intellectual property, 54–55
 Israeli Air Force Apache THUMS and CBM, 123–142, 187–188
 condition-based maintenance (CBM), 139–140
 lessons learned, 140–141
 start-up vision, 130
 updated vision, 141–142
 IVHM (Integrated Vehicle Health Management), 45–56
 activity cycle, 178
 Airbus, 153–164
 APU In-Flight Start program, 71–77
 customer engagement, 53
 data processing elements of typical system, 21
 decision steps in, 18–19
 development characteristics, 52–53
 funding, 53
 Honeywell, 143–152
 GE Aviation, 177–184
 Gulfstream, 165–176
 human factors, 5–12
 intellectual property, 54–55
 introduction to, 1–3
 Israeli Air Force, 129–142
 lessons learned, 51–55
 incorporating, 55–56
 maintenance logistics system, 7f
 monitoring global IVHM developments, 53–54
 organizational, 55
 possible orchestration of analytic models in, 22f
 project management, 54
 rotorcraft HUMS, 111–124
 technology development, 47–52
 technology transfer, 55
 and trust, 15–30
 values derived from, 150
 Knowledge-level services, 88
 Korean Air Flight 801, 7
 Landing gear, 173
 Life consumption, 130, 133
 Line replaceable units (LRU), 135
 Long Term Archiving and Retrieval (LOTAR) project, 81
 Main gearbox (MGB), 136
 Maintenance, 16
 data, 113
 deferring, 10, 11–12
 remote, 164
 Mean time between failure (MTBF), 106
 Metadata, 86–87
 Microelectromechanical systems (MEMS), 119, 124
 Micropipette, 103
 Military applications of HUMS, 122–123
 Modeling, 141
 Monitoring systems
 human factors in, 6–12
 resistance to output information becoming available, 9–10
 system concepts and intended use, 8–10
 Multi-Platform Ground Station (MPGS), 181, 182
 North Sea FDR/HUMS developments, 114–116, 187
 Object-orientated paradigm, 22
 OEMs, 9, 115, 116, 140
 Oil debris monitoring, 62
 Oligonucleotides, manufacturing, 105
 Onboard advisories, 113–114
 Onboard data processing, 145
 Onboard diagnostics, 41
 Onboard Maintenance Systems (OMS), 147–149, 188
 Open Archival Information Service (OAIS) standard, 81
 Operational impact, 154
 Organizational change, 38–39, 40, 55, 69–70, 140
 Original equipment manufacturer (OEM), 9, 115, 116, 140
 Partnerships, 36
 Performance metrics, 76
 Performance Trend Monitoring and Diagnostics (PTMD), 149–150, 188
 Personalization of information, 20
 treatment in STRAPP trust service, 27–28
 Physics-based asset model, 37
 Pipette, 103–105
 PlaneConnectHTM, 166, 173, 175, 176, 189
 Portable Maintenance Device (PMD), 182
 Post-flight report (PFR), 157–158
 Predictive maintenance, 163–164
 Product Life Cycle Support (PLCS), 81
 Prognostics, 141–142
 metrics, 49–50
 opportunities for, 67
 Project management, 54, 55
 Proof-of-concept, 48–49
 PRO-V, 23–24, 26f
 Provenance, 16–17, 20, 187
 chain of, 26f, 28–30
Qualification and maintenance processes, 123
Quality
data, 16–17
irrational aspects of, 17
Quality control, 106–107

RASSC project, 79–89, 187
contractual and legal relationships, 84–5
economic, business, and cost models, 81, 88–89
goals, 80–81
repository characteristics, 85–86
service model, 87–88
structural health monitoring, 80, 81–84
submission agreement, 86–87
Real-time health monitoring, 162–163
Real-time status filtering, 113
Regulatory frameworks, 92
Regulatory requirements, 72–73
Remote diagnostics, 41
Repository Access Services for the Supply Chain, see RASSC project
Requirements definition, 140–141
Risk
treatment in STRAPP trust service, 24–27
and trust, 20
Risk service, STRAPP, 24–26
Robotics, 102–108
Rolls-Royce EHM system, 20–28
Rotor smoothing, 144
Rotor track and balance (RTB), 180, 189
Rotorcraft IVHM, 179–181

