Jacques Leroux is Chair of the SAE G-12 Steering Group on Aircraft Ground Deicing, Co-chair of the SAE G-12 Aircraft Deicing Fluids and Runway Deicing Products Committees and Chair of the SAE/ICAO/IATA Council for Globalized Aircraft Deicing Standards. He holds a Ph.D. in Chemistry from McGill University and is a member of the Quebec Order of Chemists.

© 2019 Jacques Leroux
All rights reserved.
Guide to Aircraft Ground Deicing

Issue 12 – November 2019

This Guide¹ provides an introduction to aircraft ground deicing, a brief description of the standards² published by the SAE G-12 Aircraft Ground Deicing Committee and by other SAE Committees, guidance issued by regulators, the FAA, Transport Canada, EASA and ICAO, documents issued by aircraft manufacturers (e.g., Boeing), a list of abbreviations, an index³, flowcharts for the documents and a list of preferred words and expressions.

Table of Contents

Changes in Issue 12 .. 9
List of Indexed Documents... 11
Acknowledgments for Issue 12 .. 14
Abbreviations and Acronyms ... 15
Introduction .. 21
PART ONE: THE AIRCRAFT DEICING DOCUMENTS .. 31
Documents Issued by SAE... 31
AIR6232 Aircraft Surface Coating Interaction with Aircraft Deicing/Anti-Icing Fluids 31
ARP6852C Methods and Processes for Evaluation of Aerodynamic Effects of SAE-Qualified Aircraft Ground Deicing/Anti-icing Fluids .. 34
AS5900C Standard Test Method for Aerodynamic Acceptance of AMS1424 and AMS1428 Aircraft Deicing/Anti-icing Fluids .. 37
AS5901D Water Spray and High Humidity Endurance Test Methods for SAE AMS1424 and SAE AMS1428 Aircraft Deicing/Anti-icing Fluids ... 39
AMS1424P Fluid, Aircraft Deicing/Anti-Icing, SAE Type I ... 41

¹ To receive updates of this Guide to Aircraft Ground Deicing (Guide) or to send comments, please communicate with Jacques Leroux, jleroux@dow.com. This Guide is available online: <https://www.sae.org/works/committeeHome.do?comtID=TEAG12ADF>.
² This document is up-to-date as of November 15, 2019.
³ Citations and titles are quoted with original spelling, but keywords and index words use United States English spelling.
AMS1424/1 Deicing/Anti-Icing Fluid, Aircraft SAE Type I Glycol (Conventional and Non-Conventional) Based ... 48
AMS1424/2 Deicing/Anti-Icing Fluid, Aircraft SAE Type I Non-Glycol Based 48
AMS1428K Fluid, Aircraft Deicing/Anti-Icing, Non-Newtonian, SAE Types II, III, and IV .. 49
AMS1428/1 Fluid, Aircraft Deicing/Anti-icing, Non-Newtonian (Pseudoplastic), SAE Type II, III and IV Glycol (Conventional and Non-Conventional) Based ... 57
AMS1428/2 Fluid, Aircraft Deicing/Anti-icing, Non-Newtonian (Pseudoplastic), SAE Type II, III and IV Non-Glycol Glycol Based .. 58
AS9968 Laboratory Viscosity Measurement of Thickened Aircraft Deicing/Anti-icing Fluids with the Brookfield LV Viscometer .. 58
AIR5704 Field Viscosity Test for Thickened Aircraft Anti-Icing Fluids ... 59
Documents Issued by the SAE G-12 Holdover Time Committee .. 61
ARP6207 Qualification Required for SAE Type I Aircraft Deicing/Anti-icing Fluids 61
ARP5945A Endurance Time Tests for SAE Type I Aircraft Deicing/Anti-icing Fluids 65
ARP5718B Qualifications Required for SAE Type II/III/IV Aircraft Deicing/Anti-icing Fluids .. 68
ARP5485B Endurance Time Test Procedures for SAE Type II/III/IV Aircraft Deicing/Anti-icing Fluids .. 74
AS5681B Minimum Operational Performance Specification for Remote On-Ground Ice Detection Systems .. 76
Documents Issued by the SAE G-12 Methods Committee .. 81
AS6285C Aircraft Ground Deicing/Anti-Icing Processes .. 81
ARP6257 Aircraft Ground De/Anti-icing Communication Phraseology for Flight and Ground Crews .. 96
AS5537 Weather Support to Deicing Decision Making (WSDMM) Winter Weather Nowcasting System .. 97
Documents Issued by the SAE G-12 Deicing Facilities Committee 99
ARP5660A Deicing Facility Operational Procedures ... 99
ARP4902C Design of Aircraft Deicing Facilities .. 101
AS5635 Message Boards (Deicing Facilities) ... 106
Documents Issued by the SAE G-12 Equipment Committee .. 107
ARP1971D Aircraft Deicing Vehicle - Self-Propelled .. 107
AIR6284 Forced Air or Forced Air/Fluid Equipment for Removal of Frozen Contaminants .. 109
ARP5058A Enclosed Operator’s Cabin for Aircraft Ground Deicing Equipment 110
Documents Issued by the SAE G-12 Training and Quality Control Committee 111
<table>
<thead>
<tr>
<th>Document Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS6286A Aircraft Ground Deicing/Anti-Icing Training and Qualification Program</td>
<td>111</td>
</tr>
<tr>
<td>AS6332 Aircraft Ground Deicing/Anti-icing Quality Management</td>
<td>125</td>
</tr>
<tr>
<td>Documents Issued by Regulators</td>
<td>131</td>
</tr>
<tr>
<td>FAA Notice N 8900.525 Revised FAA–Approved Deicing Program Updates, Winter 2019–2020</td>
<td>131</td>
</tr>
<tr>
<td>FAA Holdover Time Guidelines Winter 2019-2020, Revision 1.0: August 19, 2019</td>
<td>143</td>
</tr>
<tr>
<td>FAA Advisory Circular AC 120-60B Ground Deicing and Anti-icing Program</td>
<td>146</td>
</tr>
<tr>
<td>FAA Advisory Circular AC 120-112 Use of Liquid Water Equivalent System to Determine Holdover Times or Check times of Anti-icing Fluids</td>
<td>148</td>
</tr>
<tr>
<td>FAA Advisory Circular AC 150/5300-14C Design of Aircraft Deicing Facilities</td>
<td>150</td>
</tr>
<tr>
<td>FAA Policy Statement: Type Certification Policy for Approval of Use of Type II, III, and IV Deicing/Anti-icing Fluids on Airplanes Certificated Under 14 CFR Parts 23 and 25, Policy No: PS-ACE-23-05, PS-ANM-25-10</td>
<td>154</td>
</tr>
<tr>
<td>Documents Issued by Transport Canada</td>
<td>157</td>
</tr>
<tr>
<td>Transport Canada Holdover Time Guidelines Winter 2019-2020, Original Issue: August 6, 2019</td>
<td>157</td>
</tr>
<tr>
<td>Transport Canada Holdover Time (HOT) Guidelines Regression Information Winter 2019-2020 Issue: August 6, 2019</td>
<td>159</td>
</tr>
<tr>
<td>Transport Canada Civil Aviation Safety Alert CASA 2019-09 Use of SAE Type I Fluids as an Anti-icing Fluid, Issue 1</td>
<td>160</td>
</tr>
<tr>
<td>Transport Canada Advisory Circular AC 700-030 Electronic Holdover Time (eHOT) Applications</td>
<td>160</td>
</tr>
<tr>
<td>Transport Canada Guidelines for Aircraft Ground Icing Operations TP 14052E, Fourth Edition</td>
<td>161</td>
</tr>
<tr>
<td>Transport Canada Exemption from Sections 1.0, 3.0, 6.0, 6.2 and 7.111 of Standard 622.11 Ground Icing Operations Made Pursuant for Subsection 602.11(4) of the Canadian Aviation Regulations</td>
<td>179</td>
</tr>
<tr>
<td>Barry B. Myers, Aircraft Anti-icing Fluid Endurance, Holdover, and Failure Times Under Winter Precipitations Conditions, Transportation Development Centre, Transport Canada, TP 13832, November 2001</td>
<td>180</td>
</tr>
<tr>
<td>Transport Canada Guidelines for Aeroplane Testing Following Deicing/Anti-icing Fluid Application, Working Note No. 38, Initial Issue</td>
<td>183</td>
</tr>
<tr>
<td>Transport Canada, Commercial and Business Aviation Inspection and Audit (Checklists) Manual, 1st ed, TP 13750E</td>
<td>185</td>
</tr>
<tr>
<td>Documents Issued by EASA</td>
<td>187</td>
</tr>
</tbody>
</table>
EASA GM1 CAT.OP.MPA.250 Ice and Other Contaminants – Ground Procedures: Terminology ... 188
EASA GM2 CAT.OP.MPA.250 Ice and Other Contaminants – Ground Procedures: De-icing/Anti-icing Procedures ... 189
EASA GM3 CAT.OP.MPA.250 Ice and Other Contaminants – Ground Procedures: De-icing/Anti-icing Background Information ... 190
Documents Issued by ICAO ... 193
 ICAO Doc 9640-AN/940 Manual of Aircraft Ground De-icing/Anti-icing Operations, 3 ed (advance unedited) .. 193
Documents Issued by Boeing ... 201
 Haruiko Oda . et al, Safe Winter Operations ... 201
PART TWO: THE RUNWAY DEICING DOCUMENTS .. 205
Documents Issued by the SAE G-12 Runway Deicing Products Committee 205
 AMS1431E Solid Runway Deicing/Anti-icing Product ... 205
 AMS1435D Liquid Runway Deicing Product .. 207
 AIR6130A Cadmium Plate Cyclic Corrosion Test .. 209
 AIR6170A Ice Melting Test Method for Runways and Taxiways Deicing/Anti-icing Chemicals .. 210
 AIR6172A Ice Undercutting Test Method for Runways and Taxiways Deicing/Anti-icing Chemicals .. 211
 AIR6211A Ice Penetration Test Method for Runways and Taxiways Deicing/Anti-Icing Chemicals .. 212
Documents Issued by the SAE A-5A Wheels, Brakes and Skid Control Committee 212
 AIR5490A Carbon Brake Contamination and Oxidation .. 212
 AIR5567A Test Method for Catalytic Brake Oxidation ... 217
Documents Issued by SAE G-15 Airport Snow and Ice Control ... 219
 AMS1448B Sand, Airport Snow and Ice Control .. 219
Documents Issued by the FAA .. 219
 FAA Special Airworthiness Information Bulletin SAIB NM-08-27R1 Landing gear: Catalytic Oxidation of Aircraft Carbon Brakes due to Runway De-icing (RDI) Fluids 219
Documents Issued by Transport Canada... 220
Table of Contents

Transport Canada, Catalytic Oxidation of Aircraft Carbon Brakes due to Runway De-icing (RDI) Fluids, Service Difficulty Advisory AV-2009-03 ... 220

Documents Issued by EASA .. 221

EASA Safety Information Bulletin SIB No.: 2018-01 Information on Materials Used for Runway and Taxiway De/Anti-icing.. 221

