Index

absolute distance measurement (ADM), 317
accumulative conveyor, 264, 264f
additive manufacturing (AM) technology, 78–80, 79f, 80f
ADM. See absolute distance measurement (ADM)
AGVs. See automatic guided vehicles (AGVs)
American National Standards Institute standards (ANSI), 169
American Society of Mechanical Engineers (ASME), 297
annual worth (AW), 111, 111f
articulated robots, 221
assembly fixtures, 287
assembly lines
configuration, 143–145, 143f, 144f, 154–155, 154f, 155f
dimension, 159–161, 160f, 161f, 161f
assembly plant selection, 123–126, 124f, 125f
assembly-to-order (ATO), 76
assembly workstations, 157–159, 158f, 159f, 169f. See also workstation
ATO. See assembly-to-order (ATO)
avtomated storage, 130
automatic backup, 188
automatic guided vehicles (AGVs), 254
automatic operations vs. manual operations, 231–232
automation
composition of, 209–210, 209f, 210f
industrial computer, 210f
ladder logic diagrams, 212–215, 212f–215f
network, 211–212, 211f, 212f
sensors
applications, 218–220, 219f, 220f
contact and noncontact sensors, 216–217, 217f, 218f
vehicle assembly, 207–209, 208f
Automotive Industry Action Group (AIAG), 169
auxiliary locators, 301
bake-hardenable (BH), 26
barcodes, 260, 260f
bathtub reliability curves, 85–86, 86f
battery electric vehicles (BEVs), 17, 18f
benefit–cost (B/C) ratio, 114–115
Bernoulli process, 106
BEVs. See battery electric vehicles (BEVs)
bills of process, 58
BIW architectures, 21–23, 22f, 22f, 23f
body assembly operations, 314f
body framing flexibility, 294–296, 295f, 296f
body-in-white (BIW), 12, 18
body-on-frame, 19–20, 20f
break-even point (BEP), 113
BS outer subassembly, 172–173, 173f
process for, 176f
workstation assignments, 175f
buffer planning
attributes, 249, 249f
considerations on size, 249–250
costs and flexibility, 250–251, 251f
design analysis, 252–253, 253f, 253f
function, 254
production rates and, 251–252
build-in quality assurance. See quality assurance
business-value-added or auxiliary activities, 65

