Index

Acceptance test procedure, 106
Achieved testability, 151
Active fault, 20
Administrative and logistic delay time (ALDT), 69–70, 74
Aerospace, 24
growth of NFF within, 4–7
maintenance practices, 62–64
NFF perspective, 29f
through-life engineering services in, 103f
Air Accident Investigation Board (AAIB), 97
Air Transport Association (ATA), 13–14
Aircraft maintenance manuals, 52–53
use for fault diagnosis, 53f
Aircraft testing resources, 50–52
Aircraft Type Certification, 87, 89
Annex I, 90
Anomalous behavior, 1
ARINC 672, 6–7, 102, 111–122
case study, 122–125
As low as reasonably practical (ALARP), 90
Automatic test equipment (ATE), 166
compared to analog neural network, 169f
Availability, 9
and aerospace maintenance practice, 62–64
definition of, 22, 68
and design for maintenance and system effectiveness, 66–67
design requirements for RAM, 71–73
impact of NFF on, 73–77
introduction to, 61–62, 176
metrics for, 68–69, 73–76, 78–79
multiple facets of, 67–71
process for improvement, 77–81
and quality of maintenance systems, 64–66

Behavior, 18
Benchmarking
benefits of, 132
proposed tool, 132–144, 176
Best practice guidelines, 58–59
Boeing 747, 4
Boeing 777, 92
Boeing 787 Dreamliner, 14
code diagnostics, 163
enhanced understanding of system/fault topology, 162–163
Index

Built-in-test equipment (BITE), 96–97
example of functions, 161f

Cannot duplicate (CND), 24–25
Capability spider plot, 142, 143f
Case studies
ARINC 672, 122–125
impact of inconsistent terminology, 30–31
NFF and air safety, 97–98
Categories, 113
Chronic component, 124
Civil aircraft, 4–5, 91–92
maintenance practices, 62–64
and safety, 61, 65, 92
typical maintenance processes in, 46–47
Classification, NFF, 11f, 12f, 23–30
Commercial challenges of investigating NFF, 131–132
Communication, 42–44
Competence, 55–56
reasons for lack of, 56f
Complexity, 18
Concurrent reporting, 43
Condition monitoring, 179
Consistency, 43–44
Continuous BIT (C-BIT), 161
Continuous improvement, 127, 133
Corrective maintenance, 21
Cost–benefit analysis of reducing NFF, 177
Cost effectiveness, 77
Costs, 130
maintenance, estimating, 79
of NFF, 9, 13–14
vs. system integrity, 167f

Dash-8 Q400, 97
Data, required, 122–123
Data management, 8
Datasheets, unit removal, 80–81
Defense Standard 00-42 part 4, 151
Depth support, 30
Design
design and development phases, 20
for diagnosis, 152
diagnostics, 145–148, 176
information feedback to, 153–154
for maintenance, 66–67
for maintainability (DfM), 22
system
and NFF, 145–146, 149–150
and user interaction, 155
for testability (DfT), 23, 151, 166–167
Diagnosis, designing for, 152
Diagnostic failure, 27, 28, 29–30
Diagnostics, 8
 advanced, 160–165
 built-in-test equipment (BITE), 96–97, 161
 design of
 and NFF, 146–148, 176
 information feedback to, 153–154
 health and usage monitoring of electrical systems, 160
 monitoring and reasoning of failure precursors, 163–165
 monitoring life-cycle loads, 165
Direct maintenance cost (DMC), 79
“Dirty dozen,” 94–96, 98
Domains, 113
Dupont, Gordon, 94

Electrical systems, health and usage monitoring of, 160
Electronics, failure precursors for, 164
Entities, 18
Environment, maintenance engineer interactions with, 49
Environmental conditions, testing under, 169–170
Equipment failure, 27
Equipment fault, 27
Establish candidates, 113
Establish source, 113
Executive level, 135
Experience, lack of, 45–46

