Index

Note—Page numbers followed by ‘f’ and ‘t’ refer to figures and table respectively.

acceleration, 43–44, 43f, 80
due to gravity, 47
electric solenoids, 149
loads, 103–104
accumulators, 87
fluid requirements, 89, 90f
fluid volume, 89
location, 91
system pressure, 89–90
types, 90–91
acquisition assessment, 10
actual cost of work performed (ACWP), 14
actuator(s), 1–2
cost, 6
defined, 51, 51f
design, defined, 1–2
design margin, 4
environment, 4–5
fundamentals, 2
loads, 3
flow, 46–49
maintainability, 6
mounting, 65
performance, 2–3
reliability, 5–6
torque, 46
ACWP. See actual cost of work performed (ACWP)
affinity diagrams, 10
air turbine motors, 115
alternating current (AC) induction motors, 106
alternating stress, 63, 64f
analysis cost estimate, 15
analysis factor, 15
applied torque, 51
assembly
cost estimate, 16, 18
factor, 16, 18
prototyping, 175–176
ASTM E23, 65
automated machinery, 6
auxiliary pump, 87–88
axial and bent axis piston motors, 113–114, 114f
axial loads, 101–102
back emf voltage, 100
backlash, gear box, 157–158
bag accumulators, 90–91
bar radius, 51
BCWP. See budgeted cost of work performed (BCWP)
beam equivalent lengths, 120, 121f
bearings, power screw actuators, 147
bending moment stress field, 55f, 60
bending stress, 54, 55
“bottoms up” estimate, 15
prototype, 17
brake, 170
inertia, 48
brushless motors, 107, 108f
bucking capacity, 144
budgeted cost of work performed (BCWP), 14
build–test iterations, 173
bulk modulus
 hydraulic cylinders, 133–134
capability assessment, 10
capacitor, 106
cavitation, 87
Charpy or Izod impact tests, 65
circumferential stress, 124
closed seal gland, 124–125, 125f
closed tank designs, 86
complexity factor, 14, 16, 17
component stiffness, 5, 28, 49
 linear stiffness, 49–50
 materials, 52–53
 rotary stiffness, 50–52
component strength, 5, 53–54
 fatigue strength, 61–65
 ultimate strength and plastic analysis, 59–61
 yield strength and elastic analysis, 54–59
concentrated point, 3
conservation of energy, 36
constraints, 3–4
 requirements analysis, 65
 environment, 67–68
 maintenance, 71–72
 mounting configuration, 65–67
 pollution, 68
 reliability, 70–71
 safety, 68–70
consumable consumption, 19
consumable cost, 19
content analysis, 10
control element design and selection,
 power sources, 116
cost estimating models, 20
decommissioning, 21
design, 21
production, 21
cost performance index (CPI), 14
cross functional review, 179
cross-hatched seal surface, 126, 126f
cycles to failure, 63f
cylinders, 121f
 fluid volume, 122
 force, 122–123
 hydraulic applications, 122
 hydraulic cylinders, 123–134
 pneumatic cylinders, 134–135
 stroke, 122
 velocity, 122
data collection system, 180
deceleration, 80
 rate, hydraulic cylinders, 130
decommissioning costs, 6, 13, 19–20
deflection, 124
degrees of freedom, 1
design
 approach factor, 14, 16
 cost, 14–15
 estimate, 15
 factor, 15, 16
 loads, 3
 margin, 4
 scope factor, 14
 verification stage, 174
design failure mode and effect analysis (DFMEA), 68
development process, 7, 7f
DFMEA. See design failure mode and effect analysis (DFMEA)
diaphragm accumulators, 90–91
direct current (DC) motors
 brushed permanent magnet, 109
 brushless, 107, 108f
 induction, 106, 107f
 stepper, 106, 106f
direct drive motors, 156
direct tension stress, 58
disassembly cost, 20
displacement, 49
Index

distortion energy theory, 59
distributed loads, 3
documentation
cost estimate, 15, 16
factor, 15, 16
factor, level of, 14, 16
downtime, 19
cost, 19
dynamic (transient) loads, 3