C-Flex, 292
CAE. See computer-aided engineering (CAE)
cage-free robots, 230
carbon fiber-reinforced plastics (CFRPs), 30
carbon–manganese (CMn), 26
Cartesian industrial robots, 221, 221f
cash flow diagram, 111, 111f, 112
CDA. See cost duration analysis (CDA)
CFRPs. See carbon fiber-reinforced plastics (CFRPs)
challenges and advance, automotive manufacturing
additive manufacturing (AM) technology, 78–80, 79f, 80f
system intelligence, 76–77
virtual development, 77–78
clamping, 308–309, 308f
CMMs. See coordinate measurement machines (CMMs)
CNC machining, 79
code 39, 260
collaborative robots, 230
computer-aided engineering (CAE), 5
computer method for sequencing operations for assembly lines (COMSOAL), 187–188
computerized process development, 170
concurrent engineering (CE), 56–57, 57f, 58f
principles, 46
contact and noncontact sensors, 216–217, 217f, 218f
contact symbology, 212
ControlNet network, 211
conventional and new steels, 26–28, 27f
conveyance systems
characteristics, 266–267, 266f, 267f, 268f
conveyors in general assembly, 271–272, 272f
monorail systems, 268, 269f
power and free systems, 269–270, 270f, 271f
conveyors in general assembly, 271–272, 272f
coordinate measurement machines (CMMs), 273–275
Corporate Average Fuel Economy (CAFE) standards, 32
cost considerations, quality assurance
inline inspection cost analysis, 281f
inline measurement arrangements, 280f
quality costs concept, 279–280, 279f
cost duration analysis (CDA), 74, 75f
CPM. See critical path method (CPM)
Crawford model, 233
critical path method (CPM), 72–73, 73f
cycle time (CT) calculation, 102–103, 102f
measurement, 101–102
and throughput, 103–104
cylindrical industrial robots, 221, 221f
Dallery–David–Xie algorithms, 95
datum simulators, 297
degrees of freedoms (DOFs), 223
delivery routes planning, 256
design for manufacturing (DFM), 148
DFM–LBW process, 61–62, 62f
DFM–RSW process, 60–61, 60f, 61f
principle, 58–60, 59f
design system flow, 139–143, 139f–142f
development procedure approaches for
design for manufacturing (DFM), 58–62
lean manufacturing, 62–66
systems engineering in development, 53–57, 58f
economic analysis of
benefit–cost (B/C) ratio, 114–115
cash flow diagram, 111, 111f, 112
engineering economics, 109
payback analysis, 113–114, 113f, 114f
PW and AW calculation, 111, 111f
rate of return (ROR) analysis, 115–117, 115f, 116f, 117f
salvage values (SVs) of the systems, 111
time value, 110
vehicle body shop, 108, 109f
hierarchical modeling application, 138–139, 138f
DeviceNet network, 211
DFM. See design for manufacturing (DFM)
dimensional accuracy certification
laser trackers, 316, 316f, 317f
purpose, 315–316
requirements and procedure, 317–318, 318f
sphere-mounted retroreflector (SMR), 317
test flow, 316f
dimensional precision, 314–315
diode laser, 217
distance measuring interferometry (DMI), 317
DOFs. See degrees of freedoms (DOFs)
drill panel, 323
economic quality, 279
electrified conveyors, 268, 269f
electrified monorail conveyor systems, 268
EMP. See error and mistake proofing (EMP)
end effector, 88
end-of-arm tooling (EOAT), 134
end of life vehicle (ELV), 38
engineering change management
impacts on manufacturing, 9–10, 9f, 9f10f, 11f
process, 7–8, 7f, 8f
engineering economics, 109
enterprise resource planning (ERP), 14
ergo assist, 241
ergonomic engineering
design and improvements, 240–242, 241f, 242f
human body dimensions for, 237f
posture requirements, 238f
preferred working areas, 239
repetitive operations, 239, 240f
requirements, 237–240, 238f
ERP. See enterprise resource planning (ERP)
error and mistake proofing (EMP), 189–191, 226
EtherNet/IP, 211
facilities functionality, 262, 263f
failure mode and effects analysis (FMEA)
applications, 195
concept, 193
contents and format, 194f
machinery FMEA (M-FMEA)
characteristics, 200–201, 201f
severity rating of, 202, 202f
P-FMEA development
detection rating in, 198f
FMEA-driven process changes, 199–200
occurrence rating in, 197f
process assessment, 196–198
process review, 196
reaction based on RPN, 198–199
severity rating in, 197f
procedure, 193–195
process flow, 194f
failure modes, 193
FD conveyor, 270, 271f
FEA. See finite element analysis (FEA)
finite element analysis (FEA), 303
first time capability (FTC), 104–105
first time yield (FTY), 104
5-DOF robots, 223
fixed-pitch conveyor, 264
fixture dimension certification, 314, 315f
fixture dimensional assurance
dimensional accuracy certification
laser trackers, 316, 316f, 317f
purpose, 315–316
requirements and procedure, 317–318, 318f
sphere-mounted retroreflector (SMR), 317
fixture dimensional assurance (Cont.)
 test flow, 316f

functional repeatability certification
 alternative repeatability test, 323–324, 324f
 measurement points selection, 320–321, 320f, 321f
 passing criteria of, 321–322, 322f, 323f
 requirements, 318–319, 319f, 320f

principle and procedure, 314–315, 315f

fixture functional design
 components and units
 holding clamps, 308–309, 308f
 locating pins and blocks, 307
 pin clamps, 309, 309f
 configurations
 fixture pallet, 312–313, 312f
 robotic end-of-arm tooling, 310–311, 311f
 tooling integration, 313–314, 313f, 314f
 workstation fixtures, setups, 309–310, 310f
 fixture pallet, 312–313, 312f

fixture repeatability (FR) study, 315, 319f
 certification, 319
 data trend in, 322f
 measurement
 points, 320, 320f
 targets, 321, 321f
 flat-top conveyor, 271–272, 272f
 flat-top systems, 271

flexibility, 251
 body framing flexibility, 294–296, 295f, 296f
 servo-driven tooling units, 292–294, 293f, 294f
 flexible body line, 52

