Rene Nardi Rezende has 40 years’ experience in the aerospace industry with assignments including systems engineering, engine and airframe maintenance, metallic and composite structure assembling, continuous improvement implementation, quality function deployment, procurement, and program management. Rene worked for various multinational companies, including system providers, components suppliers, original equipment manufacturers, and commercial aircraft fleet operators. His professional experience also encompasses the implementation and management of long-duration, multi-million-dollar programs that took place in multicultural environments in the United States, Latin America, Europe, and the Middle East.

He holds a bachelor’s degree in aeronautical engineering from the Federal University of Minas Gerais and MSc and Ph.D. from ITA—Instituto Tecnologico de Aeronautica—(both located in Brazil) and an MBA from Hult International (USA).

Currently, Rene focuses on writing, teaching courses, and consulting for the aerospace industry at large.
Adiabatic flame temperature, 29
Aerojet General Engineering Corporation, 11–12
Aerospike type nozzle, 70
Air Force Chemical Equilibrium Specific Impulse Code (AFCE SIC), 30
Ambient pressure
 exhaust section dimensioning, 51, 52
 nozzle operating out of optimum point, 52–54
American Institute of Aeronautics and Astronautics (AIAA), 13
American Journal of Physics, 12–14
American Rocket Society, 13
Angular coefficient, 93
Apollo Lunar Module, 33
Apollo Program, 71, 90
ARS Journal, 13–14
Artificial satellites, 1
Astrium cryogenic engine N-300
 fuel mass flow, 84
 oxidizer mass flow, 84
 total propellant consumption, 84
 total propellants mass flow, 83
Atlas-Centaur first-stage engine-specific impulse, 20
Atmospheric pressure, 20, 21
Atomization angle, 101
Aviation Week and Space Technology, 46
BADA Aircraft Performance Model, 20
Bell-shaped nozzles, 69
Bezier equations, 73, 74
Biokerosene, 32
Bi-propellant liquid-fueled rocket, 56
Blue Origin, 32, 90
BMW-109-548 engine, cylindrical combustion chamber, 63

Characteristic length, 60, 61
Characteristic velocity, 40–41
 5 kN thrust engine, 46
 hot test, 118
Chemical Equilibrium with Applications (CEA), 30
Coaxial injector per patent, 103, 104