F-16, 14
Failure modes and effects analysis (FMEA), 66, 153
Failure precursors, monitoring, 163–165
Failures
 in-service, 153
 types of, 19
 underlying conditions, 107
Fault avoidance, 21
Fault confirmed, 10–11
Fault coverage, 23
Fault detection, 21, 161
Fault diagnosis, 21
Fault investigation, traditional approach, 9–10
Fault isolation (FI), 21, 152, 160
Fault not found (FNF), 24, 87
Fault not indicated (FNI), 23
Fault propagation, 162
Fault recovery, 21
Fault reproducibility, 20
Fault tolerance, 21
Fault topology, 162–163
Index

Faults
 intermittent, 106, 168, 169
 understanding, 178
latent, 20
and maintenance errors
 diagnostic maintenance success, 96–97
 human factors contribution, 93–96
 maintenance contribution, 91–92
 operational pressure, 92–93
and safety, 86–87
secondary, 161
types of, 20–21
Feedback
 to diagnostic design, 153–154
 inadequate, 44
 in-service, 147–148
Field service representatives (FSRs), 154
Forward support, 30
Fraction of false alarms (FFA), 167
Fraction of faults detected (FFD), 166
Fraction of faults isolated (FFI), 167
Function, 18
Functional specification, 18
Functionality testing, 167–169
Future work, ideas for, 177–179

General operating environment, 2f
Gold values, 123–124
Guidelines, best practices, 58–59
“Guidelines for the Reduction of No Fault Found” see ARINC 672

Hard fault, 20
Hardware, maintenance engineer interactions with, 47–48
Harrier case study, 30–31
Health and usage monitoring systems (HUMS), 160, 178
Hessberg, Jack, 64, 91
Hidden failures, 4–5
Human error at depth, 27
Human error at first line, 27
Human error fault, 20
Human factors, 7, 8, 39–46, 175–176, 106
 best practice guidelines, 58–59
 communication, 42–44
 consistency, 43–44
 contribution to faults, 93–96
 definition of, 40
 discrepancy in terminology, 44
 feedback, 44
 lack of experience, 45–46
 maintenance engineer and system interactions, 46–49
 operational pressure, 45
 organizational context, 40–42
preparing accurate reports, 43
survey of, 49–58
aircraft maintenance manuals, 52–53
aircraft testing resources, 50–52
competence and training, 55–58
organizational pressures, 53–55
training, 45, 56–58, 110–111, 154
Human root cause, 27

IEEE, 151
Information, typical flow of, 43
Infrared imaging, 169
Inherent availability, 22
Inherent testability, 151
Initial maturity level, 134, 136–137
Input output processor (IOP), 97–98
In-service feedback, 147–148
Integrated vehicle health management (IVHM), 2–3, 178
Integration phase, 20
Integrity, 18
system, 149–150
Integrity testing, 167–169
Intermittent faults, 20, 106, 168, 169, 178
Interruptive BIT (I-BIT), 161
Intrinsic availability, 22
Investigation form, 125

Latent fault, 20
Latent root cause, 28
Life-cycle loads, monitoring, 165
Line replaceable unit (LRU), 9–12, 28, 73–74, 78, 79, 80, 88, 124

Maintainability, 22
vs. reliability, 75f
Maintenance
collection to faults, 91–92
costs of, estimating, 79
definition of, 64
designing for, 66–67
diagnostic, contribution to faults, 96–97
evolution over time, 4f
historical perspective, 3
simplified repair process, 46f
terminology, 21–23
typical processes in civil aircraft, 46–47
Maintenance echelon, 21
Maintenance engineers
interactions with system, 46–49
competence and training, 55–58
perceptions on ability to use BIT, 52f
Index