SAE IVHM Steering Group, 2
Scaled Agile Framework (SAFe), 22
Senior management support, 35
Sensors, 141
control and operation, 61–62
MEMS, 124
oil debris monitoring, 62
vibration monitoring, 62
Service model, 87–88
Side band (SB) amplitudes, 139
SIM card, 96–97, 187
Simplicity, value of, 37
Software, 10, 96–97
Specification issues, 140–141
Spiral process, 51
State estimators, 146–147
STRAPP project, 187
agnosticism of, 22–24
architectural lessons learned, 20–28
EHM design and architecture, 21–22
existing EHM system, 20–21
hypothesis of trust, 20
treatment of personalization in trust service, 27–28
treatment of risk in trust service, 24–27
Structural health monitoring (SHM), 81–82
contractual and legal relationships, 84–85
organizational relationships, 82
SHM as a service, 80, 82–84
Submission agreement, 86–87
System engineering, 141
System reference model, 148
System specification, 10

Technical Standard Order (TSO), 61
Technology transfer, 55
THUMS, 131–142, 187–188
architecture, 131–132
data flow, 132–133
diagnostic events, 136–139
flight regime recognition, 133
lessons learned, 140–141
performance, 135–136
success stories, 136
Time-limited failures, 156
Timestamp, 38
Total Health and Usage Monitoring System, see
THUMS
Trend analysis, 135
Trend Monitoring, 154
Trust, 15–30, 187
enhancing the ability to act, 19
hypothesis of, 20
importance of, 16–18
irrational aspects of, 17
in IVHM context, 18–19
STRAPP Project, 19–28
Trust service, STRAPP, 24–26
Turbine vibration monitoring system, 40
Turkish Airlines, 72–77, 186
Typhoon, 81

U.S. Army, 122, 123
U.S. Federal Aviation Administration (FAA), 72–73, 117, 121–122
U.S. Navy, 112–113, 122
UK Civil Aviation Authority (CAA), 112, 114–116
UK Ministry of Defence, 122–123
Usage credits, 117
Usage monitoring distribution, 114
USB memory stick, data acquisition of, 97, 187
Users needs, 141
Integrated Vehicle Health Management

V-22 Osprey, 112–114, 187
Verification and validation (V&V), 123
Vibration Management Enhancement Program (VMEP), 144
Vibration monitoring, 62, 113, 114–115, 116, 130, 144
Vibration, Structural Life and Engine Diagnostic System (VSLED), 112–113
Visualizations, 37–38

Wireless Data Network Unit (WDNU), 167, 181, 182
Workflow principles, 157–158
Write-blocker, 96
About the Authors

André Lafon

At Airbus, André Lafon leads the Research & Technology Project on maintenance operations solutions and technologies. He joined the company in 2005 to manage research and technology in the field of avionics platforms. Prior to joining Airbus, Lafon had several technical and management positions at ONERA, the French Aerospace Research Centre, and at the French Ministry of Defense, where he was involved in a number of technical projects in the field of aerospace and defense relating to aerodynamics, propulsion, and energy systems. He graduated from Ecole Polytechnique and has a PhD in mechanical engineering from Paris University.

Charles Dibsdale

Charlie Dibsdale is a chief of research and IP management for Controls and Data Services (CDS), a fully owned subsidiary of Rolls-Royce. Dibsdale has played a major influencing role in developing the commercially successful IVHM capability. His engineering career started as an electrical technician in the Royal Navy submarine service, operating and maintaining submarine machinery and nuclear plants. He has a BS in computer science and an MSC in information systems. For over 17 years, Dibsdale has specialized in predictive maintenance. His new role in research will focus on IVHM and big data capability to help maintain CDS as a world-leading company.

Dashiel Kolbe

Dashiel Kolbe is the application engineer for the Integrated Vehicle Health Management (IVHM) program for GE Aviation. In this role, Kolbe manages the technical roadmaps for all program activities and is a principal technical strategist for IVHM program activities. His areas of expertise are in data analysis, user interface design, and data retrieval. Kolbe began his career as an engineer with Smiths Aerospace but joined the GE team upon the acquisition of Smiths. Prior to his work in IVHM, he focused on areas of advanced research including terrain databases, zero-visibility taxiing, synthetic vision, flight deck design, and mobile flight planning. Kolbe teaches courses in advanced avionics in GE’s Edison engineering program. He graduated from Michigan State University with a doctorate in computer science.

