Index

NOTE: Page numbers followed by ‘f’ and ‘t’ refer to figures and tables respectively.

2-Ethylhexanoic (2-EHA) acids, 107
2015 Toyota Prius, 63

A
AA batteries, 78
AAA batteries, 78
Absorbent (absorptive) glass mat (AGM), 18, 24–26, 25f
batteries, 39
AC electrical fire, 64
AC electricity, 63
AC evaporator, 167
Advanced lead-acid battery designs, 27–28
Aftermarket accessory fire, 191f, 192f, 193, 193f
Aftermarket alarm fire, 194, 196f, 197f
Agastya Samhita, 3
AISI 6160, 157
Alternator(s)
generators and, 57–61
intact after house fire, 60f
melted, housing, 59f
mount bracket, 58
Amalgamation, 5
American wire gauge (AWG–SAE) size, 39
Ammonium chloride, 7
Ampere, 9, 10, 12
Ampere-Hour, 62
Anode/negative electrode, 17
Arc bead, 144
Arcing B+ cable, 48
Area of Origin, 85, 103, 105, 158f, 161, 172
Armrest combination switch, 204f
Atraverda battery, 28
Atraverda Bipolar, 28
Auto ignition, 64, 65, 106, 107
Automotive electrical fire science, 97
electrical fire analysis, 109–112
fire analysis of vehicle, 101–102
compartmentalization, 102–105
engine compartment, 106–108
FMVSS 302, interior flammability, 99
SAE J369, 100
SAE J1344, 100–101
safety, 97–98
signs of electrical heat, 112–113
aftermarket accessories, 189–199
battery explosion caused by
outside influence, 121–127
battery plates, 113–116
copper chloride, formation,
181–186
cratering on connectors, 176–181
discoloration, bundle
de-stranding, and fraying of
cables, 127–144
electrical circuit shorting into
another circuit, 163–173
electrical heat on fusible links,
173–176
failure of electromechanical
device, 199–207
heavy-duty applications, 144–163
no Large-Order Fire Event, 186–189
shrunken or exploded remnants of battery lugs, 116–121
Axion Power E3 Supercell®, 28

B
“Bad contact” issues, 44
Baghdad Batteries, 1, 2f
Barium sulfate, 20
Battery(ies)
 B+ cable, 115
defined, 3
explosion caused by outside influence, 121–127
history, 1–8
on/off switches, 147f
tender, 71
B+ cable, 40, 51, 115, 122f
at battery box, 160f, 161f
resting on AC pipe, 48f
routing to PDM, 47f
Bendix Corporation, 37
Bendix® starter drive, 37
B+ junction box, 159f
Blown fuse, 175f, 176
Boom box, 189, 192
 fire, 190f
Brake fluid, 106
Brine, 3
Brine beneath salt lakes, 75
British Thermal Unit (BTU), 39, 99, 109
Bromine chloride, 77
Brown, Joe, 10–11
Bundle de-stranding, 127–144
Burn pattern
 on inside of truck, 200f, 201f, 202f
 on wall of electrical box, 153f, 154f
Burn Rate, 100, 105

C
Cable clamps, battery, 121
Camaro model, 40
Camaro trunk, 40
Carbon brushes, 57
Carbon-pile battery load, 176
Cargo box, 148
Casing design considerations for forklifts and heavy equipment, 29–31
Cathode/positive electrode, 17
Cause and origin, 39, 102
Charge-depletion, 94
Charge-sustained modes, 94, 95
Charging of lead-acid battery, 68–73
Chemistry of lead-acid plate design, 31–35
Chinese super-capacitor electric bus, 84, 84f
Chloride Accumulator Battery, 12
Circuit failure, 64
Circuit over-current protective devices, 40
Claw-pole alternators, 57
Cold cranking amps, 62
Combat battery degradation, 38
Combustibility resistance standards, 98
Combustible, 39, 88, 102, 108
Combustible fluids (oils), 186
Compact liquid cooled alternators, 57
Compartmentalization, 102
Competent ignition source, 88
Condo with a high-line car fire, 182f
Constant-current charge, 69, 70
Constant-potential charging, 33
Contact tension, 3, 5
Convective heat, 128
Convective heat attacks, 180
Conventional Flow Notation theory, 62
Coolant, 107
Copious bubbling, 32
Copper, 127–129
 strands, 157
Copper chloride, 181–186
 form, 182f
Corporate Average Fuel Economy (CAFE) standards, 35
Corrosion degradation, 53
Coulomb’s law, 15
Cranking performance, 62
Cratering on connectors, 176–181
Crimped gooseneck fire, 164f, 165f, 166f, 167f
Crinkle tube, 48
Cruickshank, William, 5
Cruise control switch mount, 111f
Current overload fuses, 43f