EASA Safety Information Bulletin SIB No.: 2008-19R2 Catalytic Oxidation of Aircraft Carbon Brakes due to Runway De-icers .. 222

EASA AMC1 ADR.OPS.C010 Pavements, Other Ground Surfaces, and Drainage 223

Documents Issued by Boeing ... 224

Michael Arriaga, Effects of Alkali Metal Runway Deicers on Carbon Brakes 224

Frequently Asked Questions ... 227

1. What are the differences between the FAA and Transport Canada (TC) Holdover Time Guidelines? .. 227
2. When does any SAE standard (AMS, AS, ARP, AIR) become effective? 228
3. Does a manufacturer need to retest to all the technical requirements according the latest version of the Aerospace Material Specification (AMS)? ... 228
4. Is it necessary to wait for the result of the long term stability test before offering for sale a product according to a given AMS specification? ... 228
5. Can a purchaser waive a requirement? ... 228
6. Are residual fluid and fluid residue the same? ... 229

List of Preferred Words and Expressions .. 230

Index ... 235

Figure 1 Aircraft Deicing Documents .. 233
Figure 2 Runway Deicing Documents ... 234

Table 1 Correspondence of Obsolete SAE Standards and Global Aircraft Deicing Standards.... 29
Changes in Issue 12

I had planned for the next issue of the Guide to Aircraft Ground Deicing for February 2020. But, the FAA revised its Holdover Time Guidelines Winter 2019-2020 on August 19, 2019 and its guidance material as well on October 7, 2019; Transport Canada issued a Civil Aviation Safety Alert on the use of Type I on November 15, 2019. I thought it would be important readers to be aware of these changes and to update the Guide now (November 2019).

These revised documents replace the earlier published documents:

- FAA Notice N 8900.525 Revised FAA–Approved Deicing Program Updates, Winter 2019–2020
- FAA Holdover Time Guidelines Winter 2019-2020, Revision 1.0: August 19, 2019
- SAE AS5901D Water Spray and High Humidity Endurance Test Methods for SAE AMS1424 and SAE AMS1428 Aircraft Deicing/Anti-icing Fluids

The following document was indexed for the first time:

- Transport Canada, Civil Aviation Safety Alert CASA 2019-09 Use of SAE Type I Fluids as an Anti-icing Fluid, Issue 1, November 15, 2019

The following frequently asked questions were added:

- When does any SAE standard (AMS, AS, ARP, AIR) become effective?
- Does a manufacturer need to retest to all the technical requirements according the latest version of the Aerospace Material Specification (AMS)?
- Is it necessary to wait for the result of the long term stability test before selling a product according to a given AMS specification?
- Can a purchaser waive a requirement?
- Are residual fluid and fluid residue the same?

Jacques Leroux

November 20th, 2019
List of Indexed Documents

Arriaga, Michael, Effects of Alkali Metal Runway Deicers on Carbon Brakes, Boeing
EASA AMC1 ADR.OPS.C010 Pavements, Other Ground Surfaces, and Drainage
EASA GM1 CAT.OP.MPA.250 Ice and Other Contaminants – Ground Procedures: Terminology
EASA GM2 CAT.OP.MPA.250 Ice and Other Contaminants – Ground Procedures: De-icing/Anti-icing
EASA GM3 CAT.OP.MPA.250 Ice and Other Contaminants – Ground Procedures: De-icing/Anti-icing
Airframe De-Icing Fluids on Anti-Icing Holdover Protection and Potential Aircraft Corrosion
EASA Safety Information Bulletin No.: 2017-11 Global De-icing Standards
EASA Safety Information Bulletin SIB No.: 2008-19R2 Catalytic Oxidation of Aircraft Carbon Brakes
due to Runway De-icers, April 23, 2013
EASA Safety Information Bulletin SIB No.: 2018-01 Information on Materials Used for Runway and
Taxiway De/Anti-icing
FAA Advisory Circular AC 120-112 Use of Liquid Water Equivalent System to Determine Holdover
Times or Check times of Anti-icing Fluids, July 14, 2015.
FAA Advisory Circular AC 120-60B Ground Deicing and Anti-icing Program, December 20, 2004
FAA Holdover Time Guidelines Winter 2019-2020, Revision 1.0: August 19, 2019
FAA Holdover Time Regression Guidelines Information, Winter 2019-2020 – Original Issue: August 6,
2020
FAA Notice N 8900.525 Revised FAA–Approved Deicing Program Updates, Winter 2019–2020
FAA Policy Statement: Type Certification Policy for Approval of Use of type II, III, and IV
Deicing/Anti-icing Fluids on Airplanes Certificated Under 14 CFR Parts 23 and 25, Policy No: PS-
ACE-23-05, PS-ANM-25-10, May 3, 2015
FAA Special Airworthiness Information Bulletin SAIB NM-08-27R1 Landing gear: Catalytic Oxidation
of Aircraft Carbon Brakes due to Runway De-icing (RDI) Fluids, December 31, 2008
unedited, 2018
Myers, Barry B., Aircraft Anti-icing Fluid Endurance, Holdover, and Failure Times Under Winter
Precipitations Conditions, Transportation Development Centre, Transport Canada, TP 13832,
November 2001
Oda, Haruiko et al, Safe Winter Operation, Boeing
SAE AIR5490A Carbon Brake Contamination
SAE AIR5567A Test Method for Catalytic Brake Oxidation
SAE AIR5704 Field Viscosity Test for Thickened Aircraft Anti-Icing Fluids
SAE AIR6130A Cadmium Plate Cyclic Corrosion Test
SAE AIR6170A Ice Melting Test Method for Runways and Taxiways Deicing/Anti-icing Chemicals
SAE AIR6172A Ice Undercutting Test Method for Runways and Taxiways Deicing/Anti-icing Chemicals
SAE AIR6211A Ice Penetration Test Method for Runways and Taxiways Deicing/Anti-icing Chemicals
SAE AIR6232 Aircraft Surface Coating Interaction with Aircraft Deicing/Anti-Icing Fluids
SAE AIR6284 Forced Air or Forced Air/Fluid Equipment for Removal of Frozen Contaminants
SAE AMS1424/1 Deicing/Anti-icing Fluid, Aircraft SAE Type I Glycol (Conventional and Non-
Conventional) Based
SAE AMS1424/2 Deicing/Anti-icing Fluid, Aircraft SAE Type I Non-glycol Based
SAE AMS1424P Fluid, Aircraft Deicing/Anti-icing, SAE Type I
SAE AMS1428/1 Fluid, Aircraft Deicing/Anti-icing, Non-Newtonian (Pseudoplastic), SAE Type II, III and IV Glycol (Conventional and Non-Conventional) Based
SAE AMS1428/2 Fluid, Aircraft Deicing/Anti-icing, Non-Newtonian (Pseudoplastic), SAE Type II, III and IV Non-Glycol Glycol Based
SAE AMS1428K Fluid, Aircraft Deicing/Anti-icing, Non-Newtonian (Pseudoplastic), SAE Types II, III, and IV
SAE AMS1431E Solid Runway Deicing/Anti-Icing Product
SAE AMS1435D Liquid Runway Deicing/Anti-icing Product
SAE AMS1448B Sand, Airport Snow and Ice Control
SAE ARP1971D Aircraft Deicing Vehicle - Self-Propelled
SAE ARP4902C Design of Aircraft Deicing Facilities
SAE ARP5058A Enclosed Operator’s Cabin for Aircraft Ground Deicing Equipment
SAE ARP5485B Endurance Time Test Procedures for SAE Type II/III/IV Aircraft Deicing/Anti-icing Fluids
SAE ARP5660A Deicing Facility Operational Procedures
SAE ARP5718B Qualifications Required for SAE Type II/III/IV Aircraft Deicing/Anti-icing Fluids
SAE ARP5945A Endurance Time Tests for SAE Type I Aircraft Deicing/Anti-icing Fluids
SAE ARP6207 Qualification Required for SAE Type I Aircraft Deicing/Anti-icing Fluids
SAE ARP6257 Aircraft Ground De/Anti-icing Communication Phraseology for Flight and Ground Crews
SAE ARP6852C Methods and Processes for Evaluation of Aerodynamic Effects of SAE-Qualified Aircraft Ground Deicing/Anti-icing Fluids
SAE AS5537 Weather Support to Deicing Decision Making (WSDMM) Winter Weather Nowcasting System
SAE AS5635 Message Boards (Deicing Facilities)
SAE AS5681B Minimum Operational Performance Specification for Remote On-Ground Ice Detection Systems
SAE AS5901D Water Spray and High Humidity Endurance Test Methods for SAE AMS1424 and SAE AMS1428 Aircraft Deicing/Anti-icing Fluids
SAE AS6285C Aircraft Ground Deicing/Anti-icing Processes
SAE AS6286A Training and Qualification Program for Deicing/Anti-icing of Aircraft on the Ground
SAE AS6332 Aircraft Ground Deicing/Anti-icing Quality Management
SAE AS9968 Laboratory Viscosity Measurement of Thickened Aircraft Deicing/Anti-icing Fluids with the Brookfield LV Viscometer
Transport Canada Advisory Circular AC 700-030 electronic Holdover Time (eHOT) Applications, November 18, 2014
Transport Canada Civil Aviation Safety Alert CASA 2019-09 Use of SAE Type I Fluids as an Anti-icing Fluid, Issue 1, November 15, 2019
Transport Canada Commercial and Business Aviation Inspection and Audit (Checklists) Manual, 1st ed, TP 13750E, October 2000
Transport Canada Exemption from Sections 1.0, 3.0, 6.0, 6.2 and 7.111 of Standard 622.11 Ground Icing Operations Made Pursuant for Subsection 602.11(4) of the Canadian Aviation Regulations
Transport Canada Guidelines for Aeroplane Testing Following Deicing/Anti-icing Fluid Application, Working Note No. 38, Initial Issue, October 5, 2010
Transport Canada Guidelines for Aircraft Ground Icing Operations, TP 14052E, 4th ed, August 2019
Acknowledgments for Issue 12

Many, including Michael Arriaga, Randy Baker, Jean-Denis Brassard, Stephanie Bendickson, Yvan Chabot, Paul Claus, Kevin Connor, Lynn Davies, John D'Avirro, Ken Eastman, Chuck Enders, Guillermo Felix, Alberto Fernandez-Lopez, Kevin Flick, John Hammer, Mike Hanlon, Brad Hubbell, Jacob Klain, Antoine Lacroix, Carlton Lambiasi, George Legarreta, Ed Lim, Graham Morgan, Brody Russell, Detlef Schulz, Ian Sharkey, Jacqueline Teres, Alun Williams, and Roger Zbinden made helpful suggestions or provided information to improve this Guide. Thank you.

