Index

Note: Locators followed by ’f’ and ’t’ refer to figures and tables, respectively.

adaptive h convergence process, 45–47
airplanes, 156–157
ambient temperature, 198
angular velocity, 188
antisymmetry boundary conditions, 93, 93f, 94, 152
definition, 94f
arc control, 176
arc length control method, 166
artificial restraints, 154
artificial stiffness, 42
automeshing, 71–74, 80
averaged stress, 37
axial symmetry, 96–97
axisymmetric analysis, 96
axisymmetric model, 96
balance centrifugal load, 188
ball, 157
beam
 elements, 25, 26
 loaded with a pure bending moment, 80f
bending
 stiffness, 117
 stresses, 117
black body, 207
BLF. See buckling load factor (BLF)
boundary conditions, 7, 10, 90–91
 full model, half model with symmetry, 153
boundary element method, 10, 11f
 box, 156
 bracket, 159–160, 205
BRACKET01, 84–85
BRACKET02-1, 100–101
BRACKET02-2, 101–102
BRACKET02-3, 102–105
BRACKET NL, 140
brittle coating, 226r
buckling, 169f
 analysis, 161
 linear buckling analysis, 162–165
 nonlinear buckling analysis, 165–176
 and modal analysis, 162f
 mode, 162
 buckling load factor (BLF), 162f, 163
button, 178–179
CAD. See computer-aided design (CAD)
CAD–FEA process, 219
CAE. See computer-aided engineering (CAE)
cantilever beam, 85–86, 111f, 128–129
centrifugal blower, 98f
centrifugal force, 150f
centrifugal load, 198
centrifuge, 195
CFD. See computation fluid dynamics (CFD)
channel, 206
circular symmetry, 97
CLAMP01, 131
CLAMP02, 131
cleanup, geometry, 213–214
column, 159
compatibility, meshing
 compatible elements, 74
 forced, 76–77
 incompatible elements, 74–75
computation fluid dynamics (CFD), 2, 204, 219
can computer-aided design (CAD)
 and FEA (See finite element analysis (FEA), and CAD)
geometry, 209
model, 87
can computer-aided engineering (CAE), 2, 2f, 218–219
 product development process, 5
can conjugate heat transfer, 204
 conservative load, 112
 constant modulus of elasticity, 134
 constant strain, 20
 constant stresses, 21f
 contact pressure, 127, 128
 contact stresses, 124, 125f
 analysis, 224
continuity of displacement field, 76
continuous displacement field, 74
convective coefficients, 199, 202
convective boundary conditions, 200, 201, 204f