D
Daniell cell, 5, 6f, 7f
Dashboard, melted, 65f, 67
Davidson, Robert, 12
DC electrical fire, 64
DC electricity, 37, 63
DC to AC inverter, fire, 146f, 147f
De-bundling, 157, 163
Deep-cycle battery designs, 26
Deep-cycle industrial flooded-cell battery, 30f
Defective same-model radiator, 133
Degree of fire, 102
Designs, battery
 absorbent (absorptive) glass mat, 24–26
 advanced lead-acid battery designs, 27–28
 casing design considerations for forklifts and heavy equipment, 29–31
 chemistry of lead-acid plate design, 31–35
 concept, 15–17
 deep-cycle battery designs, 26
dual battery technology, 29
 elements of battery, 17–19
gelled electrolyte lead-acid designs, 23–24
insulator and separator design, 20–21
lead-acid plate designs, 19–20
valve regulated lead-acid designs, 21–23
Desulfation, 33
Detroit electric 60985 Brougham, 11f
Dimethoxyethane, 78
Diode bridge, 58
Dioxolane, 78
Direct and alternating current
 battery ratings, 62–63
 charging of lead-acid battery, 68–73
 electron flow, 61–62
 failure mode differences, 63–68
generators and alternators, 57–61
Discharge-charge cycling, 33
Discharge-recharge cycles, 20
Discoloration, bundle de-stranding, and fraying of cables, 127–144
Does not ignite (DNI) materials, 100
Door wiring harness, 168f, 169f
Doping, 89
Dry battery designs
 primary, 8
 secondary, 8
Dual battery technology, 29
Electron Flow Notation theory, 62
Elemental sulfur, 77
Engine compartment, 121f
Engine control module (ECM), 26
Engine oil, 107
Ethylene glycol blends, 107
Exide Technologies, 12
Exploded lead-acid battery, 116f, 117f, 118f, 122f–125f
Explosion, battery, 37

F
Failed armrest combination switch, 204f
Failed radiator fan motor, 132f
Failure mode differences, 63–68
Failure of electromechanical device, 199–207
Faraday’s first law of electrolysis, 68–69
Faraday’s second law of electrolysis, 68–69
Faure, Camille, 9
Federal Code of Regulations, 98, 109
Fiber mats, 25
Fire analysis of vehicle, 101–102
compartamentalization, 102–105
engine compartment, 106–108
examples, 128
Firefly Energy, 27–28
Flashback prevention safety subsystem, 22
Float charging, 33
Flooded-cell
battery, 18f
design, 25
FMVSS 302, interior flammability, 39, 98–99
Forklift battery, 30
Formation, 19
Franklin, Benjamin, 3, 62
Fraying, 157
Fraying of cables, 127–144
FreedomCAR and Vehicle Technologies (FCVT), 92
Full hybrid vehicles, 94
Full-synthetic motor oil, 108
Fuse installed on the amplifier, 190f, 191f
Fusible link overheat, 173f, 174f
Fusible links, 40

G
Galvani, 12
Galvanic cells, 5
Garage fires, 185
Gasoline, 106
Gauntlet Motive Battery, 10
Gelled electrolyte lead-acid designs, 18, 23–24
Gel polymer electrolyte, 79
Generators and alternators, 57–61
Gibbs, W. W., 12
Graphene, 79–81, 79–85, 81f
matrix, 82f
nanotubes, 81

H
Headlamp fire, 186f, 187f, 188f
Heat damaged battery terminal protector, 55f
Heat soak, 44, 108
Heavy-duty applications, 144–163
Heavy-duty electrical fire, 145, 156f
Heavy-truck application, 63
HEV. See Hybrid-electric vehicle (HEV)
High electrical heat, 149f, 151f
Highly crosslinked polypropylene (HCPP), 105
High-order fire, 39, 99, 106, 186
High-resistance failure, 68
High-voltage battery pack, 98
High-voltage cables, 98
House fire, car after, 60f
Human vernacular, 62
Hybrid-electric vehicle (HEV), 91
beginnings, 92
configurations, 95
types, 93–95
Hybrid organic acid technology (H-OAT), 107
Hydrogen cyanide gas, 176
Hydrogen gas, 19