Special thanks are due to Stephanie Bendickson and Antoine Lacroix for providing information on the differences between the FAA and Transport Canada Holdover Time Guidelines and to Yvan Chabot for providing the Transport Canada Regression Analysis document.
Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4A</td>
<td>Airlines for America</td>
</tr>
<tr>
<td>A4E</td>
<td>Airlines for Europe</td>
</tr>
<tr>
<td>AAF</td>
<td>aircraft anti-icing fluid</td>
</tr>
<tr>
<td>AARTF</td>
<td>Transport Canada, Standards Branch, Commercial Flight Standards</td>
</tr>
<tr>
<td>AAT</td>
<td>aerodynamic acceptance test</td>
</tr>
<tr>
<td>AC</td>
<td>Advisory Circular (FAA and Transport Canada)</td>
</tr>
<tr>
<td>ACARS</td>
<td>Aircraft Communications Addressing and Reporting System</td>
</tr>
<tr>
<td>ADF</td>
<td>aircraft deicing fluid</td>
</tr>
<tr>
<td>ADF/AAF</td>
<td>aircraft deicing/anti-icing fluid</td>
</tr>
<tr>
<td>AEA</td>
<td>Association of European Airlines</td>
</tr>
<tr>
<td>AFM</td>
<td>Aircraft Flight Manual</td>
</tr>
<tr>
<td>AGIP</td>
<td>approved ground icing program (Transport Canada)</td>
</tr>
<tr>
<td>AFS</td>
<td>Flight Standard Service (FAA)</td>
</tr>
<tr>
<td>AIP</td>
<td>Aeronautical Information Publication</td>
</tr>
<tr>
<td>AIR</td>
<td>Aerospace Information Report (SAE)</td>
</tr>
<tr>
<td>aka</td>
<td>also known as</td>
</tr>
<tr>
<td>AMC</td>
<td>Acceptable Means of Compliance (EASA)</td>
</tr>
<tr>
<td>AMIL</td>
<td>Anti-icing Materials International Laboratory</td>
</tr>
<tr>
<td>AMM</td>
<td>Aircraft Maintenance Manual</td>
</tr>
<tr>
<td>AMS</td>
<td>Aerospace Material Specification (SAE)</td>
</tr>
<tr>
<td>AO</td>
<td>anti-oxidant</td>
</tr>
<tr>
<td>AO</td>
<td>air operator (Transport Canada)</td>
</tr>
<tr>
<td>AOA</td>
<td>angle-of-attack</td>
</tr>
<tr>
<td>AOM</td>
<td>Aircraft Operating Manual</td>
</tr>
<tr>
<td>AOS</td>
<td>alkali organic salt</td>
</tr>
<tr>
<td>app</td>
<td>application (electronic)</td>
</tr>
<tr>
<td>APU</td>
<td>auxiliary power unit</td>
</tr>
<tr>
<td>ARC</td>
<td>Advisory Rulemaking Committee (FAA)</td>
</tr>
<tr>
<td>ARP</td>
<td>Aerospace Recommended Practice (SAE)</td>
</tr>
<tr>
<td>AS</td>
<td>Aerospace Standard (SAE)</td>
</tr>
<tr>
<td>ASDE</td>
<td>airport surface detection equipment</td>
</tr>
<tr>
<td>ASOS</td>
<td>automated surface observing system</td>
</tr>
<tr>
<td>ASR</td>
<td>airport surveillance radar</td>
</tr>
<tr>
<td>AST</td>
<td>above ground storage tank</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing Materials</td>
</tr>
<tr>
<td>ATCT</td>
<td>air traffic control tower</td>
</tr>
<tr>
<td>ATC TWR</td>
<td>air traffic control tower</td>
</tr>
<tr>
<td>ATC</td>
<td>Air Traffic Control</td>
</tr>
<tr>
<td>ATM</td>
<td>Air Traffic Management (ICAO)</td>
</tr>
<tr>
<td>ATOS</td>
<td>Air Transportation Oversight System (US)</td>
</tr>
<tr>
<td>AWOS</td>
<td>Automatic Weather Observation System</td>
</tr>
<tr>
<td>ATS</td>
<td>air traffic services</td>
</tr>
<tr>
<td>BAe</td>
<td>British Aerospace</td>
</tr>
</tbody>
</table>
BFU Bundstelle für Flugunfalluntersuchung
BLDT boundary layer displacement thickness
BOD biochemical oxygen demand
C of C certificate of conformance
C Celsius
c circa (approximately)

CA A Civil Aviation Authority
CAAC Civil Aviation Administration of China
CAC clean aircraft concept
CAR Canadian Aviation Regulation
CASA Civil Aviation Safety Alert (Transport Canada)
CASI Civil Aviation Safety Inspector (Transport Canada)
CASS Commercial Air Service Standard (Transport Canada)
CBA Canadian Business Aviation
CBDS computer based deicing simulator
CBT computer-based training
CCME Canadian Council of Ministers of the Environment
CDF centralized deicing facility
CEPA Canadian Environmental Protection Act
CFR Code of Federal Regulations (US)
CFS Commercial Flight Standards (Transport Canada)
CLmax 3D maximum lift coefficient
CML Consumable Materials List (Airbus)
COD chemical oxygen demand
COHSR Canadian Occupational Health and Safety Regulations
CSA Canadian Standard Association
CSFF cold soaked fuel frost
CT check time
CTDS check time determination system
DAQCP Deicing/Anti-icing Quality Control Pool (IATA)
DCT data collection tool (FAA)
DDF designated deicing facility
DEG diethylene glycol
DIS deicing supervisor
DME distance measuring equipment
DO dissolved oxygen
EASA European Aviation Safety Agency
EFB electronic flight bag
EG ethylene glycol
eHOT app electronic holdover time application
eHOT electronic holdover time
e-learning electronic learning
EMB electronic message board
ERP emergency response plan
ET endurance time

4 German Federal Bureau of Aircraft Accident Investigation.
Abbreviations and Acronyms

EU European Union
EUROCAE European Organization for Civil Aviation Equipment
FAA Federal Aviation Administration, United States Department of Transportation
FAQ frequently asked questions
FAS forced air system
FBO fixed base operator
FCOM Flight Crew Operation Manual
FMH-1 Federal Meteorological Handbook No. 1, Surface Weather Observations and Reports (US)
FOD foreign object damage
FPD freezing point depressant
FMVSS Federal Motor Vehicle Safety Standard
FSDO Flight Standards District Office (FAA)
FSIMS Flight Standard Information Management System (FAA)
G-12 ADF G-12 Aircraft Deicing Fluid Committee (SAE)
G-12 AWG G-12 Aerodynamics Working Group (SAE)
G-12 DF G-12 Deicing Facility Committee (SAE)
G-12 E G-12 Equipment Committee (SAE)
G-12 FG G-12 Future Technology Committee (SAE)
G-12 HOT G-12 Holdover Time Committee (SAE)
G-12 M G-12 Methods Committee (SAE)
G-12 RDP G-12 Runway Deicing Product Committee (SAE)
G-12 RWG G-12 Rotorcraft Ground Deicing Working Group (SAE)
G-12 Steering G-12 Steering Group (SAE)
G-12 T G-12 Training and Quality Control Committee (SAE)
GAC glycerine acetate
GIDS ground ice detection system
GIP Ground Icing Program (FAA and Transport Canada)
GM Guidance Material (EASA)
GMP glycol management plan
GOFRS General Operating and Flight Rules Standards (Transport Canada)
GosNII GA State Institute of Civil Aviation (Russia)
GPU ground power unit
GRV glycol recovery vehicle
GTAA Greater Toronto Airport Authority
GUI graphical user interface
HHET high humidity endurance test
HOT holdover time
HOTDR holdover time determination report
HOTDS holdover time determination system
HOWV highest on-wing viscosity
HQ Headquarters (FAA)
HRDC Human Resources Department Canada
HSR high speed ramp
HUPR highest usable precipitation rate
IAC Interstate Aviation Committee
Glossary

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICA</td>
<td>Instructions for Continued Airworthiness (FAA)</td>
</tr>
<tr>
<td>ICAO</td>
<td>International Civil Aviation Organization</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>JAR</td>
<td>Joint Aviation Authorities (European Union)</td>
</tr>
<tr>
<td>JCAB</td>
<td>Japan Civil Aviation Bureau</td>
</tr>
<tr>
<td>KAC</td>
<td>potassium acetate</td>
</tr>
<tr>
<td>KCAS</td>
<td>knots calibrated airspeed</td>
</tr>
<tr>
<td>KFOR</td>
<td>potassium formate</td>
</tr>
<tr>
<td>LAAT</td>
<td>lowest acceptable aerodynamic temperature</td>
</tr>
<tr>
<td>LOUT</td>
<td>lowest operational use temperature</td>
</tr>
<tr>
<td>LOWV</td>
<td>lowest on-wing viscosity</td>
</tr>
<tr>
<td>LUPR</td>
<td>lowest usable precipitation rate</td>
</tr>
<tr>
<td>LSR</td>
<td>low speed ramp</td>
</tr>
<tr>
<td>LWE</td>
<td>liquid water equivalent</td>
</tr>
<tr>
<td>LWES</td>
<td>liquid water equivalent system</td>
</tr>
<tr>
<td>MANOBS</td>
<td>Manual of Surface Weather Observations (Environment Canada)</td>
</tr>
<tr>
<td>METAR</td>
<td>Meteorological Terminal Aviation Routine Weather Report</td>
</tr>
<tr>
<td>METREP</td>
<td>meteorological report</td>
</tr>
<tr>
<td>MLIT</td>
<td>Ministry of Land, Infrastructure, Transportation and Tourism (Japan)</td>
</tr>
<tr>
<td>MOPS</td>
<td>minimum operational performance specification</td>
</tr>
<tr>
<td>MOWV</td>
<td>maximum on-wing viscosity<sup>5</sup></td>
</tr>
<tr>
<td>MSDS</td>
<td>material safety data sheet</td>
</tr>
<tr>
<td>MSR</td>
<td>mid speed ramp</td>
</tr>
<tr>
<td>NAA</td>
<td>national aviation authorities</td>
</tr>
<tr>
<td>NAAC</td>
<td>sodium acetate</td>
</tr>
<tr>
<td>NAFO</td>
<td>sodium formate</td>
</tr>
<tr>
<td>NCAR</td>
<td>National Center for Atmospheric Research</td>
</tr>
<tr>
<td>NCG</td>
<td>non-conventional glycol</td>
</tr>
<tr>
<td>NDT</td>
<td>non-destructive testing</td>
</tr>
<tr>
<td>NG</td>
<td>non-glycol</td>
</tr>
<tr>
<td>NOTAM</td>
<td>notice to airmen</td>
</tr>
<tr>
<td>NTO</td>
<td>no technical objection</td>
</tr>
<tr>
<td>NTSB</td>
<td>National Transportation Safety Board (US)</td>
</tr>
<tr>
<td>OACI</td>
<td>Organisation de l’aviation civile internationale (ICAO)</td>
</tr>
<tr>
<td>OAT</td>
<td>outside air temperature</td>
</tr>
<tr>
<td>OEM</td>
<td>original equipment manufacturer</td>
</tr>
<tr>
<td>OFA</td>
<td>object free area</td>
</tr>
<tr>
<td>OFZ</td>
<td>obstacle free zone</td>
</tr>
<tr>
<td>OOS</td>
<td>out-of-service</td>
</tr>
<tr>
<td>OSH</td>
<td>occupational safety and health</td>
</tr>
<tr>
<td>p</td>
<td>page (plural pp)</td>
</tr>
<tr>
<td>Pa</td>
<td>Pascal</td>
</tr>
<tr>
<td>PANS</td>
<td>Procedure for Air Navigation Services (ICAO)</td>
</tr>
</tbody>
</table>