David Jennions

Dr. David Jennions is the automation lab manager at Axxam SpA in Milan, Italy. He moved to Axxam in 2012, leading the integration of novel instrumentation and new informatics systems into their high-throughput screening systems. Jennions has been involved in BioTech
David Webster PhD is a research fellow working in the school of computing at the University of Leeds and co-author of over 20 peer-reviewed papers in the fields of distributed systems Since 2004. Webster’s primary research involvement is within the joint EPSRC and Jaguar Land Rover sponsored Programme for Simulation Innovation, focusing on analysis of the vehicle as a complex system through virtual simulation. He has previously been involved in the Technology Strategy Board sponsored STRAPP project with industrial collaborators Rolls-Royce and Cybula Ltd. to address the issue of trust in the use of shared digital systems. He also was involved in the joint BAE Systems and EPSRC sponsored NECTISE programme to support Network Enabled Capability (NEC). Webster received his first PhD from University of Hull in 2010 and his second from the University of Leeds in 2013.

Dinkar Mylaraswamy

Dr. Dinkar Mylaraswamy is the technology fellow for condition-based maintenance and decision-support applications within Honeywell’s Advanced Technology organization. His areas of expertise are fault diagnosis and process monitoring, machine-learning, and control. Mylaraswamy is responsible for identifying and maturing strategic health management technologies that cut across multiple products and services, providing inputs for strategic technology investments, and mentoring. He joined Honeywell in 1997 after completing his PhD from Purdue University. He spent his first six years in Honeywell developing and deploying an early abnormal event detection application at six refinery sites in North America. On the aerospace side, Mylaraswamy was the technical lead for Honeywell’s Predictive Trend Monitoring program, a web-based application for monitoring aircraft engines. He continues to serve as the technical lead on various health management programs.

Emre Civan

Emre Civan is an engineer with Turkish Airlines. He is responsible for the implementation of Airplane Health Management (AHM) software for Boeing 777 airplanes. Boeing’s AHM is a customer support tool that delivers alerts and notifications to operators, enabling them to diagnose problems and help with operator awareness of fleet status. Civan received a BS and MS from Istanbul Technical University.
University in aerospace engineering. He started his career at Turkish Airlines in 2004, and worked as an engineer in technical departments such as aircraft systems, maintenance, and structural engineering.

Frank Kramer
Frank Kramer is involved in research and technology projects for Airbus future maintenance systems. He joined the company in 1991 to be responsible for quality tests of the Single Aisle Family aircraft. He was then responsible for BITE standardization for A380 and A350 aircraft, product requirements, and the design process before moving to research and technology in 2011. Prior to joining Airbus, Kramer worked in embedded control system business (hardware and software design) for a pharmaceutical manufacturing organization and also for an audio signal processing company. He holds a communications engineering degree.

Frédéric Martinez
At Airbus, Frédéric Martinez is head of maintenance and engineering application definition and an expert in aircraft health monitoring. He joined Airbus in 2006 to lead the AIRMAN project (Airbus application dedicated to aircraft health monitoring). In 2007, he launched the project AIRMAN-web. Prior to joining Airbus, Martinez was at Air France, where he took several positions: team leader, maintenance control centre engineer, systems engineer, maintenance instructor, and head of line maintenance engineering, having the opportunity to work on various types of aircraft and technologies. He started his aeronautical career as Petty Officer involved in helicopter heavy maintenance in the French naval army. Frédéric Martinez holds an aeronautical maintenance degree.