Cold Section
 analytic structure of product, 87, 88
 propellant injectors
 “cut-and-try” approach, 87
 impinging jet injector, 88–89
 parametric model, 87–88
 pintle injector, 90
 shower head injector, 89
 swirl-type injector, 90
 types, 87
Cold test, 118–119
Combustion chamber
 chamber wall thickness, 63–64, 67
 chemical reactions, 19
 combustion process factors, 59
 diameter, 61–62, 71
 ethanol and gaseous oxygen rocket engine, 66
 liquid oxygen and aviation kerosene rocket engine, 66
 heat transfer, 14
 length, 62–63
 ethanol and gaseous oxygen rocket engine, 66
 liquid oxygen and aviation kerosene rocket engine, 66–67
 model assessment
 calculated and actual engine data, 64, 65
 distribution of standard deviations, 65, 66
 planned vs. actual data deviations, 65
 standard deviation calculations, 64
 theoretical vs. actual results, 64
 optimal geometry, preliminary design phase, 59
 performance degradation, 59
 pressure, 16, 19, 82, 118
 propellants, 17
 temperature, 29, 83
 thrust equation, 19
 values, 18
 volume, 60–61
Combustion gases properties, 25, 26
 adiabatic flame temperature, 29
 mixture ratio, 28–29
 molar mass, 29
 sources of data, 29–30
 specific heat ratio, 29
 theoretical thermodynamic properties, 28
Computational fluid dynamics (CFD) exercises, 2
Computer-aided design (CAD) tool, 6
Computer numeric control (CNC) machine tools, 6
Concept and Technology Development, 5, 6
Concept Development, 28
Conical nozzle
 boundary layer, 70
 circular arc, 71
 cones of revolution, 71
 construction elements, 71, 72
 convergent and divergent sectors, 71–72
 diagram, 71, 72
 engines with Reynolds numbers below 10⁴, 70
 15-degree semi-angle conical nozzle, 71
 preliminary design phase, 71
“Continuous One-Dimensional Flow,” 13
Contraction ratio, 61–63
Critical pressure, 82
“Cut-and-try” approach, 87
Cylindrical combustion chamber, BMW-109-548 engine, 63
de Laval nozzle
 diagram, 17, 18
 flow velocity, 18–19
 Hugoniot theorems, 17–19
 pressure, temperature, and area ratio, 18–19
 in vapor turbines, 17
“Design and Experimentation of a Basic Rocket Engine,” 13
“Design of Liquid-Propellant Rocket Engines,” 14
Discharge coefficient
 inlet orifices, 98, 99
 outlet orifice, 97–99
Earth’s atmosphere, 20
EcosimPro, 15, 16
Engine thrust, 118
definition, 50
RE-100 liquid rocket engine at an altitude of 20 km, 54
at sea level, 54
Exhaust section, 26, 27
diameter, 71
dimensioning
ambient pressure, 51, 52
first method, 51–52
maximum thrust, 51
nozzle exit pressure, 51, 52
second method, 52
Exhaust velocity
definition, 40
V2/A4 ballistic missile, 45
Expansion ratio, 42–43, 69
Falcon rocket, 103
15-degree semi-angle conical nozzle, 71
Firefly Lumen engine, 70
“First Step Toward Space,” 10
5000-N injector
acrylic combustion chamber, 114
control orifice areas, 115
faceplate, 114
fuel mass flow rate, 113
injector body, 114
multilayer configuration, 113
orifice plate diameters, 115
O-ring seals, 114