earned value management system
(EVMS), 12
elastic beam with pinned ends, 117, 117f
elastic buckling load, 119–120
elastic modulus, 118
electric linear motors, 152–155, 153f
 actuator design, 154
 advantages, 153
design accommodations, 154
direct coupling, 153
ETT Series Parker electric tubular motor, 153f
fluid and material properties, 155f
high-performance actuator, 154
motion control fundamentals, 152
performance requirements, 154
reflected load inertia, 154

electric motor selection
alternating current (AC) induction motors, 106
direct current (DC) motors
 brushed permanent magnet, 109
 brushless, 107, 108f
 induction, 106, 107f
 stepper, 106, 106f
in high-performance actuators, 105
items for, 105–106
types, 104–105
electric motor torque/speed characteristics, 103f

electric power sources
 armature circuit, 100
 back emf voltage, 100

capacitance, 98–99
characteristics, 99
current, 98
distribution circuit, 99
electric drive, 99f
excitation circuit, 99
field current, 100
inductance, 98–99
resistance, 98
torque, 99–100
voltage, 98
work done, 99
electric solenoids
 acceleration, 149
 inductance, 150
 magnetic field, 149f
 magnetic flux density, 149
 proportional solenoids, 151–152, 152f
 for small loads short distances, 151
TLX Technologies long stroke latching solenoid, 150f

endurance limit, 61
energy, 31–32
 consumption, 19
cost, 19
efficiency, 79
ratio, pneumatic power sources, 97
environmental effects
dirt/dust, 30f
humidity, 30f
ice, 30f
operation, 67
rain, 30f
shipping and transportation, 68
storage, 67–68
temperature, 30f
environmenal loads, 3
environmental safety, 69
equations of motion, 33–46
ETT Series Parker electric tubular motor, 153f

EVMS. See earned value management system (EVMS)
fabricated parts, 176
fabrication, 173–175
cost estimate, 16
factor, 16
failure rate, 70–71
fatigue strength, 61–65
feedback systems, power sources
actuator components to stop/hold a
load, 170–172
sensor location, 169–170
sensor type, 163–168
filters, hydraulic power sources, 88–89
finite-element analysis, 54
fixed displacement pump, 87
fixed joints, 4
fixed support joints, 66
flow control valve, 92
fluid bulk modulus, 85
fluids, 84–85
force, 49
friction
brakes, 170, 170f
effects, 28
gear systems, 29f
plain bearings, 29f
power screw, 29f
rolling element bearings, 29f
seals, 29f
load, 138
gear box, 156–160
efficiency, 48
inertia, 48
ratio, 48
stiffness, 48
gear motors, 112, 112f
gear systems, 29f
generic constant life diagram, 61, 62f
generic strain versus strain reversal
diagram, 62f
gerorot and geroler motors, 113, 113f
good cost, 15
Goodman diagram, 63
gravity loads, 102
hazardous material
cost, 20
mass, 20
high-cycle fatigue, 3
high-performance actuator, 3
control valves, 93, 94f
high-performance system, 35
historical design cost, 14
historical documentation cost, 14
historical management and review cost, 14, 16
historical production cost, 18
historical prototype cost, 16
historical test cost, 16
Honeywell AS25D Pressure Sensor,
168f
Honeywell MAQ13 accelerometer, 167f
Hooke’s law, 50, 54
HPU. See hydraulic power unit (HPU)
hydraulic actuators, 81
hydraulic cylinders
advantage, 127
bearing material and size selection, 123–124
bulk modulus, 133–134
circumferential stress, 124
cross-hatched seal surface, 126, 126f
deceleration rate, 129
deflection, 124
incompressible fluid, 129
intermittent pressure loads, 124
lubricated seal, 126, 126f
mounting configuration, 123
orifice coefficient, 129
pinned joints, 123
piston
cushion with holes, 127, 127f, 128f
deceleration, 128
side spring rate, 130
seal glands, 124–126, 125f
stiffness, 130
hydraulic motor selection, 109f
axial and bent axis piston motors,
113–114, 114f
benefits, 109
gear motors, 112, 112f
gerotor and geroler motors, 113, 113f
natural frequency, 111–112
power, 110
radial piston motors, 114, 114f
speed, 109–110
spring rate, 111
stiffness, 110–111
torque, 109
vane motors, 112, 113f
hydraulic power sources. See also
hydraulic power unit (HPU)
accumulators, 89–91, 90f
filters, 88–89
fluids, 84–85
heat exchangers, 91–92
high-performance actuator control
valves, 93, 94f
hydraulic power unit, 83–84, 83f–84f
hydraulic symbols, 81–82
power source, 82
prime mover, 88
pump, 87–88
tank or reservoir, 86
hydraulic power unit (HPU)
component selection, 84
with fixed displacement pump, 83, 83f
flow rate, 81
valves, 92–93
with variable displacement pump, 83, 84f
hydraulic symbols, 81–82
basic symbols, 188
cylinder symbols, 190
fluid conditioning symbols, 189
valve
symbols, 191
type symbols, 192
hydraulic system, 28