Ian K. Jennions
Ian K. Jennions is a Professor and Director of the IVHM Centre, Cranfield University, UK. He joined the Centre, which is funded by a number of industrial partners, when it was founded in 2008 and has led its development and growth in research and education over the last three years. Previously, Ian had worked for a number of companies in the gas turbine industry over a 30-year career. He worked for Rolls-Royce, General Electric, and Alstom in a number of technical roles, gaining experience in aerodynamics, heat transfer, fluid systems, mechanical design, combustion and, more recently, IVHM. He has a Mechanical Engineering degree and a Ph.D. in CFD, both from Imperial College, London. He is a Director of the PHM Society, contributing member of the SAE IVHM Steering Group and HM-1 IVHM committee, and a Fellow of IMechE, RAeS, and ASME. He was also the editor of SAE International’s Integrated Vehicle Health Management: Perspectives on an Emerging Field.
Ian Mitchell
Ian Mitchell has been the programme leader of the computer forensics programme at Middlesex University since 2007. Mitchell teaches four modules in the programme. His research is not limited to file systems analysis, but also includes bioinformatics, evolutionary computation/algorithms, artificial neural networks, and artificial intelligence. Mitchell is co-investigator on an EU funded project to research neuromorphic embedded agents that learn. He completed his PhD in computer science in 1999 at the University of North London. In 1998, Mitchell was employed at Middlesex University as a lecturer and was promoted to principal lecturer in 2010. He was undergraduate director of programmes between 2007 and 2013, and validated a number of programmes including computer forensics.

João Malere
João Pedro P. Malere has been a development engineer in the IVHM research group at Embraer since 2006. His work is focused on health management, including IVHM systems architecture, design, and implementation. He is the project manager of one of the Embraer research initiatives related to the theme. Prior to joining Embraer, Malere was a development engineer at General Motors, where he worked with new products development. He holds a BS in control engineering from Universidade Estadual de Campinas (Unicamp) and an MS in aeronautical engineering from Instituto Tecnológico de Aeronáutica (ITA). He is a member of the SAE HM-1 group.

Jacob Bortman
Prof. Jacob Bortman joined the academic faculty of Ben Gurion University in 2010 as a full professor, after having spent thirty years in the Israel Air Force (IAF), from where he retired with the rank of Brigadier General. In the IAF, he led the fatigue and damage tolerance lab, the unmanned aerial vehicle and space departments, the engineering laboratories, and the aircraft department. Prof. Bortman was also the head of the material directorate. Prof. Bortman has a PhD in mechanical engineering, and one of his main areas of expertise is finite element methods. His current areas of research at BGU include health usage monitoring systems, condition-based maintenance, and usage and fatigue damage survey.

Mervyn Floyd
Mervyn Floyd is a private consultant on IVHM and other related monitoring topics. He started his engineering career at Rolls-Royce Derby specializing in controls and accessories. In 1971, he joined Vibro-Meter Switzerland to assist in contract fulfillment for the vibration monitoring system for the L1011. As chief of avionic projects, Floyd expanded upon this basis to include similar systems on Douglas, Boeing, and Airbus airplanes. In 1986, he moved to the United States to provide support at the OEM’s engine and airframe units. When Vibro-Meter was acquired by Meggitt, Floyd
became the customer relations manager for Meggitt products at Boeing. During this time, he managed the expansion of the systems at Boeing from engine vibration monitoring to include advanced bearing diagnostics/prognostics, and finally the inclusion of the engine monitoring unit on B-787 airplanes.

Michael J. Augustin

Mr. Augustin is president and principal investigator at IVHM Inc., an aerospace consulting business focused on advanced sensors and systems for aerospace applications. Mr. Augustin retired from Bell Helicopter in 2011 with 25 years of experience. His work was focused on the development of advanced systems and sensors, particularly in the HUMS/CBM and enhanced safety areas. He joined Bell Helicopter Textron in 1986 after working 17 years for Motorola. At Bell Helicopter, his work included the VSLED diagnostic system for the V–22 Osprey, flight recorders for the Bell 212/412 helicopter models, and development of HUMS programs. Mr. Augustin is a graduate of the University of Wisconsin – Madison, with an emphasis in communications systems.

Michael J. Provost

Dr. Michael J. Provost joined Intelligent Energy Ltd., a clean power systems company focused on the development and commercialization of fuel cell systems, in 2010 as Engineering Fellow, Predictive Asset Management. He is responsible for technical leadership of the development and roll-out of asset management techniques across all of Intelligent Energy’s product lines. Before this, Dr. Provost spent 27 years at Rolls-Royce, which included working on modeling and analysis of civil aero-engine performance, aero-engine condition monitoring, corporate strategic planning, and advanced civil aero-engine and more-electric aircraft systems design. He spent two years at Data Systems & Solutions, working on applications of aerospace asset management techniques in areas such as railways, and five years at Bombardier Transportation.