I
In-line fuse that protects the aftermarket B+ wire, 195f
Insulator and separator design, 20–21
Internal combustion engine (ICE), 93
International Conference of Electricians, 6
Iron disulfide, 78
J

“Jelly roll” electrolyte, 88
Johnson Controls, 29
Joule heating, 17
Joule’s first law, 17
Jumper lug, 130
“Jumper” lug arrangement, 38–39
Jumping, dead battery, 39

K

Khujut Rabu, Baghdad, 1
Konig, Wilhelm, 1

L

Lead-acid battery, 8–10, 34, 37
advantages, 9
charging, guidelines, 72–73
cutaway view, 119f
designs, 10–12, 10t
exploded, 73f
historical advancements, 10t
Lead-acid charging, 69
Lead-acid plate designs, 19–20
Lead-antimony-tin alloys, 19
Lead-calcium-tin alloys, 19
Li-ion cell fire, 85f, 86f, 87f
Liquid cathode, 76
Lithium-air battery, 78–79
Lithium batteries, 75–76
characteristics and issues, 85–89
future battery and super-capacitor
designs, 79–85
lithium-air battery, 78–79
lithium-ion perchlorate manganese
oxide cell, 77
lithium-ion thionyl chloride cell,
76–77
lithium-iron disulfide, 78
lithium tetrafluoroborate with carbon
monofluoride cathode, 78
Lithium-thionyl chloride batteries, 76
Lithium-titanate battery, 29
Localization, 5
Location, designs
components surrounding the battery,
44–56
importance in early designs, 37–38
in model vehicles, 38–43
Low-order fire, 106
Low-voltage circuit, 63
Lugs, battery, 49

M

Maintenance-free batteries. See
Sealed batteries
Manganese dioxide, 76
Matsushita Electric Works, 78
Melted alternator B+ cable, 141f, 142f, 143f
Melted battery from over-cranking, 55f
Melted headlamp driver module, 134f, 135f
Melted high-discharge headlamp,
136f–138f
Melted PDM cable with red discoloration,
141f
Melting fuel pump circuit, 176
Metal-air battery chemistry, 78
Micro-corrosion in circuit, 63
Micro hybrid, 93
Micro-hybrid vehicles, 93
Mild hybrid vehicles, 94
Minimum flammability, 98
Modified-constant charging, 33–34
Molten copper droplets, 30
Multiple-layer capacitors, 85
Multi-walled carbon nanotubes, 80

N

Nanocomposite plastics, 97, 100, 101, 105
Nanorods, 81
Nano-scale sheets, 81
Nanoscrolls, 81
National Fire Protection Association
(NFPA), 181, 207
National Highway Traffic and Safety
Administration (NHTSA), 56, 98,
109
Negative cable on battery, 52f
NFPA 921, 207
Nickel-metal hydride (NiMH) battery, 28, 91
HEV, 92
beginnings, 92
types, 93–95
Nine-cell lead-acid battery, 9
No Large-Order Fire Event, 186–189
Normal failure mode, 67

O
Off-roading, 67
Ohmic heating, 17
Ohm's law, 16, 62, 65
Organic acid technology (OAT), 107
Organic solvent, 76
Outgassing, 69
Overhaul, 148
Overheated fuse, 175f
Overheated lead-acid battery grid, 113f, 114f, 115f
Overheated PDM cable, 139f, 140f
Overheated wiring, caught fire, 194f

P
Park, Menlo, 9
Passivation, 77
PDM at cigar fuse holder, melted, 66f
PDM lid, 66f
Pedestal, 118
Planté, Gaston, 8
Plates
of automotive (cranking) batteries, 34–35
battery, 113–116
corrosion, 69
Plug-in hybrid electric vehicle (PHEV), 91
Plug-in hybrid vehicles, 94
Polarization, 5
Polyalkylene glycol (PAG) oil, 48
Polyalkylene glycol (PAG) oil, 161
Polyamide, 105
Polyamide 66, 101
Polyethylene (PE), 181
Polymeric carbon, 81, 100
Polymer matrix bipolar substrate, 28
Polypropylene, 101
Polyvinyl chloride insulation (PVC), 181
Porous carbon electrode, 79
Positive terminal next to PDM, 45f
Power distribution module, 175
Power relays next to battery, 45f
Powertrain control module (PCM), 26
Power wire draped over fuel filter, 196f
"Pre-fuse" module, 51, 53f
failure, 51f, 52f, 103f, 104f
Primary lithium batteries, 76
Production methodology, 81
Propylene
carbonate, 78
glycol, 107
Protective shields, 40
Protocols, 100
Pulse charging, 33, 69
Pulse conditioning, 33
Push-on connector, 139