impulse, 31
incompressible fluid, 129
inductance, electric solenoids, 150
inertia, 46, 48
inertial loads, 3
inertial sensors, 167–168, 167f–169f
intermittent pressure loads, 124
interviewing, 10
joint combinations, 66–67
kinetic energy, 31–32, 36
KJ diagrams, 10
latches, 171–172, 171f
linear actuator design, power sources
beam equivalent lengths, 120, 121f
cylinders, 121f
fluid volume, 122
force, 122
hydraulic applications, 122
hydraulic cylinders, 123–134
pneumatic cylinders, 134–135
velocity, 122
elastic beam with pinned ends, 117, 117f
elastic buckling load, 119–120
elastic modulus, 118
electric linear motors, 152–155, 153f
electric solenoids, 149–152, 149f, 150f, 152f
motor and rack, 135, 135f
screws, 136–144
critical speed, 147–148
spring rate for power screw actuators
bearings, 147
mounting structure and load
structure stiffness, 144–145
nut stiffness, 145–146, 146f
screw stiffness, 145
total screw/nut stiffness, 146–147
structural requirements, 116–117
types, 116
linear actuator powered by a motor, 47f
linear sensors, 165–167, 165f, 166f
linear stiffness, 49–50
linear systems, 46
Index

linear variable displacement transformers (LVDTs)
magnetostrictive sensors, 165–167, 166f
sensor, 165, 165f
load acceleration, 47
 reflected to the motor, 104
load coefficient of friction, 47
load force requirement, 48
load inertia, reflected, 104, 154
load mass, 47
load torque, 104
loaded area, 162
loaded length, 162
loads, 3, 46–49
 considerations
 payload change, 30t
 payload motion path, 30t
lubricated seal, 126, 126f
lubricity, 85
LVDTs. See linear variable displacement transformers (LVDTs)
machine safety, 69
magnetic field, electric solenoids, 149f
magnetic flux density, electric solenoids, 149
maintenance
 labor cost, 19
 labor required, 19
 preventative, 71–72
 repair, 71, 72
management
 reserve, 15, 16
 and review cost estimate, 15, 16
 and review factor, 14, 15, 16
manufactured part cost estimate, 18
manufactured part factor, 18
master schedule, 10
material elastic modulus, 162
material shear modulus, 162
materials stiffness, 52–53
 properties, 53f
 specific stiffness comparison, 53f
maximum shear theory, 59
mean cycles between failures (MCBF), 70
mean time between failures (MTBF), 70
metal bellows accumulators, 90–91
MIL-HDBK-5/MMPDS, 53
MIL-STD-810, 4, 67
Miner’s equation, 64
Mises–Hencky stress theory, 58, 59
modified plans, 10
modulus of elasticity, 49
Mohr’s circle, 58, 58f
moment of inertia, 56, 57f
momentum, 31
motor
 acceleration, 48
 inertia, 48
 and rack, linear actuator design, 135, 135f
 selection
 electric motor selection, 104–109
 hydraulic motor selection, 109–114
 pneumatic motors, 115, 115f
 shaft loads, 101–102
 speed requirements, 104
 torque requirements, 102–104, 103f
 torque, 49, 104
unbalance load, 102
mounting configuration, 65, 123
 fixed support joints, 66
 joint combinations, 66–67
 pinned joints, 66
 simply supported joints, 66
multipole resolvers, 165
National Aerospace Standard (NAS), 88
natural frequency, 5, 36, 40, 78
 hydraulic motor selection, 111–112
Newton’s second law of motion, 46
nut inertia, 48
nut stiffness, 145–146, 146f
offline pump, 87
open seal gland, 124–125, 125f
operating cost, 19
operator labor
cost, 19
required, 19
optical encoders, 164
option cost, 18
orifice coefficient, 129
overdesign, 53
overhead factor, 18
overspecification of design requirements, 174