Maintenance errors, 94–95
Maintenance line, 21
Maintenance plan, three levels of, 41
Maintenance, repair, overhaul (MRO) providers, 63–64
Maintenance Steering Group (MSG), 4
Maintenance systems, quality of, 64–66
Management, 177–178
 first-line, 110
 middle-level, 110
 operating policies, 101–126
 role and responsibilities of, 109
 top-level, 109–110
Manuals, aircraft maintenance, 52–53
Maturity model, 133–142
 managing maturity level, 134, 137–139
 optimizing maturity level, 140–141
Mean active corrective maintenance time (MACMT), 69
Mean active repair time (MART), 69
Mean time before critical failure (MTBCF), 22
Mean time before unscheduled removal (MTBUR), 22
Mean time between failures (MTBF), 22
Mean time between no fault found (MTB NFF), 78
Mean time between no fault found–confirmed external, 79
Mean time to repair (MTTR), 22
Merlin helicopter, 97
Military aircraft, 91–92
 and safety, 61, 65
Military Aviation Authority (MAA), 90
MIL-M-24100, 151
MIL-STD 2165, 150
MIL-STD-H-2165, 151
MIL-STD-Hdbk-2165, 151
Mitigation plan, 142
Monitoring NFF in-service, 80

NFF–confirmed external, 79
NFF–confirmed not LRU, 10–11
NFF–faulty, 11–12
NFF–not faulty, 11, 12
No fault found (NFF)
 acronyms associated with, 23–25
 ARINC 672 control process, 6–7, 102, 111–122
 background, 1–9, 175
 benefits of managing, 127–129
 case studies
 ARINC 672, 122–125
 impact of inconsistent terminology, 30–31
 NFF and air safety, 97–98
 challenges of investigating, 130–132
 classification, 23–30
 classification frameworks, 11f, 12f
 cost of, 9, 13–14
definition of, 6–7, 30

descriptions of phenomena, 26f

and diagnostics design, 146–148, 176

example causes during repair process, 47t

formulating theory of, 178

growth within aerospace, 4–7

impact on availability, 73–77

and maintenance, historical perspective, 3

maturity model, 133–142

mean time between no fault found (MTB NFF), 78

methodology for monitoring in-service, 80

mitigation policy requirements, 108–111

nomenclature, 33–36

proactive approach to, 128–129

process for improving at design stage, 77–81

proposed benchmarking tool, 132–144, 176

 deployment, 143–144

maturity model, 133–142

maturity model scoring matrix, 133–142

mitigation plan, 142

summary, 144

visual capability, 142

reducing, 108

advanced diagnostics for, 160–165

cost/benefit analysis of, 177

improvements to testing, 166–172

reduction process, 107f, 112f

relevant literature, 8–9

and safety, 89f

 case study, 97–98

scope and limits of events, 108

sources/causes and recommended remedial actions, 114–121f

structured approach to, 101–126

example application, 122–125

and system design, 146–146, 149–150, 176

technologies for reducing, 159–172, 176

advanced diagnostics, 160–165

improvements to testing, 166–172

terminology, 5, 9–12

 classification, 23–30

 failure and types of failure, 19

 fault and types of fault, 20–21

 introduction, 17, 175

 maintenance and related terms, 21–23

 no fault found, 23–33

 nomenclature, 33–36

 related terms, 31–33f

 system basics, 18

through-life engineering services, 102–108

traditional approach to, 9–10

troubleshooting expected, 108–109

types of, 88f

valid metric for, 177

No trouble found (NTF), 23

No trouble found (NTF), 23
Index

Noise corruption, 163
Nomenclature, 33–36
Nugatory troubleshooting efforts, 27, 28, 29

On-condition maintenance, 22
Operating policies, 101–126, 176
application example, 122–125
implementation prerequisites, 122–123
mitigation policy requirements, 108–111
Operation, maintenance, and support phases, 20
Operational pressure, 45
contribution to faults, 92–93
Operational level, 135
Operational requirements, 72f
Operator error, 27
Organizational context, 40–42
Organizational culture, 177
Organizational pressures, 53–55
effects of time and pressure, 54f
factors leading to lack of time, 55f
Original equipment manufacturers (OEM), 2–3, 106, 108, 154

Part M, 90
Personnel practices, 110–111
Physical root cause, 27
Post-failure event, 19
Pre-failure event, 19
Preparing accurate reports, 43
Preventive maintenance, 21
Product service systems (PSS), 2