FMEA. See failure mode and effects analysis (FMEA)

Focus B-pillar, 25

Ford Production System (FPS), 51
 friction drive (FD), 270
 friction stir welding (FSW), 35
 FSW. See friction stir welding (FSW)
 FTC. See first time capability (FTC)
 FTY. See first time yield (FTY)

functional repeatability certification
 alternative repeatability test, 323–324, 324f
 measurement points selection, 320–321, 320f, 321f
 passing criteria of, 321–322, 322f, 323f
 requirements, 318–319, 319f, 320f

future worth (FW) method, 110

gage fixtures, 318, 318f

Gantt chart, 72, 72f

GD&T for automotive assembly
 characteristics, 297–298
 vehicle, 297
 vehicle dimensional coordinates, 296, 296f

general assembly, system flow, 149, 150f
 glass-fiber-filled plastics, 30
 global body shop, 51
 golden zone, 239
 greenhouse gas (GHG) effect, 37
 gripper, 311
 gross JPH, 107–108, 108f

HEVs. See hybrid electric vehicles (HEVs)

hierarchical modeling application
 assembly lines configuration, 143–145, 143f, 144f
 design system flow, 139–143, 139f–142f
 development procedure, 138–139, 138f
 product assembly architecture, 136–138, 137f

hybrid electric vehicles (HEVs)
 system development
 general assembly, system flow, 149, 150f
 product and process, modular design, 148–149, 148f, 149f
 product design and assembly process alternatives, 145–147, 145f–147f

high strength low alloy (HSLA), 26
 holding clamps, 308–309, 308f
 hot backup, 188
 human–machine interface (HMI), 207
 hybrid electric vehicles (HEVs), 17, 18f
 hybrid line reliability, 93–94, 94–95, 94f
 Hyundai Production System (HPS), 51, 64
I-beam conveyor, 268
IDEF. See integrated definition (IDEF)
inbound delivery routes, 255f
inbound logistics
automatic guided vehicles (AGVs), 254
facilities functionality, 262, 263f
incoming materials and parts, delivery
alternative, 256–257, 257f
frequency, 255–256
functions, 255, 255f
part and WIP tracking
barcodes, 260, 260f
RFID, 260–261, 261f
WIP tracking, 261–262
part moves in assembly lines, 254, 254f
shipping racks and transportation
part shipping racks, 257–258, 258f
rack transportation, 258–259, 259f
incoming materials and parts, delivery
alternative, 256–257, 257f
frequency, 255–256
functions, 255, 255f
incremental cash flow, 116
Industry 4.0, 77, 208
infant mortality, 86
inline inspection, 274, 275t
cost analysis, 281t
inline measurement arrangements, 280f
integrated definition (IDEF), 48–49, 49f
International Organization for
Standardization (ISO) standards,
169
interstitial-free (IF), 26
isoropic (IS), 26
Jidoka, 62–63
jig pallet unit, 312
jobs per hour (JPH), 103
laser
sensors, 217
trackers, 316, 316f, 317f
laser beam welding (LBW), 35
launch cost, 50–51
launch ramp-up curve, 50
LBW. See laser beam welding (LBW)
LCA. See lifecycle analysis or assessment
(LCA)
lead-through programming, 221–222
lean manufacturing, 62–66
learning curve, 232–234, 233f
learning rate (LR), 233
lifecycle analysis or assessment (LCA),
11–13, 13f, 37, 38f
new manufacturing systems, 112
lifecycle cost analysis, 12
line reliability, analysis, 90–95, 90f–92f,
92t, 94f
linear and parallelogram mechanisms,
fixture unit, 294f
locating pins and blocks, 307
logistics planning, 255
M-FMEA. See machinery FMEA
(M-FMEA)
machinery FMEA (M-FMEA)
characteristics, 200–201, 201t
severity rating of, 202, 202t
Made in China 2025, 208
magnesium (Mg), automotive
applications, 29–30
main conveyance systems, requirements,
129–130
manpower utilization, efficiency, 180–184,
181f, 182t, 183f, 184f
manual backup, 188–189
manual operations
characteristics
automatic operations vs., 231–232
learning curve, 232–234, 233f
ergonomic considerations, 237–242
worker safety assurance, 234–236, 235f,
236t
manufacturing
development
functional view, 47–49, 48f, 49f
system development flow, 45–47, 46f,
47f
verification and launch, 49–51, 50f
flexibility
assembly system flexibility, 98–100,
98f, 99f, 99t
manufac\textsc{t}uring (\textit{Cont.})