261
convergence
analysis, 16
criterion, 49
of displacements, 64, 66
error, 50
of modal frequencies, 154
problems with, 51
displacement singularity, 57–63
stress singularity, 51–57
process, 38, 154
adaptive h convergence process, 45–47
choice of, 49
h convergence by global mesh refinement, 38–42
h convergence process by local mesh refinement, 42–45
p convergence process, 47–49
curved column, 179
curved load–displacement graph, 118
curved sheet, 179–180
cyclic symmetry, 97–99, 98f
damping, 183
matrix, 143, 183
in nonlinear problems, 191
ratio, 191
defeaturing, 210–211
deformation, 3, 122, 145
deforming beam, 112
degrees of freedom (DOF), 13, 17–18, 41, 52, 92, 99–100, 143, 154, 162, 182
direct integration method, 183
discretization, 12, 14, 15, 35, 49–50, 145, 167, 244
of continuum, 239
convergence error, 50
solution error, 50–51
discretization error control, 35–36
convergence process, 38
adaptive h convergence process, 45–47
choice of, 49
h convergence by global mesh refinement, 38–42
h convergence process by local mesh refinement, 42–45
p convergence process, 47–49
stress result, 36–38
displacements, 121, 144
actual values of, 145
analysis, 116
boundary conditions, 7
interpolation functions, 17, 22, 74
response graph, 190f
singularity, 57–63
distortion, 82
DOF. See degrees of freedom (DOF)
dynamic analysis, 181
effect of beating, 185
eigenvalues, 144, 162f
eigenvectors, 144, 162f
elastic hinges, 149
elastic modes, 145, 146
elastic–perfectly material, 138
elastic–perfectly plastic material, 110, 134, 136f, 137, 138, 169, 173
model, 134–136, 135
elastic–perfectly plastic model, 170, 172f
elevator pipe, 186f, 194–195
element deformation, 99
element distortion, 77–80
element mapping, 22–23, 23f
to geometry, 82–83
element order, 22
element shrinkage, 30f, 70f
element size, 22, 23f
element stress, 37
elliptic trammel, 3, 3f
elongation, 113–114
engineering analysis, 69
error of interpretation of results, 244
essential boundary conditions, 90
exchange heat by radiation, 201f
excitation frequency, 187
experimental stress analysis, 149
face touching reflector, 201
FEA. See finite element analysis (FEA)
FEM. See finite element method (FEM)
FE model meshed with coarse, 71f
film coefficients, 198
finite, 12
difference method, 10
finite element, 12
discretization, 22–23
formulation, 17–19
artificial restraints, 20–22
displacement interpolation functions, 20
types, 23, 242
commonly used, 31–32
dimensionality, 23–28
modeling capabilities, 32–33
order and element type, 29–31
shape, 29
finite element analysis (FEA)
and CAD, 209
cleanup, 213–214
computer-aided engineering programs, 218–219
defeaturing, 210–211
defailorization, 211–212
integration, 218
stand-alone FEA software, 218
defined, 1
for design engineers, 4–5
in design process, 209
FEA programs integrated with CAD, 218
fields of application
and CFD, 4
and mechanism analysis, 2–4
generation, 14, 209
hands-on exercises, 5
implementation
building confidence, 225–226
harden selection, 225
personnel training, 220–222
positioning of CAD and FEA activities, 219
program selection, 222–225
return-on investment (ROI), 226–227
mesh inadequacy, 217
meshing problems, 214–217
primary unknowns, 239
projects, 227
common errors, 233
contracting out FEA services, 232
documentation and backups, 231
reports, 230–231
steps, 227–230
results, 15–16
steps, 239
training courses, 87
finite element method (FEM), 1, 10, 11
errors in FEA results, 14–15
formulation of, 13
meshing, 12–13
singularities encountered, 61
finite volume methods, 10, 11
first elastic mode of vibration, 148
first-order 2D element, 18
first-order 3D solid tetrahedral element, 19
first-order elements, 17, 80, 82
models, 19
first-order polynomial functions, 18
first-order triangular elements, 21
flat shell elements, 24
floating hinge, 120
following load, 112
frequency response analysis, 186–190
models, 186
Gauss points, 36–37, 37
geometry cleanup, 213–214
geometry preparation, 89
global mesh refinement, 39, 41–42
hammer beating, 194
hammer impulse load, 193–194
hands-on exercises, 5
h convergence
by global mesh refinement, 38–42
process by local mesh refinement, 42–45
heat flow, 198
heat flux, 202, 203
plot, 200
heat power, 198
heat sink, 205
heat transfer, 197
h elements, 29, 30, 31
helicopter
blade, 158–159
rotor, 3, 3
hexahedral (brick) solid element mesh, 73
hot spots, 53
idealization, 211–212
idler pulley, 8
impact load, 183
integration, 218
inter-element compatibility, 20, 240
internal compatibility, 20, 240
interioration of displacement and stress results, 144–145
Jacobian check, 215
large displacement analysis, 123
L bracket, 66, 66
L BRACKET, 140–141
linear analysis, 120
Index

linear buckling analysis, 162–165, 163, 164, 166, 172, 224
 convergence of results in, 165
linear distribution
 of bending stresses, 81f
 of stress, 25f
linear material model, 128
linear static analysis, 224
linear structural analysis, 109
link, 106–108, 130, 157–158
loads, 90
 boundary conditions, 7
load-displacement curve, 119f, 167, 177
 of nonlinear buckling models, 174f
loading process, 134
load time history, 184f
curve, 110
locating “weak spots” in structure, 149

manual meshing, 69–70
manufacturing-ready CAD geometry, 89
manufacturing-specific CAD geometry, 89
mass density, 88
 of aluminum, 89t
mass matrix, 143, 183
material properties, 90
mathematical model, 7–10
 numerical method to solve, 10
 computer aided engineering, 10
dominance of FEM, 11
matrix notation, 240
maximum load magnitude, 183f
mesh
 adequacy, 80–81
 control, 72f–73f, 123
 geometry, 12
 radial cross section, 71f
 refinement, 38
meshing, 20, 123
 BRACKET01, 84–85
cantilever beam, 85–86
compatibility
 compatible elements, 74
 forced, 76–77
 incompatible elements, 74–75
defined, 87