Murat Yukselen

Murat Yukselen started his career in a Part-145 organization in Prima Aviation Services Inc. as an aeronautical engineer and shop superintendent, responsible for certifying maintenance activity, tracking and evaluating authority and manufacturer publications, airworthiness management of components, workload planning, marketing, and customer relationship management. He then moved to Turkish Airlines Technic, Inc., where he started his specialization in APU fleet management, and aircraft delivery and procurement management. He developed and participated in over
30 projects of new business, process management, Part-M, and Part-145 engineering. Yukselen has become a technical lead and is experienced in EASA and FAA regulations and their implementation. He completed his BS in aeronautical engineering at Istanbul Technical University.

Ravi Rajamani
Dr. Ravi Rajamani joined Meggitt in 2011 as an engineering director, after spending nearly 11 years with United Technologies Corporation, first at the Research Center, and then with its Pratt & Whitney division. Before this he was with GE for ten years. His primary focus has been in the area of controls and diagnostics of gas turbines for aerospace and industrial applications. Rajamani has a BTech (ME) from IIT Delhi, an MS (Automation) from IISc, Bangalore, and a PhD (EE) from the University of Minnesota. He also has an MBA from the University of Connecticut. He has published numerous papers in refereed journals and conference proceedings.

Rhonda Walthall
Rhonda Walthall is the manager of prognostics and health management at UTC Aerospace Systems. Since 2010, she has led the development of the Aircraft System Health Management (ASHM) tool. She joined United Technologies Corporation (UTC) in 2003 as a Systems Engineer at Hamilton Sundstrand Power Systems, where she was responsible for the verification and validation and certification of electronic controller software for auxiliary power units. Before joining UTC, Walthall spent eight years at Northwest Airlines as a multi-fleet engine condition monitoring engineer and a business unit manager. She helped to establish the FOQA program still in use at Delta Airlines. Prior to her career at Northwest Airlines, Rhonda spent eight years as a propulsion engineer and a flight test engineer for McDonnell Douglas on the MD-11 and C-17 programs with a focus on aircraft and engine performance. She is the Vice Chair of the SAE IVHM Steering Group, a past Chair and current member of the SAE E32 Committee for Aerospace Propulsion Systems Health Management, a member of the SAE HM-1 Committee for Health Management, a member of SAE International, and a member of the PHM Society. Walthall received her BS in Aeronautical and Astronautical Engineering from Purdue University and an MBA from Pepperdine University.

Robby O’Dell
Robby O’Dell is program manager for advanced cockpit programs at Gulfstream Aerospace Corporation. Before that, he spent four years leading the Gulfstream aircraft health and trend monitoring research and development team. As program manager, his responsibilities included the planning, development, certification, and integration of the G650 Aircraft Health and Trend Monitoring System (AHTMS). Prior to leading the AHTMS development, O’Dell worked for two years in a program management role focusing on entry-into-service efforts for mid-cabin Gulfstream aircraft. He began his career at Gulfstream in electronic systems engineering. O’Dell has
a BS in biomedical engineering, an MS in electrical engineering, and an MBA, all from Mercer University.

Sean Barker

Since 2000, Barker has worked at BAE Systems’ Advanced Technology Centre, working on a variety of information integration and enterprise architecture projects. In 1997, he was seconded to a BAE/Dassault Aviation Joint Venture in Paris. In 1990 he joined BAE Systems, where he developed CAD software before moving to data exchange and data management. Prior to that, Barker was a research fellow in computer-aided design at the Polytechnic of Central London, and worked at Brunel University. Barker has a degree in mathematics from Imperial College London. He is a fellow of the British Computer Society.

Sukhvinder Hara

Hara is pursuing a professional doctorate in information security at the University of East London, in digital forensic readiness and risks afforded by insider attacks in response to organizational decisions. She completed her MSc in information security and forensics in 2008 and is currently a senior lecturer at Middlesex University. Hara was a senior forensic computer analyst between 2002 and 2009 for the Serious Fraud Office, a law enforcement agency in the UK, and has worked on numerous high-profile cases. Research interests focus on legal aspects of privacy and data protection, privacy and security in intelligent environments, cyber security, E profiling, evidence management, risk management, information security, policy management, forensic capability, cloud forensics, human factors in security, overt monitoring methods, employee insider threat management, fraud investigations, and legal aspects of digital forensics.