benefits, 96
capacity utilization, 96, 96\(f\)
challenges to, 97–98, 97\(f\), 97\(t\)
definition, 95–96
design for, 100, 100\(f\)
market fluctuation and, 95

assembly plant selection, 123–126, 124\(f\), 125\(t\)
main conveyance systems, requirements, 129–130
plant site selection, 126–127
requirements, 127–129, 127\(t\)–129\(t\)

MARR. \textit{See} minimum attractive ROR (MARR)

material logistics and manufacturing flexibility, 98
capacity utilization, 96, 96\(f\)
materials for vehicle body

conventional and new steels, 26–28, 27\(f\)
information, 26\(t\)
non-ferrous metals, 28–30, 28\(t\), 29\(t\)
nonmetallic materials, 30–31

selection, considerations in

cost factor, 33–34, 33\(f\), 33\(t\)
environmental concerns, 37–39, 38\(f\)
factors, 31\(t\)
lightweight demand, 32–33, 32\(f\), 33\(t\)
for manufacturing, 34–36, 35\(t\), 36\(t\), 37\(f\)

mean time to failure (MTTF), 87–88, 87\(f\)
mean time to repair (MTTR), 87–88, 87\(f\)

Medium Frequency Direct Current (MFDC), 106
Mercedes-Benz Production System (MPS), 51
Mercedes S-Class, 29

MFDC. \textit{See} Medium Frequency Direct Current (MFDC)
mild (conventional) steels, 26
minimum attractive ROR (MARR), 115–116

monorail systems, 268, 269\(f\)
Monte Carlo simulation, 171

multipurpose vehicles, 17

net JPH, 107–108, 108\(t\)
Nissan Integrated Manufacturing System, 99
non-ferrous metals, 28–30, 28\(t\), 29\(t\)
nonmetallic materials, 30–31

normalized yield (NY), 106
North American Automotive Metric Standards (NAAMS), 289–290

OEE. \textit{See} overall equipment effectiveness (OEE)

OEMs. \textit{See} original equipment manufacturers (OEMs)

operation balance

computer method for sequencing operations for assembly lines (COMSOAL), 187–188

concept of, 184–185, 185\(f\)

improvement, 185

line, 185\(f\)

planning operational tasks, 186

simple assembly line balancing problem (SALBP), 187, 187\(t\)
weld assignment and balance, 186\(f\)
welding operations, 186

operation time study, 176–180, 177\(f\)–179\(f\)

operator workstations, sequences, 236\(f\)

original equipment manufacturers (OEMs), 10

overall equipment effectiveness (OEE), 88

pallet conveyor, 263

systems, 312

pallet transfer system, 312–313

parallel lines, 156–157, 156\(f\), 157\(f\)

reliability, 92–93, 92\(t\)

part and WIP transfer in assembly operations

barcodes, 260, 260\(f\)