pintle, 114, 115
pintle tip areas, 115
pintle tip diameters, 115
Fixed-geometry nozzle engine, 53
Flame temperature
hydrogen tetroxide and
UDMH, 130
liquid oxygen and ethanol, 122
liquid oxygen and kerosene, 124
liquid oxygen and liquid hydrogen, 128
liquid oxygen and liquid methane, 126
Flight altitudes, 53
Fuel mass flow, 82–84
Fuels
ethanol with water, 32
hydrazine, 32–33
kerosene, 31, 32
liquid hydrogen, 32
MMH, 33
UDMD, 33
Gas core area, 97
Gaseous oxygen (GOX), 33
GeorgiaTech SCORES, 15
Graduate Aerospace Laboratories of the California Institute of Technology (GALCIT), 11
Ground tests
cold test, 118–119
definition, 117
emergency response times, 117
hot test, 117–118
potential hazards, 117
safety margins, 117
Haas 2 CA engine, 70
High-Level Requirements (HLR)
Concept Development, 28
extract from, 28
Preliminary Design, 28
project flowchart, 25, 26
Project Life Cycle, 25–28
System Engineering Handbook-SP-6105, 27
Highly expanded nozzle, 53, 54
History of Liquid Propellant Rocket Engines, 31
HLR, see High-Level Requirements (HLR)
“Hot Section,” 4–5
Hot test, 117–118
Hugoniot theorems, 17–19
Hydrazine, 32–33
Hydrogen peroxide, as oxidizer, 33
Hydromechanical injector, 95
Hypergolic propellants, 89
Ideally expanded nozzle, 53
Impinging jet injector, 88–89
Inlet orifices, swirl injectors
areas, function of atomization angle, 99
discharge coefficient, 98, 99
gas core area, 97
inlet discharge ratio, 97, 98
liquid ring area, 97
Instituto Aeronáutica e Espaço (IAE) 1 kN test bench, 117, 118
International Civil Aviation Organization (ICAO), 21
Isentropic flow
exhaust section dimensioning, 51
unidimensional, 39–40
Jet propulsion, 16–17
Kerosene
as fuel, 31, 32
and liquid oxygen
flame temperature, 124
mixture ratio, 123
molecular weight, 124
specific heat ratio, 125
and methane, 32
Key decision points (KDPs), 5, 6
L-15 engine, 32
Liquid hydrogen (LH2)
as fuels, 32
and liquid oxygen
flame temperature, 128
mixture ratio, 122
molecular weight, 122
specific heat ratio, 123
and kerosene
flame temperature, 124
mixture ratio, 123
molecular weight, 124
specific heat ratio, 125
and liquid hydrogen, 31
flame temperature, 128
mixture ratio, 127
molecular weight, 128
specific heat ratio, 129
and liquid methane
flame temperature, 126
mixture ratio, 125
molecular weight, 126
specific heat ratio, 127
as oxidizer, 31, 32
Liquid oxygen (LOX)
and ethanol, 32
flame temperature, 122
mixture ratio, 121
molecular weight, 122
specific heat ratio, 123
and kerosene
flame temperature, 124
mixture ratio, 123
molecular weight, 124
specific heat ratio, 125
and liquid hydrogen, 31
flame temperature, 128
mixture ratio, 127
molecular weight, 128
specific heat ratio, 129
and liquid methane
flame temperature, 126
mixture ratio, 125
molecular weight, 126
specific heat ratio, 127
as oxidizer, 31, 32
Liquid ring area, 97
Liquid rocket engines
civilian space program, 10
de Laval nozzle, 17–19
German Army