⁵ MOWV stands for maximum on-wing viscosity. HOWV stands for highest on-wing viscosity. There are synonymous. The use of HOWV is preferred because there is a risk of confusion with the MOWV which could erroneously thought of as minimum on-wing viscosity.
Abbreviations and Acronyms

par paragraph
PG propylene glycol
PIB product information bulletin
PIC pilot-in-command
POI Principal Operations Inspector (FAA and Transport Canada)
POTW Publicly Owned Treatment Works (US)
PPE personal protective equipment
PRI Performance Review Institute
PTO power takeoff (for deicing units)
QA quality assurance
QAP quality assurance program
QC quality control
QMS quality management system
RDF runway deicing fluid
RDIMS records, documents, and information management system (Canada)
RDP runway deicing product
RH relative humidity
RI refractive index
RMK remark
RMSE root mean square error
RMT rule making task (EASA)
ROGIDS remote on-ground ice detection systems
RPZ runway protection zone
RSA runway safety area
RVR runway visibility range
s second(s)
ss section (plural ss)
SAE Society of Automotive Engineers
SAIB Special Airworthiness Information Bulletin (FAA)
SAS Safety Assurance System (US)
SCOUIC Standing Committee on Operations Under Icing Conditions (Transport Canada)
SD Safety Directive (EASA)
SDS safety data sheet
SHRP Strategic Highway Research Program (US)
SIAGDP Standardized International Aircraft Ground Deicing Program
SIB Safety Information Bulletin (EASA)
SLD supercooled large droplets
SMI Scientific Materials International
SMS safety management system
SNOWTAM snow warning to airmen
SOP standard operation procedure
SP service provider
SPECI aviation special weather report
STP standard teaching plan
TAF Terminal Aerodrome Forecast
TAT total air temperature
TC Transport Canada
TCCA Transport Canada Civil Aviation
TOD total oxygen demand
TODR takeoff distance required
TP Transport Canada publication
TSA taxi safety area
TSS total suspended solids
Type I SAE AMS1424 Type I Aircraft Deicing/Anti-icing Fluid
Type II SAE AMS1428 Type II Aircraft Deicing/Anti-icing Fluid
Type III SAE AMS1428 Type III Aircraft Deicing/Anti-icing Fluid
Type IV SAE AMS1428 Type IV Aircraft Deicing/Anti-icing Fluid
US United States of America
UST underground storage tank
UV ultraviolet
v versus
V1 takeoff decision speed
V2 takeoff safety speed
Vlof lift-off speed
Vmu minimum unstick speed
VOR very high frequency omni range
Vr rotation speed
Vs start up velocity
Vsig 1-g stall speed
VSR vehicle service road
VSZ vehicle safety zone
VTP vertical tail plane
VCS very cold snow
VVFCS very very cold snow
WG Working Group (SAE)
WHMIS Workplace Hazardous Materials Information System (Canada)
WMO World Meteorological Organization
WSET water spray endurance test
Introduction

Objective. Over the years, documentation on aircraft ground deicing has increased considerably. Those less familiar with the documentation, and even those familiar with the field, sometimes, find it difficult to find specific information in authoritative documentation. The purpose of this document is to index the available current documentation and make it easier to find specific information related to aircraft ground deicing.

Accidents. Accidents occur when there is a) undetected contamination, b) detected contamination but ignored, c) undetected contamination after deicing, d) fluid failure after deicing, e) engine icing after deicing (very costly), f) improper procedures and g) systemic errors. “Improper procedures” is a catch all category encompassing, for example, miscommunications. For instance, if strict communication protocols between flightcrew and ground crew are not implemented, an aircraft can start to taxi with its perimeter not clear resulting in collision with deicing vehicles. This appears innocuous, but fatalities have occurred upon collision between aircraft and deicing vehicles. Below is short description of selected key accidents which changed the way industry deals with ground deicing issues.

Air Florida Flight 90. On January 13, 1982, after a takeoff run with adhering snow and ice to the aircraft, Air Florida Flight 90 hit the 14th Street Bridge near Washington National Airport. It plunged in the Potomac River killing 69. The NTSB conclusions were:

The National Transportation Safety Board determines that the probable cause of this accident was the flightcrew’s failure to use engine anti-ice during ground operation and takeoff, their decision to take off with snow/ice on the airfoil surfaces of the aircraft, and the captain’s failure to reject the takeoff during the early stage when his attention was called to anomalous engine instrument readings. Contributing to the accident were the prolonged ground delay between deicing and the receipt of ATC takeoff clearance during which the airplane was exposed to continual precipitation, the known inherent pitchup characteristics of the B-737 aircraft when the leading edge is contaminated with even small amounts of snow or ice, and the limited experience of the flightcrew in jet transport winter operations.6

NTSB recommendation A-82-9 read as follows:

Immediately require flightcrews to visually inspect wing surfaces before takeoff if snow or precipitation is in progress and the time elapsed since either deicing or the last confirmation that the surfaces were clear exceeds 20 minutes to ensure compliance with 14 CFR121.629(b) which prohibits takeoff if ice, snow or frost is adhering to the wings or control surfaces.

FAA’s response to recommendation A-82-9 was that reference to such a time as 20 minutes was “not in the best interest of aviation” as ice could form in shorter period.

As a result of the Air Florida accident, R&D effort was accelerated to understand aircraft ground icing.

Two accidents in the late 1980’s and early 1990’s and the following in-depth investigations profoundly changed the way aircraft ground deicing is understood and performed.

The Dryden Accident. Air Ontario Flight 1363 Fokker F-28 aircraft crashed shortly after departure near Dryden, Ontario, on March 10, 1989. It was snowing that afternoon. The flightcrew did not request deicing. It attempted to takeoff with frozen contamination on the aircraft. Unable to gain altitude, the aircraft crashed killing 24 and injuring 69 on-board. This accident was the subject of a judicial commission of enquiry led by Justice Virgil P. Moshansky. Rather than satisfying himself with the immediate cause of the accident, pilot error, Justice Moshansky sought an understanding of the distant but effective causes of the accident. He launched what was to be a systemic approach to understanding the accident: a thorough analysis of the Canadian aviation system. He attributed the ultimate probable causes of the accident not only to pilot error but a systemic failure of the air transportation system. His recommendation number 167 reads as follows:

That Transport Canada actively participate in the research and development necessary to establish safety effectiveness measurement systems that will lead to

7 Ibid at p 83.
8 Ibid at p 84.
9 The Honorable Virgil P. Moshansky, Commission of Inquiry into the Air Ontario Crash at Dryden, Ontario: Final Report (Ottawa, Minister of Supply and Services, 1992), online: <http://lessonslearned.faa.gov/ll_main.cfm?TabID=1&LLID=31&LLTypeID=3> [Dryden].
the most efficient use of resources in assuring safety. Cooperation with the United States Federal Aviation Administration and other international groups should be encouraged and resourced to obtain the maximum and most expedient benefits from such programs.11

This incited Transport Canada to a) allocate significant resources to research and development, in close cooperation with the FAA, in the area of aircraft ground deicing and b) participate in the SAE G-12 Committees, resulting to the development of authoritative standards and guidance documentation. The report facilitated the use of anti-icing fluids in Canada by encouraging the regulator to provide the necessary technical evaluation and regulatory framework for their use at large airports across the country.

\textit{USAir Flight 405}. Three years after the Dryden accident, on March 22, 1992, another Fokker F-28 crashed at takeoff from LaGuardia Airport killing 27 due to ice accumulation on critical surfaces, 35 minutes following deicing with Type I fluid only. The National Transportation Safety Board, not unlike the Moshansky Inquiry, attributed probable cause of the accident to failure of the airlines industry and regulator to “to provide flightcrews with procedures, requirements, and criteria compatible with departure delays in conditions conducive to aircraft icing and the decision by the flightcrew to takeoff without positive assurance that the aircraft wings were free of ice accumulation after 35 minutes of exposure to precipitation following de-icing”.

Since 1993, use of anti-icing fluid has become much more prevalent. FAA, in cooperation with Transport Canada, has pursued vigorously the fundamental understanding of aircraft icing and the development and dissemination of guidance, such as the \textit{Holdover Time Guidelines}, and documentation related to aircraft ground deicing. FAA, like Transport Canada, exercises leadership positions in SAE G-12.

\textit{West Wind Flight 282, Fond-du-Lac, Saskatchewan}. On December 13, 2017, West Wind ATR 42 encountered icing upon descent. The aircraft was contaminated. Before takeoff, one of the pilots advised the other pilot that the aircraft had residual ice. No deicing was done. It took-off from Fond-du-Lac Airport and collided with trees 1400 feet from departure. One death. Ten serious

11 \textit{Dryden, supra} note 9 Vol. III at 1235.
injuries. A letter12 from the Transportation Safety Board of Canada to the Minister of Transport explains that even though deicing equipment was available at Fond-du-Lac, the deicing equipment was inadequate to effectively deicing an aircraft the size of an ATR-42. The letter recommends, \textit{inter alia}, to identify locations with inadequate deicing/anti-icing equipment and take corrective action at Canadian northern remote airports. The final report has not yet been issued.

\textit{Royal Air Maroc Collision at Montreal (Mirabel) Airport}. One should not think, that, in ground deicing, the only danger is frozen contamination on the aircraft. The Royal Air Maroc accident is a tragic example of what can go wrong in the deicing process itself. On January 21, 1995, the Royal Air Maroc 747-400 was parked at the deicing pad at Mirabel airport being deiced by a crew of Canadian Airlines International Ltd. The four engines were running. The flightcrew heard “dégivrage terminé” (deicing completed). The message was not intended for the flightcrew but for the deicing coordinator. The pilot attempted to communicate with the deicing crew without success. The Transportation Safety Board of Canada13 concluded that engine noise probably prevented the deicing crew from hearing the pilot. Radio-communication equipment was not designed for engines-on operations. Communications protocols with the ice crew, apron control and flightcrew were inadequate and engines-on deicing training was lacking. The perimeter of the aircraft was not clear. Two deicing vehicles were in front of the horizontal stabilizer of the aircraft. In the communication confusion, the aircraft started to taxi. It hit the deployed booms of the deicing vehicles. The deicing vehicles were overturned. The two deicing vehicle drivers sustained minor injuries. The three occupants of the deicing baskets fell from a height of 15 meters. The three sustained fatal injuries.

Near-misses have occurred at various airports since the Royal Air Maroc fatal accident.