large conveyance systems characteristics, 266–267, 266\(f\), 267\(t\), 268\(f\)

conveyors in general assembly, 271–272, 272\(f\)

monorail systems, 268, 269\(f\)
power and free systems, 269–270, 270f, 271f
part delivery conveyors, 263–264, 263f, 264f
RFID, 260–261, 261f
robotic material handling, 264–266, 265f
WIP tracking, 261–262
part delivery conveyors, 263–264, 263f, 264f
part locating principles
3-2-1 locating principle, 298
2-1 and 3-2-1 configurations, 298–300, 299f, 300f
part moves in assembly lines, 254, 254f
part pallet indexing conveyor, 263f
part shipping racks, 257–258, 258f
participatory ergonomics, 241
passenger vehicles architectures
body architectures, 18–23, 18f, 23f
cars category, 16f
classification, 16–17
components, 17, 18f
Euro NCAP segments, 17f
sheet metal parts, 23–25, 24f, 25f, 25t
payback analysis, 113–114, 113f, 114f
payload capacity, 223
PDM. See product data management (PDM)
P&F conveyor, 269, 270f
photoelectric sensors, 217
pin clamps, 309, 309f
plant site selection, 126–127
platform strategy, 51
PLCs. See programmable logic controller (PLC)
PLM. See product life cycle management (PLM)
power and free systems, 269–270, 270f, 271f
precision fixture, 134
precision workstation, 177
preferred work zones, 239
present worth (PW), 111, 111f
principal locating point (PLP) scheme, 288, 292
GD&T for automotive assembly
characteristics, 297–298
vehicle, 297
vehicle dimensional coordinates, 296, 296f
locating compliant parts
N-2-1 locating principle, 300–304, 301f–304f
variables, 304–306, 305f, 306f
part locating principles
3-2-1 locating principle, 298
2-1 and 3-2-1 configurations, 298–300, 299f, 300f
process
documents, 167
flexibility, 191–193, 191f, 192f
sheets, 167, 168f, 168f
task assignments, 174–176, 175f, 176f
timing, 178
process engineering, vehicle assembly, 165f
planning
outcomes, 167, 168f
standardization, 169–170, 169f
tasks and inputs of, 166–167, 167f
virtual process development, 170–172, 171f
vehicle manufacturing processes, 166f
Process Field Net, 211
process-FMEA (P-FMEA)
detection rating in, 198f
FMEA-driven process changes, 199–200
occurrence rating in, 197f
process assessment, 196–198
process review, 196
reaction based on RPN, 198–199
severity rating in, 197f
process-oriented layout, 152
process planning
operation balance, 184–188, 185f, 186f, 187f
outcomes, 167, 168f
process flexibility, 191–193, 191f, 192f
process robustness, 188–191, 189f, 190f
process planning (Cont.)
standardization, 169–170, 169f
tasks and inputs of, 166–167, 167f
virtual process development, 170–172, 171f
process robustness, 105–106
concept of, 188–189
error and mistake proofing, 189–191, 190f
improvements of, 189f
product and process, modular design, 148–149, 148f, 149f
product assembly architecture, 136–138, 137f
product data management (PDM), 10
product design and assembly process alternatives, 145–147, 145f–147f
product engineering and development development, 2, 2f
management, 4–6, 4f, 5f
manufacturing systems and processes, 3
tasks in, 3f
product life cycle management (PLM), 10, 13
implementation benefits, 16f
principle and applications, 13–15
system integration of, 15f
for vehicle development, 14f
product oriented layout, 150
product quality, 104–106, 104f, 105f
product–process hierarchy tree, 139–143, 139f–142f
PROFINET, 211–212
programmable logic controller (PLC), 210
functions, 167
project management for development, 66–76
execution
 cost and timing, 74–76, 75f
 progress monitoring and adjustment, 73–74
goals and life, 66–68, 66f, 67f, 67f
 influencing factors in selection, 69–70, 70f