©2019 SAE International
Dornberger, Walter, 10
liquid-propellant rocket, 10
main references
Aerojet General Engineering Corporation, 11–12
American Journal of Physics, 12–13
American Rocket Society, 13
ARS Journal, 13–14
“Continuous One-Dimensional Flow,” 13
“Design and Experimentation of a Basic Rocket Engine,” 13
historical perspective, 11
"Liquid Rocket Thrust Chambers: Aspects of Modeling, Analysis, and Design,” 14
NACA Report 1135, 13
NASA SP-125 Report, 14
"Physics of Rockets: Liquid-Propellant Rockets,” 13
Rocket Propulsion Elements, 13
seminars and conferences, 11
sources, 11, 12
technical books, 11
"The Physics of Rockets,” 12
unconventional nozzle design, 12
parametric modeling application review, 14–16
Soviet Union, 10
Space Age, dream of, 9
standard atmosphere, 20–21
thrust equation, 19–20
Liquid rocket thrust chamber computational fluid dynamic exercises, 2
first interaction, 2
preliminary design phase, 2
project life cycle, 2, 5, 6
“Liquid Rocket Thrust Chambers: Aspects of Modeling, Analysis, and Design,” 14
LOX, see Liquid oxygen (LOX)

Mach number
at nozzle exhaust section, 51
at nozzle exit section, 52
Mass flow of propellants, 81
Mass flow rate
5000-N injector, 113
pintle injector, 110
propellant, 118, 119
swirl injector, 100
test fluid, 119
1000-N injector, 111, 113
Merlin engines, 103
Metering orifice
area orifice, 109–110
definition process, 110, 111
exit orifice area, 110
gallery geometry, 109
inlet orifice area, 110
spray, 110
Mixture ratio, 28–29
hydrogen tetroxide and UDMH, 129
liquid oxygen and ethanol, 121
liquid oxygen and kerosene, 123
liquid oxygen and liquid hydrogen, 127
liquid oxygen and liquid methane, 125
Modern Engineering for Design of Liquid-Propellant Rocket Engines, 15
Molar mass, 29
of combusted gases, 50
of combustion products, 41
data output, 30
Molecular weight
hydrogen tetroxide and UDMH, 130
liquid oxygen and ethanol, 122
liquid oxygen and kerosene, 124
liquid oxygen and liquid hydrogen, 128
liquid oxygen and liquid methane, 126
Momentum thrust, 20
Monomethylhydrazine (MMH), 33
NACA Report 1135, 13
NASA RP-1311–Computer Program for Calculation of Complex Chemical Equilibrium–CEA, 30
NASA SP-273 One-Dimensional Equilibrium-ODE, 29
NASA SP-125 Report, 14
NASA Systems Engineering Handbook (SP-6105)
NASA 9-12652, Two-Dimensional Kinetic-TDK, 29
National Oceanic and Atmospheric Administration (NOAA), 20, 21
Newton’s third law, 19
Nitrogen tetroxide (NTO), 31, 33
Nozzle area, bi-propellant liquid-fueled rocket, 56
Nozzle configuration
aerospike type nozzle, 70
Apollo Program, 71
bell-shaped nozzles, 69
conical nozzle
boundary layer, 70
circular arc, 71
cones of revolution, 71
construction elements, 71, 72
convergent and divergent sectors, 71–72
diagram, 71, 72
engines with Reynolds numbers below 10^4, 70
15-degree semi-angle conical nozzle, 71
preliminary design phase, 71
contoured nozzle, 70–71
expansion ratio, 69
15-degree conical nozzle, 69
geometric efficiency, 69
parabolic nozzle
arc of a circle, 75
Bezier equations, 73, 74
concordance radius, 75
construction angles, 76
coordinates, 75, 77
diagram of, 73
elements, 74, 77
engines with Reynolds numbers greater than 10^5, 70
"Exhaust Nozzle Contour for Optimal Thrust," 72
exit angle, 76, 77
graphical method, 73
inlet angle, 76
input angle, 75
length of, 75
quadratic Bezier curve, 74
Rao graphical methodology, 74
SARA engine, 78
Thrust Optimized Parabolic, 73
Reynolds numbers, 70
"spike" nozzle, 69
Nozzle dimensioning
exhaust section dimensioning
ambient pressure, 51, 52
first method, 51–52
maximum thrust, 51
nozzle exit pressure, 51, 52
second method, 52
operating out of optimum point, 52–54
throat section dimensioning
first method, 50
nozzle with sonic flow, 49