\textit{Iberia IB 3195 Collision at Munich Airport}. In a sequence of events, uncannily similar to the Royal Air Maroc, a collision occurred at Munich airport, twenty-one years later, on January 20, 2016. The Iberia flightcrew was configuring the aircraft for deicing at a deicing pad. The copilot

12 Letter from Kathleen Fox, Chair of the TSB of Canada to The Honorable Marc Garneau, Minister of Transport, December 14, 2018, online: <http://www.tsb.gc.ca/eng/recommandations-recommendations/aviation/2018/rec-a1802-a1803.asp>

13 Transportation Safety Board of Canada, \textit{Aviation Occurrence Report, Collision with Vehicle, Royal Air Maroc Boeing 747-400 CN-RGA, Montreal (Mirabel) International Airport, Quebec, 21 January 1995}, Report Number A95Q0015, online: <http://www.bst-tsb.gc.ca/eng/rapports-reports/aviation/1995/a95q0015/a95q0015.asp>
Introduction

erroneously pushed the DISCH button on the cargo smoke panel discharging fire suppression product in the cargo hold. He should have pushed the DITCHING button on the cabin pressure panel to appropriately set the air conditioning units. With the fire suppressant discharged, the aircraft would not fly and did not need deicing anymore. The pilot conveyed to the deicing crew there was a technical problem and needed “to go back to the stand”. The ground crew understood there was a mechanical problem but did not understand the aircraft would not need deicing. There was communication confusion between the flightcrew and the deicing crew; standard phraseology was not used. Two deicing unit remained in position, ready to start deicing. Their booms were in front of the winglets. The perimeter was not clear. Iberia flight 3195 Airbus 320 began to taxi, hitting the booms, almost overturning the deicing units. No one was injured. The German Federal Bureau of Aircraft Accident Investigation (BFU)14 called it a serious accident.

\textit{Regulations.} Countries issue regulations prohibiting takeoff of aircraft contaminated with adhering frozen deposits. The regulations are enforced by National Aviation Authorities (NAA, also known as regulators) such as the United States Federal Aviation Administration (FAA)15, Transport Canada (TC)16, the Civil Aviation Administration of China (CAAC), the Japan Civil Aviation Bureau (JCAB) or supra national authorities such as the European Aviation Safety Agency (EASA).17

\textit{Guidance and advisory material.} The regulations prohibiting takeoff with frozen contamination require guidance material for compliance. Guidance and advisory material are issued by the

15 United States 14 CFR § 121.629 (b) “No person may take off an aircraft when frost, ice, or snow is adhering to the wings, control surfaces, propellers, engine inlets, or other critical surfaces of the aircraft or when the takeoff would not be in compliance with paragraph (c) of this section. Takeoffs with frost under the wing in the area of the fuel tanks may be authorized by the Administrator.”, online: \url{https://www.gpo.gov/fdsys/pkg/CFR-2007-title14-vol2/xml/CFR-2007-title14-vol2-sec121-629.xml}.

16 Canadian Aviation Regulations SOR/96-433, s. 602.11 (2) “No person shall conduct or attempt to conduct a take-off in an aircraft that has frost, ice or snow adhering to any of its critical surfaces”, online: \url{http://laws-lois.justice.gc.ca/eng/regulations/SOR-96-433/section-602.11-20140529.html}.

17 EASA CAT.OP.MPA.250 Ice and other contaminants — ground procedures
(a) The operator shall establish procedures to be followed when ground deicing and anti-icing and related inspections of the aircraft are necessary to allow the safe operation of the aircraft.
(b) The commander shall only commence take-off if the aircraft is clear of any deposit that might adversely affect the performance or controllability of the aircraft, except as permitted under (a) and in accordance with the AFM. online: \url{http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:296:0001:0148:EN:PDF}.
regulators (e.g., EASA, FAA, Transport Canada), ICAO18, IATA, IAC19 and aircraft manufacturers such as Boeing20 and Airbus.21

Holdover Time Guidelines. SAE Type I, II, III and IV fluids, during winter operations, provide a limited period of protection against frozen or freezing precipitations while the aircraft is on the ground. The protection time can be estimated using holdover time guidelines that are published by the FAA or Transport Canada. Holdover time guidelines are derived from laboratory test or outdoor test. The holdover time guidelines published by the FAA and Transport Canada differ slightly, usually in capping of the values. Both the FAA and Transport Canada holdover time values are derived from a unique set of endurance time data which is updated every year taking into consideration the latest laboratory and outdoor tests. The FAA and Transport Canada are the only organizations publishing holdover times and they do from that single set of data.

Standards. Detailed standards and recommended practices, including specifications for the fluids used for aircraft deicing and anti-icing, testing procedures, qualification processes, endurance time testing, methods for deicing and anti-icing, training and quality control are published by SAE International. These documents are created, maintained and updated by experts gathering under the auspices of the SAE G-12 Aircraft Ground Deicing Committee which works in close cooperation with the regulators. The FAA, Transport Canada, and more recently EASA, fund and perform icing research. The results are presented to the SAE G-12 members.

SAE G-12. The SAE G-12 Aircraft Ground Deicing Committee (SAE G-12) is comprised of 1) the Steering Group, 2) the Aircraft Deicing Fluid Committee (G-12 ADF), 3) the Holdover Time Committee (G-12 HOT)22, 4) the Methods Committee (G-12 M), 5) the Deicing Facility

19 E. Petrov et al., Methodical Recommendations: Airplane Protection from Icing Up on the Ground, Revision 3 (Moscow: IAC, September 2017), online: [link]
20 Haruiko Oda et al., “Safe Winter Operations”, (2010) Q4 Boeing Aeromagazine 6, online: [link]
21 Coming to Grips with Cold Weather Operations, AI/SRA007-01/00 (Toulouse: Airbus Industrie, 2000). For more recent information on Airbus procedures and qualified products (allowed materials) apply to Airbus for access to Airbus Aircraft Maintenance Manuals (AMM) and Consumable Materials List (CML) or raise a query with Airbus Support Engineering Department.
22 In 2016, having published all the standards it wished to publish and since activity in the field of ice detection equipment development was minimal, the G-12 Ice Detection Committee decided to become a workgroup that reports to the G-12 Holdover Time Committee until such time that ROGIDS development work becomes active again.
Committee (G-12 DF), 6) the Training and Quality Control Committee (G-12 T), 7) the Future Technology Committee (G-12 FG), 8) the Equipment Committee (G-12 E), 9) the Runway Deicing Product Committee (G-12 RDP) and 10) various \textit{ad hoc} workgroups reporting to the Committees, such as the Aerodynamics Workgroup (G-12 AWG), the Carbon Brake Oxidation Workgroup, etc. A new Rotorcraft Ground Deicing Working Group (G-12 RWG) was added in 2017.

\textit{SAE G-12 Meetings.} All the committees and workgroups that comprise the SAE G-12 Aircraft Ground Deicing Committee meet every May. Meeting locations change every year. The committees and workgroups often hold more working sessions during the year. Over the last few years, several committees have been meeting in late October or early November in Montreal, for the so-called mid-year meeting.

\textit{SAE Documents.} The documents issued by SAE G-12 fall into four categories: Aerospace Material Specification (AMS), Aerospace Recommended Practice (ARP), Aerospace Information Report (AIR) and Aerospace Standard (AS).

\textit{Global Aircraft Deicing Standards.} ICAO, national aviation authorities, (e.g., FAA, Transport Canada and EASA), SAE, and airline associations (e.g., AEA23) have developed recommended practices for aircraft ground deicing/anti-icing with the intention of providing unified standards. Experience has shown that differences are significant enough to prevent operators from adopting any single one of the many standards published.

The issue of multiple standards became more apparent as centralized deicing facilities (CDF) started operating in many countries. For instance, in Toronto, over 80 airlines fly into a centralized facility, each attempting to impose its own standard for deicing on the staff for its own aircraft. Staff would have had to be trained for each procedure resulting in a multitude of procedures, high training costs and a complexity that added to the risk of non-compliance to the multiple procedures. Many CDF faced with impossible tasks of training its staff to many procedures, imposed their own procedures with the approval of the national regulatory authority. Flight crews must learn the

23 The Association of European Airlines (AEA) ceased its operations in December 2016. The ex-AEA deicing working group continues its work under the auspices of the Airlines for Europe (A4E).
difference between each CDF, which adds to complexity of their tasks. Service providers are being audited to different standards.

IATA approached the SAE G-12 in San Francisco in May 2011 and explained that IATA had received a mandate from its Operations Committee (OPC) comprised of the major airline members to develop globally harmonized deicing procedures. Safety and costs would be improved by the adoption of such standards.

SAE G-12 welcomed IATA’s request. IATA and SAE agreed to enter into a formal cooperation agreement. SAE and IATA became sponsors of a newly created Council for Globalized Aircraft Deicing Standards.24 At its first meeting in Montreal, on November 10, 2011, ICAO became a sponsor of the Council and entered into a formal agreement with SAE.

Necessity for harmonization was stated to be 1) the improvement of safety by reducing the chance of discrepancy between the deicing performed and the deicing expected by the flightcrew as well as simplifying communication, 2) increase in efficiency by reducing the training required by service providers, reducing the costs of airline audits, and simplifying contracts. Areas to be covered by the globalized standards were deicing/anti-icing methods, training and quality assurance.

Rather than attempting to modify the existing SAE documents, it was decided to start from scratch and create new documents, the so-called “global deicing standards”, to replace the existing SAE documents covering 1) deicing/anti-icing processes including flightcrew/ground crew communications, 2) training and 3) quality assurance.

Table 1 lists cancelled standards and corresponding new global deicing standards.

Table 1 Correspondence of Obsolete SAE Standards and Global Aircraft Deicing Standards

<table>
<thead>
<tr>
<th>Obsolete SAE Standards</th>
<th>Global Aircraft Deicing Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARP6257 Flight and Ground Crew De/Anti-icing Phraseology (issued Oct. 2016)</td>
</tr>
<tr>
<td>ARP5149C Training Program Guidelines for Deicing/Anti-Icing of Aircraft on Ground</td>
<td>AS6286A Training and Qualification Program for Deicing/Anti-icing of Aircraft on the Ground</td>
</tr>
<tr>
<td>(cancelled June 19, 2019)</td>
<td>(issued June 2019)</td>
</tr>
<tr>
<td>ARP5646A Quality Program Guidelines for Deicing/Anti-Icing of Aircraft on the Ground</td>
<td>AS6332 Aircraft Ground Deicing/anti-icing Quality Management (issued August 2017)</td>
</tr>
<tr>
<td>(cancelled June 19, 2019)</td>
<td></td>
</tr>
</tbody>
</table>

Research Reports. APS Aviation has prepared over 100 reports related to aircraft ground deicing for Transport Canada and the FAA.25 These reports are not indexed in this Guide to Aircraft Ground Deicing.

Documentation Notification Services. The FAA and Transport Canada offer free email notification services upon publication of aircraft deicing documentation.

FAA:

Transport Canada: http://wwwapps.tc.gc.ca/Comm/5/ListServ/menu.aspx

Members of SAE G-12 receive notification of SAE standard publications. To become a member, please contact Nicole Mattern at nicole.mattern@sae.org or Jacques Leroux at jleroux@dow.com.