planning
critical path method (CPM), 72–73, 73f
Gantt chart, 72, 72f
team, 68–69, 68f, 69f
timing, 71, 71f
pull-off/reinsertion access, 278, 278f
quality assurance
cost considerations in
 inline inspection cost analysis, 281f
 inline measurement arrangements, 280f
 quality costs concept, 279–280, 279f
 planning, 273–275, 273f, 274f, 275f
 pull-off/reinsertion access, 278, 278f
 rework loops in assembly systems, 275–276, 275f–277f
quality costs concept, 279–280, 279f
rack transportation, 258–259, 259f
rate of return (ROR) analysis, 115–117, 115f, 116f, 117f
rear structure (RS), 148
reconfigurable modular system, 304
requirements, manufacturing system, 127–129, 127f–129f
resin-transfer molding, 31
resistance spot welding (RSW), 35
responsible, accountable, consult, and inform (RACI) matrix, 69, 69f
respot workstation, 89, 89f, 174
retooling, 50, 285. See also
tooling development
retrieval system, 130
rework loops in assembly systems, 275–276, 275f–277f
RFID, 260–261, 261f
robot density, 208
robot programming, 167
robotic applications
 advance—collaborative robots, 229–231, 229f
industrial robots
 accuracy, 224
 characteristics, 222–224, 222f–224f
types, 220–222, 221f, 221t
working envelopes, 224, 224f
safety considerations for, 228–229
in vehicle assembly, 224–227, 225t, 226f–227f
robotic end-of-arm tooling, 310–311, 311f
robotic EOAT end effector, 311, 311f
robotic material handling (MH)
between lines, 265f
part transfer between workstations, 265f
Robot R1 picking, 266
robot-to-robot hand-off operations, 265
unloading and loading operations, 264
RSW. See resistance spot welding (RSW)
safety function, 134–135
salvage values (SVs) of the systems, 111
self-piercing riveting (SPR), 21
sensors
applications, 218–220, 219f, 220f
contact and noncontact sensors, 216–217, 217f, 218f
serial line reliability, 91–92, 92f
servo-driven tooling units, 292–294, 293f, 294f
servomotor-driven fixture unit, 293f
sheet metal parts
body sides, parts and configurations of, 23, 24f
characteristics, 23
design and manufacturing, 24
dimensional quality, 25
Focus B-pillar, 25
stamped parts and subassemblies, requirements on, 25f
tailor-rolled blanks, 25, 25f
tailor-welded blanks, 24, 25f
sheet molded compound (SMC), 31
shipping racks and transportation
part shipping racks, 257–258, 258f
rack transportation, 258–259, 259f
shunting effect, 60
simple assembly line balancing problem (SALBP), 187, 187f
skillets, 271
slack, 73
smart factory, 77
SMC. See sheet molded compound (SMC)
soft tooling, 322
spaceframe body, 21, 21f
special tooling
cost consideration, 291–292, 291f
process, 287–289, 288f, 289f
standardization, 289, 290f
sphere-mounted retroreflector (SMR), 317
SPR. See self-piercing riveting (SPR)
standardization, process planning, 169–170, 169f
standardized fixture item, 290, 290f
stationary fixture, 309
system buffering
buffer effect analysis, 248f
buffer planning
attributes, 249, 249f
considerations on size, 249–250
costs and flexibility, 250–251, 251f
design analysis, 252–253, 253f, 253f
function, 254
production rates and, 251–252
influences, 247–248, 247f, 248f
in manufacturing systems, 245–246, 246f
system design, vehicle assembly systems
assembly lines, characteristics.
See workstation
manufacturing system
assembly plant selection, 123–126, 124f, 125f
main conveyance systems, requirements, 129–130
plant site selection, 126–127
requirements, 127–129, 127f–129f
system development
general assembly, system flow, 149, 150f
procedure
manufacturing development, 45–51
standardization, 51–53, 52f–53f
product and process, modular design, 148–149, 148f, 149f