©2019 SAE International
second Hugoniot theorem, 49
second method, 50
Nozzle exit pressure, 83
exhaust section dimensioning, 51, 52
operating out of optimum point, 52–54
Nozzle exit section
area, 51, 52
diameter, 54–55
Nozzle exit velocity, 52, 83
exhaust section dimensioning, 51, 52
operating out of optimum point, 52–54
Nozzle exit section
area, 51, 52
diameter, 54–55
Nozzle exit velocity, 52, 83
Nozzle flow equations, 82–83
Nozzle exit section
area, 51, 52
diameter, 54–55
Nozzle exit velocity, 52, 83
Nozzle flow equations, 82–83
Nozzle throat area, 50
Nozzle throat diameter, 55–56
One-dimensional isentropic process, 83
"On the GALCIT Rocket Research
Project–1936-1938," 10
Orifices, swirl injectors
control orifice section, 95
inlet orifices
areas, function of atomization angle, 99
discharge coefficient, 98, 99
gas core area, 97
inlet discharge ratio, 97, 98
liquid ring area, 97
outlet orifice
areas, function of atomization angle, 99
discharge coefficient, 97–99
gas core and liquid ring, 96
open area ratio, 96, 97
spray cone angle, 96
Outlet orifice, swirl injectors
areas, function of atomization angle, 99
discharge coefficient, 97–99
gas core and liquid ring, 96
open area ratio, 96, 97
spray cone angle, 96
Overexpanded nozzles, 53, 54
Oxidizer mass flow, 82–84
Oxidizers
hydrogen peroxide, 33
liquid hydrogen, 31
liquid oxygen, 31, 33
nitrogen tetroxide, 31, 33
Parabolic nozzle
arc of a circle, 75
Bezier equations, 73, 74
concordance radius, 75
construction angles, 76
coordinates, 75, 77
diagram of, 73
elements, 74, 77
engines with Reynolds numbers greater than 10^5, 70
“Exhaust Nozzle Contour for
Optimal Thrust,” 72
exit angle, 76, 77
graphical method, 73
inlet angle, 76
input angle, 75
length of, 75
quadratic Bezier curve, 74
Rao graphical methodology, 74
SARA engine, 78
Thrust Optimized Parabolic, 73
Performance calculation
Astrium cryogenic engine N-300, 83–84
nozzle flow equations, 82–83
propellant consumption, 81–82
Tábano AM-1, 84–85
"Physics of Rockets: Liquid-Propellant
Rockets," 13
Pintle injector, 90
advantage, 104
coaxial injector per patent, 103, 104
configuration, 104–105
design parameters, quantitative
analysis
energy losses, 109
flow coefficient value, 110
flow passage orifice, 109
fluid density, 110
hydraulic loss coefficient, 110
jet-type pintle tip spray, 110
mass flow rate, 110
metering orifice, 109
orifice area, 109–110
pintle diameter, 108
pintle length, 108
pressure differential, 110
propellant jet stream
dimensions, 108
propellant sheet thickness, 108
1000-N injector, 109
elements, 108
evaluation testing, 104
five kN-thrust engine, 104
flow visualization, qualitative
analysis
axial propellant jets, 107
continuous axial flow, 106, 107
continuous radial flow, 107
discrete axial flow, 106–107
discrete radial flow, 107
fabrication challenge in
configuration, 106
500N injector, 105, 106
internal gear ring, 107, 108
propellants spray uniformity, 105
resulting spray fan, 108
water flow tests, 107
general characteristics, 104–105
hardware fabrication, 104
internal arrangement, 105
1 kN-thrust engine, 104
propellant atomization and mixing, 103
protection against combustion instability, 103
SpaceX, 103
test specimens, 104
TRW, 103
Preliminary Design, 28
Pressure thrust, 20
Product Life Cycle
additional calculations, 26, 27
combustion chamber section
geometry, 26, 27
Concept Development, 28
gigantic performance, 26, 27
exhaust gases, characteristics of, 26, 27
exhaust section, 26, 27
expansion ratio, 27
HLR, 25–27
nozzle throat section, 26, 27
Preliminary Design, 28
propellant consumption, 27
Project life cycle, 2
Concept and Technology
Development, 5, 6
key decision points, 5, 6
preliminary design and technology
completion, 5, 6
preliminary design review, 5, 6
Propellant
consumption, 81–82
fuels
kerosene, 31, 32
properties, 32–33
water, 31
injectors
“cut-and-try” approach, 87
impinging jet injector, 88–89
parametric model, 87–88
pintle injector, 90
shower head injector, 89
swirl-type injector, 90
©2019 SAE International
types, 87
liquid propellant combinations, 30
mostly used, 31, 32
oxidizers
LOX, 31
NTO, 31
properties, 33
R-7 rocket, 31
V-2/A-4 rocket, 31
wonder propellant, 31

Propellants graphs
ambient exhaust pressure, 120
combustion chamber pressure, 120
fuel/oxidizer pair, 120
hydrogen tetroxide and UDMH
flame temperature, 130
mixture ratio, 129
molecular weight, 130
specific heat ratio, 131
liquid oxygen and ethanol
flame temperature, 122
mixture ratio, 121
molecular weight, 122
specific heat ratio, 123
liquid oxygen and kerosene
flame temperature, 124
mixture ratio, 123
molecular weight, 124
specific heat ratio, 125
liquid oxygen and liquid hydrogen
flame temperature, 128
mixture ratio, 127
molecular weight, 128
specific heat ratio, 129
liquid oxygen and liquid methane
flame temperature, 126
mixture ratio, 125
molecular weight, 126
specific heat ratio, 127
mixture ratio vs. chamber
pressure, 120, 121
selection, 120