Quality, 23

Rate of false alarm (RFA), 167
Reason, James, 93
Reflectometry, 164
Regulations, need for, 177
Regulatory issues, 89–91
Reliability, 22
Reliability, availability, and maintainability (RAM), design requirements for, 71–73
Reliability centered maintenance (RCM), 4
Reliability Enhancement Methodology and Modeling (REMM) project, 6
Repairability, 23
Reporting, 110
Re-test OK (RTOK), 23, 24–25
Retrospective verbalization, 43
RFID tracking, 172
Rogue units, 108, 124, 171
Root cause, 6–7, 27–29
 human, 27
 latent, 28
 physical, 27

Safety, 23, 176
 case study, 97–98
 commercial vs. military aircraft, 61, 65
 conceptual discussion, 87–89
 and faults, 85–87
 link with maintenance errors, 91–97
 regulatory issues, 89–91
Secondary faults, 161
Select solution, 122
Service, 18
Shop replaceable units (SRUs), 28
Software, maintenance engineer interactions with, 48–49
Spare parts, tracking, 171–172
Stakeholder interactions, 103f, 104f, 105f
Stakeholders, 18
Standardization, 7
Standards
 need for, 177
 testability, 151
Survey of human factors, 49–58
System defect, 27
System design, 8, 102
 and NFF, 146–146, 149–150, 176
 and user interaction, 155
System effectiveness, 61, 65
System error checking, 160–161
System integrity, 149–150
System interactions, 46
 environment, 49
 hardware, 47–48
 software, 48–49
System life cycle, 18
System maintenance phase, 102–103
System operation phase, 102–103
Systems, definitions of, 18

Tactical level, 135
Technical challenges of investigating NFF, 131
Technical systems, dependence on, 1
Terminology
 discrepancy in, 44
 failure and types of failure, 19
 fault and types of fault, 20–21
 inconsistent, impact of, 30–31
 introduction, 17, 175
 maintenance and related terms, 21–23
Index

no fault found, 23–33
nomenclature, 33–36
related terms, 31–33
system basics, 18
Test and measuring equipment (TME), maintainers’ competency, 51
Test station, management of, 170
Testability, 23, 150–151, 166–167
Testing
 functional and integrity, 167–169
 improvements to, 160, 166–172
 test station management, 170
 testability as a design variable, 166–167
 under environmental conditions, 169–170
Thresholds, alarm, 163
Through-life engineering services, 102–108
Tools and techniques (T&T), 135, 136–141
Training, 56–58, 110–111
 additional needs, 58
 inadequate, 45
 level of, 154
 survey data overview, 57
Transient fault, 20
Triangulation, 163
Trouble-not-isolated (TNI), 23
Troubleshooting tools and techniques, 124–125

UK-SPEC (UK Standard for Professional Engineering Competence), 55–56
Unit removal datasheet (URD), 80–81
Unit under test (UUT), orientation of, 170
Unscheduled removals, 5, 6
User interaction, 155

Wiring harness, 150

X-ray inspection, 169
About the Authors

Samir Khan
Dr. Samir Khan has been a lecturer of aerospace engineering at Coventry University since 2015. He completed his PhD in Control Theory at Loughborough University in 2010. He was the leading researcher working on the No Fault Found research project between 2011-2015, at the Through-life Engineering Services Centre within Cranfield University, collaborating with Rolls-Royce, Jaguar Land Rover, BAE Systems, and MoD. Prior to this role, he worked at Thales Transportation as a systems engineer, where he was responsible for performing fault analysis and condition monitoring from track-side feedback sensors. Dr. Khan's current research work is focused on intelligent monitoring of intermittent failures and false alarms in electronic systems. He is a chartered engineer and a member of IEEE and IET.