Parker DY15 Series Servovalve, 94f
Parker Series D*1FB pilot operated proportional valve, 94f
payload angle from horizontal, 47
performance
allocations, 75–80
factor, 14, 16, 17
requirements analysis, 28–30
energy, 31–32
equations of motion, 33–46
impulse, 31
momentum, 31
power, 32–33
work, 30–31
personnel safety, 69
pinned joints, 3–4, 66, 123
piston
accumulators, 90–91
cushion with holes, 127, 127f, 128f
deceleration, 128
seal friction, 123
side
area, 122, 123
flow rate, 122
pressure, 123
spring rate, 130
velocity, 122
volume, 122
plain bearings, 29f
planetary roller, 136, 137f
plastic modulus, 60
pneumatic cylinders
fluid bulk modulus, 135
lubrication, 134
problems, 134
pneumatic motors, 115, 115f
pneumatic power sources
bulk modulus, 95
energy ratio, 97
isentropic application, 96
stored energy, 98
polar moment of inertia, 51
poppet valves, 92
position, 44–46
sensors, 163
potential energy, 32
power, 32–33
hydraulic motor selection, 110
screws, 136
sources, 82
actuator detailed design. See motor control element design and selection, 116
electric, 98–101, 99f
feedback systems. See feedback systems, power sources
hydraulic. See hydraulic power sources
linear actuator design. See linear actuator design, power sources
pneumatic systems, 95–98
rotary actuator design. See rotary actuator design
verification and validation, 172
power screw, 29f
pressure
relief valves, 92–93
sensors, 168, 168f
prime mover, hydraulic power sources, 88
product maintenance, 6
product verification and validation
testing, 177
analysis, 178
comparison, 178
engineering judgment, 177–178
testing, 178–180
production, 181
cost, 17–18
quantity factor, 17
support factor, level of, 18
project close out, 24
project development schedule, 11f
project management, 9
cost
decommissioning, 19–20
design, 14–15
estimating techniques, 20–21
operating, 19
production, 17–18
prototype, 15–17
project close out, 24
requirements, 9–10
risk, 21
cost, 22
customer acceptance, 22–23
management, 23–24
schedule, 22
technology, 22
schedule, 10–13
scope, 9
proportional solenoids, 151–152, 152f
prototyping, 173
assembly, 175–176
build–test iterations, 173
cost, 15–17
fabrication, 173–175
validation, 176
verification, 176
pump, hydraulic power sources, 87–88
purchased part cost estimate, 18
purchased part factor, 18
quality assurance testing, 176
racks
rotary actuator design, 161–163
spring rate, 162
radial loads, 101–102
radial piston motors, 114, 114f
recycled material
cost, 20
mass, 20
requirements analysis, 27–28
component stiffness, 49
linear stiffness, 49–50
materials, 52–53
rotary stiffness, 50–52
component strength, 53–54
fatigue strength, 61–65
ultimate strength and plastic analysis, 59–61
yield strength and elastic analysis, 54–59
constraints, 65
environment, 67–68
maintenance, 71–72
mounting configuration, 65–67
pollution, 68
reliability, 70–71
safety, 68–70
loads, 46–49
performance, 28–30
energy, 31–32
equations of motion, 33–46
impulse, 31
momentum, 31
power, 32–33
work, 30–31
verification and validation, 73
requirements, market and customer needs, 9–10
research and development (R&D), 175
resolver to digital (R–D) converters, 165
resolvers, 165
risk
factor, 14, 16
mitigation plan, 24
robotic devices, 1
rod
seal friction, 123
side
area, 122, 123
flow rate, 122
pressure, 123
velocity, 122
volume, 122
rolling element bearings, 29
rotary actuator design
direct drive motors, 156
gear boxes, 156–160
mechanical mechanisms, 160–161
racks, 161–163
rotary position feedback device, 164
rotary sensors, 164–165, 165f
rotary stiffness, 50–52
rotary systems, 34, 46
RTCA/DO-160, 4, 67