Propulsion
definition, 16
principle, 16
system, 3

Pulsejet engine, 16

Qualitative analysis, pintle injector
axial propellant jets, 107
discrete radial flow, 107
fabrication challenge in
configuration, 107
500N injector, 105, 106
internal gear ring, 107
propellants spray uniformity, 105
resulting spray fan, 108
water flow tests, 107
Quantitative analysis, pintle injector
energy losses, 109
flow coefficient value, 110
flow passage orifice, 109
fluid density, 110
hydraulic loss coefficient, 110
jet-type pintle tip spray, 110
mass flow rate, 110
metering orifice, 109
orifice area, 109–110
pintle diameter, 108
pintle length, 108
pressure differential, 110
propellant jet stream
dimensions, 108
propellant sheet thickness, 108
1000-N injector, 109
Ramjet engine, 16
Rao contoured nozzle, 70
Rao graphical methodology, 74
Rao parabolic nozzle, 69
Redtop Pro, 15
RE-100 liquid rocket engine thrust
at an altitude of 20 km, 54
at sea level, 54
Reynolds numbers, 44
Rocket engines
artificial satellites, 1
construction, 11
convergent-divergent nozzles, 17
definition, 3
design, development, and
construction, 1–2
Diagram, 17
performance-at-any-cost approach, 2
project flowchart
combustion chamber design, 25, 26
combustion gases properties, 25, 26
empiric correction factors, 26
engine performance
assessment, 25, 26
HLR, 25, 26
nozzle dimensioning, 25, 26
nozzle exit section dimensions, 26
nozzle geometry, 25, 26
Product Life Cycle, 25–27
propellant injector dimensioning, 25
work packages, 25
thrust chamber (see Thrust chamber)
transformation, 1
vehicle market, 2
Rocket-grade hydrogen peroxide
(RGHP), 32
Rocket Propulsion Analysis (RPA), 15
Rocket Propulsion Elements, 13, 15
Rocket systems
breaking down, 2
elements, 2
guidance, 3
organizational chart, 3–4
payload, 3
propulsion, 3
structure, 3
work breakdown structure, 3–4
RP 1311-P2 User Manual and Program
Description, 30
R-4 rocket, 10
R-7 rockets, 33
Scramjet engine, 16
Shower head injector, 89
Simplex swirl injector, see Swirl injector
Soviet parametric model, 15
Space Shuttle, 31
Space Shuttle main engine (SSME), 75
SpaceX, 90, 103
Space X Falcon, 31
Specific heat ratio, 29, 44
hydrogen tetroxide and UDMH, 131
liquid oxygen and ethanol, 123
liquid oxygen and kerosene, 125
liquid oxygen and liquid
hydrogen, 129
liquid oxygen and liquid methane, 127
nozzle flow equations, 82, 83
vs. thrust coefficient, 43
Specific impulse
Aviation Week and Space Technology, 46
definition, 37
5 kN thrust engine, 45–46
hot test, 118
ideal value, 39
order of magnitude, 38
at sea level, 38
theoretical performance, 40
V2/A4 ballistic missile, 45
in vacuum, 38
“Spike” nozzle, 69
Square chamber, 62
Standard deviation
 between calculated and actual
gas engine data, 63, 64
calculations, 64
distribution of, 65, 66
STANJAN program, 30
Storage tank volume,
 Tábano AM-1, 85
Stratosphere, 20–21
Swirl injector
 angular coefficient, 93
 atomization angle, 101
 atomizing and mixing
 propellants, 93
 control orifice section, 95
dimensions, 95, 98
discharge atomization, 93
film thickness, 93
flow coefficient, 110
hydromechanical injector, 95
incompressible fluid flows, 95
inlet orifices, 97
mass flow rate chart, 100
operation, 93, 94
 atomization process, 94, 95
elements, 94
 waves formation, 94
outlet orifice, 96–97
sample calculation, 100
sizing methodology, 98–99
spray angle, 93
 spray process development, 101
Swirl-type injector, 90
System Definition Review
(SDR), 28
System Engineering
 Handbook–SP-6105, 27