25 Several reports can be found online: <https://www.rheagroup.com/aps-holdover-time-testing/aircraft-ground-icing-research/reports>.
There is no cost to be a member of SAE G-12, to receive committee minutes and review document ballots. People are encouraged to become members of SAE at minimal cost, but this is not required to be a member of SAE G-12.

Vocabulary. There is an effort to standardize the vocabulary in SAE G-12 documents. A lexicon of preferred words and expressions can be found under the heading “List of Preferred Words and Expressions”.

30
PART ONE: THE AIRCRAFT DEICING DOCUMENTS

Figure 1 (at p 233) provides a visual representation on how the aircraft deicing documents relate to each another.

Documents Issued by SAE

Documents Issued by the SAE G-12 Aircraft Deicing Fluids Committee

AIR6232 Aircraft Surface Coating Interaction with Aircraft Deicing/Anti-Icing Fluids

Issued 2013-08-12 and reaffirmed 2019-04-02 by SAE G-12 ADF.

Aircraft operators in 2012 expressed interest in the use of after-market coatings on aircraft surfaces for various purposes, including appearance enhancement, fuel savings, and ice shedding. The coatings were designed to have hydrophilic or hydrophobic properties that could possibly interfere with the wetting, thickness, holdover time and aerodynamic properties of aircraft deicing/anti-icing fluid. AIR6232 was issued to raise the issue of the potential deleterious effects of these coatings and propose testing to evaluate the aircraft surface coating compatibility with the deicing anti-icing fluids. AIR6232 also provides descriptions of suggested test methods for evaluating aircraft surface coatings with respect to durability, hardness, weathering, aerodynamic drag, ice adhesion, ice accumulation, contact angle, and thermal conductivity. These tests can provide informational data for characterizing the coatings and may be useful to aircraft operators when evaluating the coatings.

Keywords:
advancing contact angle. See contact angle, advancing
Airbus AIMS 09-00-002, s 5
aircraft coating. See aircraft surface coating
aircraft surface coating – after-market, s Foreword at p 1
aircraft surface coating – AMS3090 weathering, s 5.1.2
aircraft surface coating – comparative endurance time test, s 3
aircraft surface coating – compatibility with aircraft surfaces, ss 5.1, 5.1.1, 5.1.2
aircraft surface coating – compatibility with cleaners, s 5.1.1
aircraft surface coating – compatibility with polishes, s 5.1.1
aircraft surface coating – compatibility with waxes, s 5.1.1
aircraft surface coating – definition, s 2.2
aircraft surface coating – durability, s 5.1.2
aircraft surface coating – effect of acid rain on, s 5.1.4
aircraft surface coating – effect of detergents on, s 5.1.4
aircraft surface coating – effect of hydraulic fluid on, s 5.1.4
aircraft surface coating – effect of jet fuel on, s 5.1.4
aircraft surface coating – effect of jet ultraviolet on, s 5.1.4
aircraft surface coating – effect of oxidation on, s 5.1.4
aircraft surface coating – effect of ozone on, s 5.1.4
aircraft surface coating – effect of Type I/II/III/IV on, ss 5.1.3–5.1.4
aircraft surface coating – effect on aerodynamic performance, s 4
aircraft surface coating – effect on drag, s 5.2
aircraft surface coating – effect on endurance time, ss 3, 5.7
aircraft surface coating – effect on frost formation, s 5.6
aircraft surface coating – effect on HOT, s 3
aircraft surface coating – effect on ice adhesion, s 5.3
aircraft surface coating – effect on inflight ice accretion, s 5.4.2
aircraft surface coating – effect on thermal conductivity, s 5.8
aircraft surface coating – effect on Type I, s Foreword at p 1, s 3
aircraft surface coating – effect on Type II/III/IV, s Foreword at p 1
aircraft surface coating – hardness, s 5.1.2
aircraft surface coating – immersion tests, s 5.1.4
aircraft surface coating – super-hydrophobic – limitation in frost, s 5.7
aircraft surface coating – thickness 1–2 mils, Rationale at p 1
aircraft surface coating – thickness test for Type II/III/IV, s 3.4
aircraft surface coating – weathering, s 5.1.2
aircraft surface coating – wetting test for Type I, s 3.4
aircraft surface coating, Title at p 1
angle, contact. See contact angle
angle, roll-off. See roll-off angle
angle, sliding. See sliding angle
Boeing D6-17487, s 5
Cassie state. See state, Cassie
coating, aircraft surface. See aircraft surface coating
contact angle – definition, s 2.2
contact angle hysteresis – definition, s 2.2
contact angle, advancing – definition, s 2.2
contact angle, advancing, s 5.5
contact angle, measurement of, s 5.5
contact angle, receding – definition, s 2.2
contact angle, receding, s 5.5
contact angle, ss 1, 5.5
definition – aircraft surface coating, s 2.2
definition – contact angle hysteresis, s 2.2
definition – contact angle, advancing, s 2.2
definition – contact angle, receding, s 2.2
definition – contact angle, s 2.2
definition – endurance time, s 2.2
definition – hydrophilic surface, s 2.2
definition – hydrophobic surface, s 2.2
definition – icephobic surface, s 2.2
definition – roll-off angle, s 2.2
definition – sliding angle, s 2.2
definition – state, Cassie, s 2.2
definition – state, Wenzel, s 2.2
definition – super-hydrophobic surface, s 2.2
definition – surface, treated, s 2.2
drop impact resistance, s 5.6
endurance time – definition, s 2.2
frost – endurance test, s 5.7
frost – formation, s 5.6
frost – growth, s 5.7
frost – nucleation, s 5.7
fuel savings, Foreword at p 1
hydrophilic surface – definition, s 2.2.
hydrophobic surface – definition, s 2.2
hydrophobic surface – icephobic properties, does not imply, s 5.7
ice accretion – water droplet impact resistance, s 5.6
ice accretion, in-flight, s 5.4
ice accumulation test, static, s 5.4
ice adhesion test – centrifuge ice adhesion test, s 5.3
ice adhesion test – zero-degree cone test, s 5.3
ice shedding, Foreword at p 1, s 5.4.1
ice, impact. See ice accretion, in-flight
icephobic surface – definition, s 2.2
impact ice. See ice accretion, in-flight
paint protectants, Rationale at p 1
paint sealants, Rationale at p 1
receding contact angle. See contact angle, receding
roll-off angle – definition, s 2.2
roll-off angle, s 5.5
sliding angle – definition, s 2.2
state, Cassie – definition, s 2.2
state, Cassie to Wenzel, s 5.7
state, Cassie, s 5.6
state, non-wetting, s 5.6
state, Wenzel – definition, s 2.2
state, Wenzel, s 5.6
state, wetting, s 5.6
sublimation (vapor phase to solid phase), s 5.7
super-hydrophobic surface – definition, s 2.2,
surface, hydrophilic. See hydrophilic surface
surface, hydrophobic. See hydrophobic surface
surface, icephobic. See icephobic surface
surface, super-hydrophobic. See super-hydrophobic surface
surface, treated – definition, s 2.2
surface, untreated – definition, s 2.2
thermal conductivity, s 5.8
Type I – wetting test, s 3.4
Type I – wetting v time test, s 3.4
Type II/III/IV – thickness v time test, s 3.4
Wenzel state. See state, Wenzel
wettability, quantification of, s 2.2
wettability. See also contact angle
wettability. See also state, Wenzel
wetting – water droplet impact resistance, s 5.6
wetting test, Type I, s 3.4
ARP6852C Methods and Processes for Evaluation of Aerodynamic Effects of SAE-Qualified Aircraft Ground Deicing/Anti-icing Fluids

Revised 2018-10-24 by SAE G-12 AWG and SAE G-12 ADF.

AMS1424 and AMS1428 require aircraft deicing/anti-icing fluids to comply to the aerodynamic acceptance test whose purpose is to ensure that the aerodynamic performance of all fluids is no worse than an established accepted standard; this aerodynamic acceptance test is described in detail in AS5900C. Even with successful aerodynamic acceptance qualification, there can be circumstances which require the evaluation of the aerodynamic effect of fluids on specific aircraft. ARP6852 does provide guidance for such aircraft specific evaluation.

ARP6852, prepared by the members of the G-12 Aerodynamics Working Group, describes methods known to have been used by aircraft manufacturers to evaluate specific aircraft aerodynamic performance and handling effects following application of glycol-based SAE AMS Type I, II, III or IV aircraft deicing/anti-icing fluids. Guidance and insight based upon those experiences are provided, including, similarity analyses, icing wind tunnel tests, flight tests, computational fluid dynamics and other numerical analyses.

ARP6852 further presents an historical account of the evaluation of the aerodynamic effects of fluids, including the initial work done by Boeing in the 1980s and 1990s on high speed aircraft and of de Havilland on commuter type aircraft which led to the development of the aerodynamic acceptance test described in AS5900C. ARP6852 provides an extensive bibliography on the effects of fluids on aircraft aerodynamics and reports on the methods used by Bombardier, Cessna and SAAB to evaluate the effects of fluid on their respective aircraft.