R
Ratings, 62–63
Ampere-Hour, 62
cold cranking amps, 62
reserve capacity, 62
Watts, 62
Recharging, 5
Reserve capacity, 62
Resistive heat, 65
Revolutions per minute (RPM), 57
RIN 2127-0068, 110
Ripple voltage, 72
Rock of Gibraltar, 112
Rolled graphene, 80f
Rubber gooseneck, 170f, 171f, 172
Rubber separators, 21
Ruddy-red discoloration, 119

S
SAE J369, 100
SAE J1344, 100–101
Safety switch, 98
Salient-pole alternators, 57
Scientific method, 3, 105, 207
Sealed batteries, 21
Sebacate, 107
Self-extinguishing (SE) materials, 100
Self-extinguishing/no burn rate (SE/NBR), 100, 105
Separators (positive and negative plates), 21
Series-parallel HEV, 95
Shelf life, 78
Shrunken battery terminal, 120f
Shrunken or exploded remnants of battery lugs, 116–121
Society of Automotive Engineers Standard J369, 100
Society of Automotive Engineers Standard J1344, 100–101
Solenoid, 37
“Sponge” lead, 31
Stand-alone control voltage regular sensor, 42f
Stationary battery installations, 72
Sturgeon, William, 5
Subrogation, 67
Sulfation, 32–33, 72
Sulfuric acid vapors, 44
Sulfuryl chloride, 77
Super-capacitors, 82, 83
bus, 84
Surface charge, 77

T
Terminal voltage, 62
Terracotta jars, 1
Tesla, Nikola, 9
Thermal inertia, 103
Thermal runaway, 88, 89
Thermoplastic high heat-resistant nylon (THHN), 181
Thionyl chloride, 77
Topping charge, 71
and float charge, 70–71
Toshiba, 29
Transmission and power steering fluid, 106
Trickle charge approach, 34
Trough battery
fire, 39
inner cover, 41f
outer cover, 41f

U
UltraBattery®, 27
United States Council for Automotive Research (USCAR), 92

V
Valve regulated lead-acid (VRLA) designs, 18, 21–23
batteries, 22f
Varma, Brajendra P., 24
Vehicle fire investigation, 97
Vibratory-caused thermal runaway, 79
Vibratory cycling and amplitude, 173
Volatile organic compounds (VOCs), 157
vapors, 88
Volta, Alessandro, 3
Volta pile battery, 4f, 5

W
Watts, 62
Weatherproofing service, 167
Wet cells, 7
Wide-open throttle (WOT) mode, 95
Windingless rotor alternators, 57
Window switch fire with cascading thermal event, 199f, 200f
Wiring harness, 48
chafing on AC pipe, 49f
inside door, 203f
inspection, 171f
pinch, 172
pinch point, 169f

X
Xenon headlamp, 134

Y
Yai, Sakizou, 7
Yai Dry Battery, 7, 8

Z
Zinc, 7
Zinc powder, 3
Greg Barnett is an automotive engineer and technical expert, with a career spanning over 45 years in the automotive, heavy truck, and equipment industry. He was last employed by Land Rover of North America as a field service engineer and instructor of automotive technology. He achieved the level of factory Certified Master and accredited instructor.

Currently, he works as a consultant assisting attorneys, insurance carriers, and automobile manufacturers on legal actions that require technical expertise. His casework revolves around large losses caused by vehicle fire, product failure, product refinement, professional negligence, personal injury, vehicle arson, and fraud. Mr. Barnett is a four-level Certified Master by the National Institute for Automotive Service Excellence (ASE) and was listed in the Automotive Hall of Fame as a World Class Technician in 1994.

The author began collecting data on vehicle fires starting in the early 1990s. His experience with actual vehicle fires began in the 1970s. As vehicle plastics evolved into modern polymeric, Mr. Barnett began documenting the lack of combustibility of the materials selected by manufacturers in various fire cases. Identifying and understanding the combustibility of compounded polymeric and nanocomposites is critical to any vehicle fire investigation. These observations and the data collected on vehicle fire analysis became the subject of his Master’s thesis and eventually morphed into his first book, *Automotive Fire Analysis: An Engineering Approach*, published in 2003.