Paul Phillips
Dr. Phillips has over 10 years of research and development experience, beginning at The University of Manchester, where he focused his research on electromechanical system failures and the development of condition monitoring solutions. After completing his EngD in mechanical engineering from the University of Manchester, he worked as a postdoctoral researcher before joining the EPSRC Centre for Through-life Engineering Services at Cranfield University as the Project Manager in 2011. His role was instrumental in establishing and growing research activities dedicated to the study of No Fault Found. Since 2014, Dr. Phillips has held the position of head of advanced projects at UTC Aerospace Systems, Marston, UK, where he is responsible for the management and leadership of engine and environmental control systems related research and development.
Chris Hockley

Chris Hockley joined Cranfield University in 2003 after 35 years in the Royal Air Force (RAF), where he specialized in aircraft maintenance, including commanding an engineering wing, providing support for two aircraft squadrons. He served in the MoD in several appointments before joining the department responsible for improving the reliability and maintainability (R&M) of defence equipment. He completed a Defence Fellowship to study R&M and has commanded the RAF’s R&M policy department. Mr. Hockley is a chartered engineer who is currently the principal investigator at the EPSRC Centre for Innovative Manufacturing in Through-Life Engineering Services for the NFF project, seeking to reduce the occurrences of NFF in all industries. His main research interests are in health and usage monitoring systems, prognostics health monitoring, condition based monitoring, and delivering availability and support contracts.

Ian K. Jennions

Ian K. Jennions is a professor and director of the IVHM Centre, Cranfield University, UK. He joined the Centre, which is funded by a number of industrial partners, when it was founded in 2008 and has led its development and growth in research and education since then. Previously, Jennions had worked for a number of companies in the gas turbine industry over a 40-year career. He worked for Rolls-Royce, General Electric, and Alstom in a number of technical roles, gaining experience in aerodynamics, heat transfer, fluid systems, mechanical design, combustion, and, more recently, IVHM. He has a mechanical engineering degree and a PhD in CFD, both from Imperial College, London. He is a Director of the PHM Society, vice-chair of the SAE IVHM Steering Group and contributing member of the HM-1 IVHM committee, and a Fellow of IMechE, RAeS, and ASME. He is also the editor of five SAE books on IVHM.
No Fault Found: The Search for the Root Cause

S. Khan, P. Phillips, C. Hockley and I.K. Jennions

Today, we are all strongly dependent on the correct functioning of technical systems. They fail, and we become vulnerable. Disruptions due to degradation or anomalous behavior can negatively impact safety, operations, and brand name, reducing the profitability of all elements of the value chain. This can be tolerated if the link between cause and effect is understood and remedied.

Anomalous behavior, which indicates systems or subsystems not acting in accordance with design intent, is a much more serious problem. It includes unwanted system responses and faults whose root cause can’t be properly diagnosed, leading to costly, and sometimes unnecessary, component replacements.

The title No Fault Found: The Search for The Root Cause was developed to propose solutions to this technical and business challenge, which has become less and less acceptable to the commercial aviation industry globally.

Bringing together the areas of systems engineering and quality management, this unique book lists relevant terminology for consistent reporting, addresses the importance of “soft” human factors, and deals with aspects of availability and safety, operating policies, tools, diagnostic design, and the use of the right technology.

Written by four experts with backgrounds in asset health management, condition monitoring, fault analysis, and systems failure, No Fault Found: The Search for the Root Cause is a must-read for engineers and managers focused on addressing these complex problems and solving them.

About the Authors

Dr. Samir Khan is a lecturer of aerospace engineering at Coventry University, with a PhD in Control Theory from Loughborough University. He was the leading researcher on the No Fault Found research project between 2011-2015, at Cranfield University.

Dr. Phillips began his career at The University of Manchester, later joining the EPSRC Centre for Through-life Engineering Services at Cranfield University. Since 2014, Paul has been the head of advanced projects at UTC Aerospace Systems, Marston, UK.

Chris Hockley joined Cranfield University in 2003 after 35 years in the Royal Air Force. He is a chartered engineer and currently the principal investigator at the EPSRC Centre for Innovative Manufacturing in Through-Life Engineering Services for the NFF project.

Ian K. Jennions is the director of the IVHM Centre, Cranfield University, UK, leading its growth since 2008. A mechanical engineer, he previously worked in the gas turbine industry, and holds a PhD in CFD, from Imperial College, London.