Keywords:
aerodynamic acceptance test – Boeing history, s 3.4, Appendix A
aerodynamic acceptance test – Bombardier (de Havilland) history, Appendix B
aerodynamic acceptance test – development by Boeing, s 3.4, Appendix A
aerodynamic acceptance test – development by de Havilland, Appendix B
aerodynamic acceptance test – general description, s 3.3.2
aerodynamic acceptance test – high and low speed ramp on Type I and Type III, s 3.3.2
aerodynamic acceptance test – high speed ramp – description, s 3.3.2
aerodynamic acceptance test – high speed ramp on Type II and Type IV, s 3.3.2
aerodynamic acceptance test – low speed ramp – description, s 3.3.2
aerodynamic acceptance test – maximum acceptable lift loss for commuter type aircraft with wing mounted propellers (8%), s 3.2.2
aerodynamic acceptance test – maximum acceptable lift loss for large transport jet aircraft (5.24%), s 3.2.2
aerodynamic acceptance test – subset of aerodynamic effect of fluids, Foreword at p 1
aerodynamic acceptance test – V2 at least 1.10VS1g, s 3.3.2
aerodynamic clean surface, description of, s 3.2
aerodynamic effect of fluids – bibliography, s 2.1.2
aerodynamic effect of fluids – compensating measures. See aerodynamic effect of fluids – performance adjustments
aerodynamic effect of fluids – critical point at maximum angle of attack, s 3.2.1
aerodynamic effect of fluids – critical point during takeoff, s 3.2.1
aerodynamic effect of fluids – decrease of during ground roll, rotation and climb, s 3.2
aerodynamic effect of fluids – effect of angle of attack, s 3.2.1
aerodynamic effect of fluids – effect of fuselage geometry, s 3.2
aerodynamic effect of fluids – geometry-limited aircraft, s 3.2.1
aerodynamic effect of fluids – effect of high lift configuration, s 3.2.1
aerodynamic effect of fluids – effect of initial climb speed, s 3.2.1
aerodynamic effect of fluids – effect of leading-edge stall v trailing-edge stall, s 3.2.1
aerodynamic effect of fluids – effect of OAT on fluid flow-off, s 3.2.1
aerodynamic effect of fluids – effect of OAT on fluid viscosity, s 3.2.1
aerodynamic effect of fluids – effect of rotation speed, s 3.2.1
aerodynamic effect of fluids – effect of speed and time to accelerate to rotation speed, s 3.2.1
aerodynamic effect of fluids – effect of time to accelerate to climb speed, s 3.2.1
aerodynamic effect of fluids – effect of wing stall characteristics, s 3.2.1
aerodynamic effect of fluids – evaluation by Bombardier, Appendix E
aerodynamic effect of fluids – evaluation by Cessna, Appendix D
aerodynamic effect of fluids – evaluation by de Havilland, Appendix B
aerodynamic effect of fluids – evaluation by SAAB, Appendix C
aerodynamic effect of fluids – evaluation methods – computational fluid dynamics and other numerical analyses, s 4.5, 6.1
aerodynamic effect of fluids – evaluation methods – flight tests, ss 4.4. 6.1
aerodynamic effect of fluids – evaluation methods – methodologies pros and cons, s 6.1, Table 1 at p 27
aerodynamic effect of fluids – evaluation methods – process flow chart, s 4.1
aerodynamic effect of fluids – evaluation methods – similarity analysis, ss 4.2, 6.1
aerodynamic effect of fluids – evaluation methods – wind tunnel tests, ss 4.3, 6.1
aerodynamic effect of fluids – evaluation methods, s 4
aerodynamic effect of fluids – fluid presence at time of rotation, s 3.2.1
aerodynamic effect of fluids – on aircraft aerodynamic performance, s 3.2.1
aerodynamic effect of fluids – on CLmax, s 3.2.1
aerodynamic effect of fluids – on drag, s 3.2.1
aerodynamic effect of fluids – on elevator control force, s 3.2.2
aerodynamic effect of fluids – on elevator effectiveness, s 3.2.2
aerodynamic effect of fluids – on handling qualities, ss 3.2.2, 6.3
aerodynamic effect of fluids – on hinge moment, s 3.2.2
aerodynamic effect of fluids – on lateral control, ss 3.2.2, 6.3
aerodynamic effect of fluids – on lift decrease, s 3.2.1
aerodynamic effect of fluids – on Mitsubishi YS-11, s 3.2.2
aerodynamic effect of fluids – on specific aircraft [AS6852] – subset of aerodynamic effect of fluids, Foreword at p 1
aerodynamic effect of fluids – on specific aircraft, reasons to evaluate – additional requirements beyond AAT, s 3.4
aerodynamic effect of fluids – on specific aircraft, reasons to evaluate – different from Boeing 737-200ADV, s 3.4
aerodynamic effect of fluids – on specific aircraft, reasons to evaluate – report of high stick forces during rotation, s 3.4
aerodynamic effect of fluids – on specific aircraft, reasons to evaluate – report of high wheel forces during rotation, s 3.4
aerodynamic effect of fluids – on specific aircraft, reasons to evaluate – rotation speed different from AAT, s 3.4
aerodynamic effect of fluids – on specific aircraft, reasons to evaluate – takeoff acceleration different from AAT, s 3.4
aerodynamic effect of fluids – on specific aircraft, reasons to evaluate – takeoff speed corrections to compensate for lift loss caused by fluids, s 3.4
aerodynamic effect of fluids – on specific aircraft, reasons to evaluate – variation in wing design, s 3.4
aerodynamic effect of fluids – on specific aircraft, s 3.4
aerodynamic effect of fluids – on stick/column forces, s 3.2.2
aerodynamic effect of fluids – on tab effectiveness, s 3.2.2
aerodynamic effect of fluids – performance adjustments – attitude, s 5
aerodynamic effect of fluids – performance adjustments – braking energy, s 5
aerodynamic effect of fluids – performance adjustments – pitch rate, s 5
aerodynamic effect of fluids – performance adjustments – takeoff flap settings, s 6.3
aerodynamic effect of fluids – performance adjustments – takeoff distance, s 5
aerodynamic effect of fluids – performance adjustments – takeoff speeds, ss 5, 6.3
aerodynamic effect of fluids – performance adjustments – takeoff weight, s 5
aerodynamic effect of fluids – performance adjustments – takeoff technique, s 5
aerodynamic effect of fluids – performance adjustments – to ensure adequate safety margins, s 5
aerodynamic effect of fluids – performance adjustments, ss 3.3.2, 5
aerodynamic effect of fluids – performance adjustments. See also Type II/III/IV – aircraft operational considerations
aerodynamic effect of fluids – rotation difficulties on aircraft with unpowered pitch control surfaces, ss 3.2.2, 6.3
aerodynamic effect of fluids – superset of aerodynamic acceptance test (AS5900), Foreword at p 1
aerodynamic effect of fluids – superset of aerodynamic effect of fluids – on specific aircraft (AS6852), Foreword at p 1
aerodynamic effect of fluids – transient26 nature of, ss 3.2, 3.2.1, 4.4.3.2.2
aerodynamic effect of fluids – wave roughness introduced by flow-off, s 3.2
aerodynamic effect on specific aircraft – Boeing 737-200ADV, ss 3.2.1, 3.4, Appendix A
Boeing – aerodynamic acceptance test history, ss 3.2.1, 3.2.4, Appendix A
Boeing B737-200 ADV – aerodynamic acceptance test, ss 3.2.1, 3.4, Appendix A
Bombardier (de Havilland) – aerodynamic acceptance test history, Appendix B
Bombardier DHC-8, Appendix B
Bombardier. See also aerodynamic effect of fluids – evaluation by Bombardier
\^E
SAAB. See also aerodynamic effect of fluids – evaluation by SAAB
surface, clean – description of, s 3.2
Type I – functional description, s 3.1
Type II/III/IV – functional description, s 3.1
von Karman Institute for Fluid Dynamics, Appendix A–C
wave roughness, ss 3.2, 3.2.1
wing stall characteristics, s 3.2.1

26 AS6852C appears to use the words “transient” and “transitory” as synonyms when referring to the aerodynamic effects of fluid as in “[t]he aerodynamic effects of fluids are transitory…” (s 4.4.3.2.2) or “[c]urrent data suggests that the fluid transient behavior…” (s 3.2.1). Here we index under “transient”.
AS5900C Standard Test Method for Aerodynamic Acceptance of AMS1424 and AMS1428 Aircraft Deicing/Anti-icing Fluids

Revised 2016-10-25 by SAE G-12 ADF.

This standard provides test methods to ensure acceptable aerodynamic characteristics of the deicing/anti-icing fluids as they flow off aircraft lifting and control surfaces during the takeoff ground acceleration and climb. AS5900C establishes the aerodynamic flow-off requirements for SAE AMS1424 Type I and SAE AMS1428 Type II, III and IV fluids used to deice and/or anti-ice aircraft.

Two aerodynamic acceptance tests are defined:

1- The high speed test simulates the takeoff of large transport jet aircraft\(^{27}\) with speeds\(^{28}\) at rotation exceeding approximately 100 knots and with time\(^{29}\) from brake release to rotation greater than 20 s. This takeoff is simulated using a “high speed ramp” where the test is performed as 65 m/s (126 knots) and a 25 s acceleration at 2.5 m/s\(^2\).

2- The low speed test simulates the takeoff of commuter turbo-prop aircraft\(^{30}\) with speeds at rotation between 60 and 100 knots and with a time from brake release to rotation between 15 and 20 s. The takeoff is simulated using a “low speed ramp” where the test is performed at 35 m/s (70 knots) and a 17 s acceleration at 2.1 m/s\(^2\).

Keywords:
- aerodynamic acceptance test – BLDT – Bernoulli equation, s 6.4.2.2
- aerodynamic acceptance test – BLDT – calculation, s 6.4.2.2
- aerodynamic acceptance test – BLDT, dry – at 35 m/s – 3.3 mm, 4 2.4.2
- aerodynamic acceptance test – BLDT, dry – at 65 m/s – 3.0 mm, s 4.2.4.1
- aerodynamic acceptance test – BLDT, ss 1, 6.2.7.4
- aerodynamic acceptance test – calibration requirements, s 4.1
- aerodynamic acceptance test – commuter aircraft, s 3.1b
- aerodynamic acceptance test – continued acceptance, s 7.4
- aerodynamic acceptance test – description, s 3.1
- aerodynamic acceptance test – facility competency, s 3.3
- aerodynamic acceptance test – facility independence from fluid manufacturer, s 3.3

\(^{27}\) Large jet transport aircraft are also known as high speed aircraft.
\(^{28}\) Takeoff rotation speed or rotation speed are also known as VR.
\(^{29}\) Time from brake release to rotation is also known as takeoff run time or ground acceleration time or brake release to VR.
\(^{30}\) Commuter turbo-prop aircraft are colloquially known as low speed aircraft.
aerodynamic acceptance test – facility independence, s 3.3
aerodynamic acceptance test – facility qualification frequency – 5 years, s 3.3
aerodynamic acceptance test – facility qualification, s 3.3
aerodynamic acceptance test – facility qualification, s 3.3
aerodynamic acceptance test – facility requirements, s 3.3, 4
aerodynamic acceptance test – fluid elimination – Type II/III/IV high speed ramp – 74%, s 6.2.10.2
aerodynamic acceptance test – fluid elimination – Type II/III/IV low speed ramp – 57%, s 6.2.10.2
aerodynamic acceptance test – fluid formulation change, ss 7.4
aerodynamic acceptance test – fluid from licensee, s 7.4
aerodynamic acceptance test – fluid property change, s 7.4
aerodynamic acceptance test – fluid residual thickness – Type I high speed ramp – 600 microns, s 6.2.10.1
aerodynamic acceptance test – fluid residual thickness – Type I low speed ramp – 400 microns, s 6.2.10.1
aerodynamic acceptance test – high speed aircraft – ≥ 100 knots and > 20 s, s 3.1a
aerodynamic acceptance test – high speed ramp – 2.6 m/s², ss 3.1a, 4.3.4.1.1
aerodynamic acceptance test – high speed ramp – 25 s, ss 3.1a, 4.3.4.1.1
aerodynamic acceptance test – high speed ramp – 65 m/s, ss 3.1a, 4.3.4.1.1, 6.2.7.3a
aerodynamic acceptance test – high speed ramp – acceleration, s 6.2.7.2a
aerodynamic acceptance test – high speed ramp – compensating measures for turbo prop aircraft, s 3.1b
aerodynamic acceptance test – high speed ramp – description, 3.1b
aerodynamic acceptance test – high speed ramp – description, ss 3.1a,
aerodynamic acceptance test – high speed ramp – elimination ≥ 74%, s 6.2.10.2
aerodynamic acceptance test – high speed ramp – reference fluid, ss 3.2.1
aerodynamic acceptance test – high speed ramp – speed diagram, Figure 1
aerodynamic acceptance test – high speed ramp, ss 3.1a, 4.3.4.1.1
aerodynamic acceptance test – initial testing, s 7.3.1
aerodynamic acceptance test – large transport jet aircraft, s 3.1a
aerodynamic acceptance test – licensee fluid, s 7.4
aerodynamic acceptance test – low speed aircraft – 60 to 100 knots and 15 to 20 s, s 3.1b
aerodynamic acceptance test – low speed ramp – 17 s, ss 3.1b, 4.3.4.1.2
aerodynamic acceptance test – low speed ramp – 2.1 m/s², ss 3.1b, 4.3.4.1.2
aerodynamic acceptance test – low speed ramp – 35 m/s, ss 3.1b, 4.3.4.1.2, 6.2.7.3b
aerodynamic acceptance test – low speed ramp – acceleration, s 6.2.7.2b
aerodynamic acceptance test – low speed ramp – elimination ≥ 57%, s 6.2.10.2
aerodynamic acceptance test – low speed ramp – reference fluid, s 3.2.2
aerodynamic acceptance test – low speed ramp – speed diagram, Figure 2
aerodynamic acceptance test – low speed ramp, ss 3.1b, 4.3.4.1.2
aerodynamic acceptance test – method, Title at p 1
aerodynamic acceptance test – non-glycol based fluid, s 1
aerodynamic acceptance test – procedure, s 6
aerodynamic acceptance test – report, s 9
aerodynamic acceptance test – results, s 9
aerodynamic acceptance test – retesting, ss 7.3.2
aerodynamic acceptance test – site. See aerodynamic acceptance test – facility
aerodynamic acceptance test – test duct frost, ss 6.3.2, 6.3.4.1
aerodynamic acceptance test – test fluid age < 3 months, s 5.1
aerodynamic acceptance test – test fluid final thickness, s 6.2.10
aerodynamic acceptance test – test fluid HHET, s 5.1