and modal analysis, 155
problems, 77
 element distortion, 77–80
 element mapping to geometry, 82–83
 incorrect conversion to shell model, 83
mesh adequacy, 80–81
techniques, 69
 automeshing, 71–74
 manual meshing, 69–70
 semiautomatic meshing, 70–71
 volumes, 73
microchip and radiator, 199f
microchip and radiator assembly, 203
mid-side node, 75
mirror symmetry and antisymmetry
 boundary conditions, 91–96
modal analysis, 88, 165, 224
 applications, 148
 finding modal frequencies and
 associated shapes of vibration, 148
 input to vibration analysis, 150
 locating “weak spots” in structure, 149
 convergence of modal frequencies, 154
 exercises, 155
 interpretation of displacement and
 stress results, 144–145
 meshing consideration, 155
 prestress modal analysis, 150–152
 with rigid body modes, 145–147
 and static analysis, 143–144
 supports in, 147–148
 symmetry and antisymmetry boundary
 conditions, 152–153
modal frequencies and associated shapes
 of vibration, 148
modal mass participation, 181
modal superposition method, 150,
 181–183, 190
model deformation in linear analysis, 114f
modeling
 errors, 15, 244
 plasticity, 54
modeling process, 87–88
 steps, 88
 boundary conditions, 90–91
 definition of objective of analysis, 88
 geometry preparation, 89
 material properties, 90
 selection of the units of
 measurement, 88–89
 techniques
 axial symmetry, 96–97
 cyclic symmetry, 97–99
 mirror symmetry and antisymmetry
 boundary conditions, 91–96
 realignment of DOF, 99–100
model stiffness, 134
mode of failure, 161
buckling, 161
excessive displacement, 161
yielding, 161
modes of vibration, 63
modulus of elasticity, 133
natural boundary conditions, 7
natural frequencies, 148
nodal displacements, 13
nodal DOF, 239–240
nodal stress, 37
nodes of 3D shell elements, 99
node value, 37
non-averaged stress, 37
nonconservative load, 112
nonfollowing load, 112, 113
nonlinear analyses, 120
nonlinear buckling analysis, 165–176, 168, 173, 176
nonlinear geometry analysis, 110, 116, 121, 123
nonlinearities, types of, 139
nonlinear large displacements analysis, 117, 224
nonlinear material analysis, 224
elastic–perfectly plastic material model, 134–136
nonlinearities, types of, 139
nonlinear material models, 133–134
nonlinear material to control stress singularity, 137–139
nonlinear material models, 133–134
nonlinear material to control stress singularity, 137–139
nonlinear static structural analysis, 109
contact, 123–128
large displacement analysis, 110–117
membrane stress stiffening, 117–123
types, 109–110
nonlinear vibration analysis, 190–193
problems, 190
nonzero solutions, 144
normalized displacements, 144
normalized resultant displacement, 145
normal stresses, 8
notched column
free end, 177–178
sliding end, 178
numerical error, 244
objective of analysis, 88
offset load, 175
omega square excitation, 188
oscillating displacement, 187
out-of-plane stress, 26
pattern of deformation, 113
p-convergence process, 47–49
prestress modal analysis, 150–152
prismatic cantilever beam, 110
product design process, 5
progressive idealization, 9, 10
pseudotime, 110
pure bending, 81
quick fix approach, 76
Rayleigh damping, 191
realignments of DOF, 99–100
real loads and restraints, 246
repetitive pattern, 98
resonance, 148
return on investment (ROI), 226–227
rigid body modes, 145–147, 149
rigid body motions (RBM), 20, 61, 145–147, 146, 147, 240
ring, 105–106
rotating machinery, 150
rotations, 92
round plate, 129–130
Saint-Venant’s principle, 89
second-order displacement interpolation, 17
second-order elements, 80
mesh, 82
second-order solid element mesh, 82
semiautomatic meshing, 70–71
About the Author

Dr. Paul Kurowski

Dr. Paul Kurowski obtained his M.Sc. and Ph.D. in Applied Mechanics from Warsaw Technical University, Warsaw, Poland. He completed postdoctoral work at Warsaw Technical University, Kyoto University, and the University of Western Ontario. Paul Kurowski is professor in the Faculty of Engineering at the University of Western Ontario. He teaches undergraduate and graduate courses in Product Design, Finite Element Methods, Computer Aided Engineering, Vibration Analysis and others. Paul is also the President of Design Generator Inc., a consulting firm with expertise in Product Development and training in Computer Aided Engineering methods. He has published many technical papers and created and taught professional development seminars in the field of Finite Element Analysis for SAE International, ASME, Professional Engineers of Ontario, Parametric Technology Corporation (PTC), Rand Worldwide, SOLIDWORKS Corporation and others.

His professional interests revolve around finding the best ways of using Computer Aided Engineering (CAE) methods for faster and more effective product development processes where computer models replace physical prototypes.

Paul is a member of the Association of Professional Engineers of Ontario and the SAE International. He may be contacted at HYPERLINK "http://www.designgenerator.com" www.designgenerator.com.