safety constraints, requirements analysis, 68–69
environmental safety, 69
machine safety, 69
personnel safety, 69
safety summary, 69–70

schedule
factor, 14, 16
information, 15
project management, 10–13
variance, 12

schedule performance index (SPI), 12

screws
bucking capacity, 144
critical speed, 147–148
efficiency, 48
friction load, 138
inertia, 48
lead, 48
load, 143
nut preload torque, 48
planetary roller, 136, 137f
power, 136
reaction forces at thread form angle, 139f
stiffness, 145
thread friction forces, 139f
thread geometry, 138f
thread lead angle, 139f
thread pitch diameter, 141
torque calculation, 137–138
total torque, 142
types, 136
vertical forces, 140
seal glands, 124–126, 125f
seals, 29

sensor type, feedback systems
inertial sensors, 167–168, 167f–169f
linear sensors, 165–167, 165f, 166f
position sensors, 163
rotary sensors, 164–165, 165f
types, 163
velocity and acceleration, 163

shafts
deflection, 162
loads, 101–102
polar moment of inertia, 162
shear modulus of elasticity, 50
shear strain, 50, 51
shear stress, 50, 51
shock loads, 3
simply supported joints, 66
single-phase induction motors, 106

speed
hydraulic motor selection, 109–110
requirements, motor selection, 104
spool valves, 92
spring rate, 49, 111
for power screw actuators
bearings, 147
mounting structure and load
structure stiffness, 144–145
nut stiffness, 145–146, 146f
screw stiffness, 145
total screw/nut stiffness, 146–147

static loads, 3
statistical process controls, 175
stepper motors, 106, 106f
torque vs. pulse rate, 103f
stiffness, 48, 49, 52
actuator, 169
hydraulic cylinders, 130
hydraulic motor selection, 110–111
rotary actuator design, 158
Index

strain, 49
stress, 49
 ratio, 61
 strain curve, 59
superposition, principle of, 57
support factor, 18
systems engineering approach, 10
tachometers, 165
tank or reservoir, 86
technology development factor, 14, 16
test
 cost estimate, 16, 18
 factor, 16, 18
 fixtures, 179
 plan, 178
 setup cost estimate, 16
thermal loads, 3, 159–160
time cycle, 76f
 with overlap, 77f
TLX Technologies long stroke latching solenoid, 150f
tooling factor, 17
tooth brakes, 170–171, 171f
torque, 48
 calculation, 137–138
 hydraulic motor selection, 109
 pulse rate curve, 106
requirements, motor selection, 102–104, 103f
torque, actuator, 46
total inertia, 47
total screw/nut stiffness, 146–147
tracking cost, 12
transition velocity, 41
Turck TTM temperature sensor, 169f
ultimate strength and plastic analysis, 59–61
unbalance load, 102
validation, 176
 process analysis, 27
valves, hydraulic power unit (HPU), 92–93
vane motors, 112, 113f
velocity, 42–43, 42f
 and acceleration sensor type, 163
verification, 176
 and validation, requirements analysis, 73
viscosity, 85
warranty factor, 18
work breakdown structure (WBS), 12, 12f
yield strength and elastic analysis, 54–59