system development (Cont.)
product design and assembly process alternatives, 145–147, 145f–147f
system layouts, vehicle assembly systems
assembly lines
configurations, 154–155, 154f, 155f
dimension, 159–161, 160f, 161f, 161t
assembly workstations, 157–159, 158f, 159f
body frame and paint operation, 151f
computer simulation, development, 151
items of, 152f
parallel lines, 156–157, 156f, 157f
passage car body shop, 152, 153f
process-oriented layout, 152
professional teams, 154
two-color base coats, process flow, 152, 153f
system reliability
fundamentals, 85–88, 86f
line reliability, analysis, 90–95, 90f–92f, 92f, 94f
workstation reliability, analysis, 88–90, 89f, 90f
system throughput
gross JPH and net JPH, 107–108, 108f
measurements, 106, 106f
production yield (RTY), 106–107, 107f
systems engineering (SE) in development concurrent engineering (CE), 56–57, 57f, 58f
phases, 53–55, 54f, 55f
V-shape approach, 55–56, 55f, 56f
tailor-rolled blanks, 25, 25f
tailor-welded blanks, 24, 25f
thermoplastics, 30
thermosets, 30
3-2-1 locating principle, 298
3-D printing, 79–80, 79f, 80f
time value, 110
of money, 109
tooling development
flexibility
body framing flexibility, 294–296, 295f, 296f
servo-driven tooling units, 292–294, 293f, 294f
functionality
characteristics, 286–287
vs. facility, 285, 286f
special tooling
cost consideration, 291–292, 291f
process, 287–289, 288f, 289f
standardization, 289, 290f
tooling integration, 313–314, 313f, 314f
Toyota Production System (TPS), 51, 63
traditional dedicated manufacturing, 95
2-1 and 3-2-1 configurations, 298–300, 299f, 300f
UHSSs. See ultrahigh strength steels (UHSSs)
ultrahigh strength steels (UHSSs), 26–28, 36
unibody architecture, 18, 19f
unintended acceleration, 64
unreliability, 87
V-shape approach, 55–56, 55f, 56f
vehicle assembly automation, 207–209, 208f
vehicle assembly workstations. See workstation
vehicle body framing scenarios, 295, 295f
vehicle body shop, 108, 109f
vehicle development management
engineering change management, 6–10, 7f–9f, 9t, 11f
lifecycle analysis, 11–13, 13f
PLM principle and applications, 13–15, 14f–16f
product engineering and development, 2–6, 4f–6f
programs classification, 1–2
vehicle dimensional coordinates, 296, 296f
vehicle manufacturing processes, 166f
vehicle subassemblies, fixture with, 310f
vehicles body architectures
BIW architectures, 21–23, 22f, 22t, 23f
body-on-frame, 19–20, 20f
self-piercing riveting (SPR), 21
spaceframe body, 21, 21f
unibody architecture, 18, 19f
verification sensors, 264
VFF. See Virtual Factory Framework (VFF)
Virtual Factory Framework (VFF), 78
Virtual Paint Shop, 171
virtual process development, 170–172, 171f, 172f
WBS. See work breakdown structure (WBS)
Weibull distribution, 86
welding workstations, 144
WIP tracking, 261–262
witness hole, 323
work breakdown structure (WBS), 68, 68f
worker safety assurance, 234–236, 235f, 236f
workstation
characteristics, 130, 130f
composition of, 134–136, 134f
fixtures, setups, 309–310, 310f
manual installation, 133, 133f
nonprecision assembly operations, 132, 133f
operations types, 131, 131f
precision assembly operations, 131–132, 133f
process planning of
manpower utilization, efficiency, 180–184, 181f, 182f, 183f, 184f
operation time study, 176–180, 177f–179f
process task assignments, 174–176, 175f, 176f
reliability, analysis, 88–90, 89f, 90f
robot spray cells, 133
supportive operations, 133–134
tooling component integration, 313f
vehicle assembly, components, 135, 135f
vehicle mass production, operation automation in, 132, 132f
XXX production systems, 51