Tábano AM-1
 propellant tank volume, 85
total propellant
 consumption, 84–85

“Theoretical Studies on the Flow
Through Nozzles and Related
Problems,” 12
“The Physics of Rockets,” 12
Thermodynamic efficiency, 46
1000-N injector
 actual flow coefficient, 113
 assembled and disassembled, 111
 components, 110
 fuel flow control, 110
 mass flow rate, 113
 in operation, 113
 orifice plate hole area, 110
 orifice plate hole diameter, 111
 oxidizer mass flow rate, 110
 pintle tip hole area, 111
 pintle tip hole diameter, 111
 sectional view and exploded
 view, 109
 on test bench, 112
 3 kN thrust rocket engine, 10
 Throat area, 50
 Throat diameter, 61, 71
 Throat section dimensioning
 first method, 50
 nozzle with sonic flow, 49
 second Hugoniot theorem, 49
 second method, 50
 Throat temperature, 83
 Throttle area, 118
 Thrust chamber
 “Cold Section,” 4–5
 components
 combustion chamber, 3, 4
 convergent-divergent nozzle, 3, 4
 location of, 3, 4
 propellant injector, 3, 4
 “Hot Section,” 4–5
 parametric models, 6
 project life cycle, 2, 5, 6
 propulsion system, 3
 Thrust chamber performance
 assessment
 correction factors, 43–45
 parameter, 37–38
for preliminary design phase, 39–40
simulation tools, 40
theoretical performance
 vs. actual performance, 43
 ambient pressure, 42
 characteristic velocity, 40–41
 conditions, 39
 exhaust velocity, 40
 expansion ratio, 42–43
 frozen composition flow, 39
 nozzle exit pressure, 42
 specific heat ratio, 43
 specific impulse, 40
 thrust coefficient, 40, 42–43
 unidimensional isentropic
 flow, 39–40
Thrust coefficient, 40
 actual engine vs. ideal engine, 45
 ambient pressure, 42
 deduction of, 42
 5 kN thrust engine, 46
 hot test, 118
 loss of friction, 44
 vs. specific heat ratio, 43
 theoretical, 44
Thrust equation, 19–20
 Thrust Optimized Parabolic (TOP), 73
Titan rockets, 33
Total propellant consumption,
 Tábano AM-1, 84–85
Total propellants mass flow, 82, 83
Troposphere, 20
Turbofan engine, 16
Turbojet engine, 16

Underexpanded nozzles, 53, 54
Unsymmetrical dimethylhydrazine
 (UDMH), 33
U.S. Standard Atmosphere, 20, 21
V-2/A-4 ballistic missile, 10, 45
Vaporization-dependent chambers, 61
Vehicle market, 2
V-2 missile engines, 10

©2019 SAE International
The great engineering achievement required to overcome most of the challenges and obstacles that prevented turning rocket design from art into science took place in Europe and the United States during the first half of the 20th Century.

With the vast majority of the engines currently in operation developed in the “pre-computer” age, there are new opportunities to update the design methodologies using technology that can now handle highly complex calculations fast.

The space sector with an intense focus on efficiency is driving the need for updating, adapting or replacing the old modeling practices with new tools capable of reducing the volume of resources and the time required to complete simulations and analysis. This book presents an innovative parametric model applicable to the project of some elements of the liquid rocket thrust chamber with the level of detail and accuracy appropriate to the preliminary design phase.

What will be addressed in this work is the definition of the operating characteristics and dimensioning of some thrust chamber elements through a set of equations and parameters, which include the engine thrust, the combustion chamber pressure, and the propellant characteristics. The model degree of sophistication was adjusted to the requirements of the preliminary design phase, while also enabling quick analysis of new configurations resulting from changes in initial project parameters.