31 The expressions “test facility”, “facility”, “site/facility” “aerodynamic acceptance test facility” appear to be used interchangeably (ss 3.3, 4, 4.5). Section 3.3 defines qualification of the facility, associated staff and resources as technical suitability and competency.

32 There is no elimination set for Type I fluids but there is a maximum “fluid residual thickness” set for the high speed ramp and the low speed ramp.
AS5901D Water Spray and High Humidity Endurance Test Methods for SAE AMS1424 and SAE AMS1428 Aircraft Deicing/Anti-icing Fluids

Revised 2019-09-04 by SAE G-12 ADF.

The purpose of this standard is to determine the anti-icing endurance, under controlled laboratory conditions, of AMS1424 Type I and AMS1428 Type II, III, and IV fluids. AS5901D establishes a) the minimum requirements for an environmental test chamber and b) the test procedures to carry out anti-icing performance tests according to the current specification for aircraft deicing/anti-icing fluids.

Keywords:
anti-icing performance – HHET and WSET, s 3.1
edge effect. See WSET – failure zone; HHET – failure zone
HHET – air temperature (0.0°C), s 5.4.1, Table 1
HHET – air velocity, horizontal, s 5.4.1, Table 1
HHET – calibration, s 5
HHET – description, ss 3.3, 6.4
HHET – failure criteria, s 3.3
HHET – failure zone, s 3.3, Figure 1
HHET – fluid preparation, s 6.3
HHET – fluid sheared, s 6.3
HHET – fluid temperature (ambient, 15–25°C), s 6.3
HHET – humidity generator, s 4.2.2.1
HHET – icing intensity (0.30 g/dm².h), s 4.2.2, 5.4.2, Table 1
HHET – nucleation, no, s 6.1
HHET – relative humidity (>80%), s 5.4.1, Table 1
HHET – report, s 6.6
HHET – reproducibility – Type I (20%), s 6.5
HHET – reproducibility – Type II/III/IV (10%), s 6.5
HHET – spray equipment, s 4
HHET – test chamber, ss 4.2, 4.2.2
HHET – test description, ss, 3.3, 6.4
HHET – test method, ss 3.3, 6.4
HHET – test plate cleanliness, s 6.1
HHET – test plate temperature (-5.0°C), s 5.4.1, Table 1
HHET – test plate, s 4.3
HHET – water droplet size, s 5.2.2
water droplet size – laser diffraction method, s 5.3.2
water droplet size – slide impact method with oil, s 5.3.1
WSET – air temperature (-5.0°C), s 5.4.1, Table 1
WSET – calibration, s 5
WSET – description, ss 3.2, 6.4
WSET – failure criterion, s 3.2
WSET – failure zone, s 3.2, Figure 1
WSET – fluid preparation, s 6.3
WSET – fluid sheared, s 6.3
WSET – fluid temperature (ambient, 15–25°C), s 6.3
WSET – icing intensity (5 g/dm².h), ss 4.2.1, 5.4.2, Table 1
WSET – nucleation, no, s 6.1
WSET – report, s 6.6
WSET – reproducibility – Type I (20%), s 6.5
WSET – reproducibility – Type II/III/IV (10%), s 6.5
WSET – spray equipment s 4.2.1
WSET – test chamber, ss 4.2, 4.2.1
WSET – test description, ss 3.2, 6.4
WSET – test plate cleanliness, s 6.1
WSET – test plate temperature (-5.0°C), s 5.4.1, Table 1
WSET – test plate, s 4.3
WSET – water droplet size, s 5.2.1, Table 1
AMS1424P Fluid, Aircraft Deicing/Anti-Icing, SAE Type I

Revised 2018-09-26 by SAE G-12 ADF.

AMS1424P33 sets the technical and environmental requirements and quality assurance provisions for aircraft deicing fluids (SAE Type I) that are used to remove frozen deposits from exterior surfaces of aircraft prior to takeoff. SAE Type I fluids do not contain thickeners.

AMS1424P is defined as the foundation specification for SAE Type I fluids. The SAE Type I fluids are divided into two categories: a) SAE Type I fluids based on Glycol freezing point depressants, which include Conventional Glycols and Non-conventional Glycols and b) SAE Type I fluids based on Non-glycol freezing point depressants.

SAE Type I fluids based on Conventional and Non-conventional Glycol freezing point depressants are defined and identified as AMS1424/1 (read AMS1424 slash one) Type I fluids. The purpose of the AMS1424/1 specification, which is called a category specification, is to identify the SAE Type I fluid as a glycol (conventional or non-conventional) based fluid.

Conventional Glycols are defined as ethylene glycol, diethylene glycol and propylene glycol.

Non-conventional Glycols are defined as organic non-ionic diols and triols, e.g., 1,3-propanediol, glycerine and mixtures thereof and mixtures with conventional glycols.

SAE Type I fluids based on Non-glycol freezing point depressants are defined and identified as AMS1424/2 (read AMS1424 slash two) Type I fluids. The purpose of the AMS1424/2 specification, which is called a category specification, is to identify the SAE Type I fluid as a Non-glycol based fluid.

33 Type I – compatibility with Type II/III/IV. When a Type II, III or IV fluid conforming to AMS1428 is used to perform step two in a two-step deicing/anti-icing operation, and the fluid used in step one is often a Type I fluid conforming to AMS1424, section 1.3.6 of AMS1424P explains that users must ensure that the Type I be compatible with the Type II/III/IV. A means of verification is suggested in section 6.3.3.2 of ARP4737H requiring a test be made to confirm that the combination of these fluids does not significantly reduce the WSET performance of the AMS1428 fluid. AS6285C compatibility requirement is set in section 8.7.2. FAA Notice N 8900.525 at s 13.d.(2) tells operators to make sure the Type I and Type IV are compatible by contacting the respective fluid manufacturers.
Non-glycol is defined as all that is not Glycol (Conventional and Non-conventional), such as organic salts, e.g., sodium formate, sodium acetate, potassium formate, potassium acetate and any mixtures thereof.

Mixtures of any Glycol with Non-glycol are defined as Non-glycol.

In summary, there is one foundation specification for Type I fluid, AMS1424P, and two category specifications AMS1424/1 and AMS1424/2.

A significant change brought about by AMS1424P is that colorless Type I fluids no longer fulfil the requirements of AMS1424.

Keywords:
1,3-propanediol. See Glycol, Non-conventional – 1,3-propanediol
aerodynamic acceptance test – Type I requirements, s 3.5.3
aerodynamic acceptance test. See also Type I – aerodynamic acceptance
aircraft manufacturer documentation – fluid restrictions for aircraft type and model, s 1.2.1
alkali metal salts. See also Non-glycol
AMS1424 – performance v composition of matter specification, s 3.1
AMS1424/1, ss 1.1, 1.3.6, 5.1.3
AMS1424/2, ss 1.1, 1.3.6, 5.1.3
Brix, s 3.2.4
color uniformity, s 3.1.4
color, Type I – orange, s 3.1.4.1
compatibility, fluid. See fluid compatibility – Type I with Type II/III/IV
Conventional Glycol. See Glycol, Conventional
definition – Glycol, Conventional and Non-conventional, s 3.1.1
definition – Glycol, Conventional, s 3.1.1.1
definition – Glycol, Non-, s 3.1.1.3
definition – Glycol, Non-conventional, s 3.1.1.2
definition – Glycol, s 3.1.1.1
definition – lot, Type I, s 4.3
definition – LOUT, Type I, s 1.2.2.1
definition – Non-glycol, s 3.1.1.2
diethylene glycol. See also Glycol, Conventional – diethylene glycol
ethylene glycol. See also Glycol, Conventional – ethylene glycol; EG v PG
fluid application – two-step – compatibility of Type I with Type II/III/IV, s 1.3.6, see footnote 33
fluid compatibility – Type I with Type II/III/IV, s 1.3.6, see footnote 33
fluid manufacturer documentation – aerodynamic acceptance data, ss 1.3.2, 3.5.3
fluid manufacturer documentation – appearance, s 3.1.4
fluid manufacturer documentation – aquatic toxicity, s 3.1.5.4, Appendix A
fluid manufacturer documentation – biodegradability, s 3.1.5.3
fluid manufacturer documentation – BOD, s 3.1.5.1
fluid manufacturer documentation – COD, s 3.1.5.2
fluid manufacturer documentation – color, s 3.1.4.1
fluid manufacturer documentation – flash point, s 3.2.1
fluid manufacturer documentation – fluid stability, s 3.3
fluid manufacturer documentation – freezing point v dilution data, s 1.2.2.1
fluid manufacturer documentation – freezing point, s 3.2.5
fluid manufacturer documentation – glycol, presence of recycled, s 4.4.2.1
fluid manufacturer documentation – hard water stability, s 3.3.3
fluid manufacturer documentation – HHET, s 3.5.2
fluid manufacturer documentation – LOUT for intended dilutions, s 1.2.2
fluid manufacturer documentation – LOUT, s 1.2.2
fluid manufacturer documentation – materials compatibility data, 3.4
fluid manufacturer documentation – pH limits, s 3.2.3
fluid manufacturer documentation – recycled glycol, presence of, s 4.4.2.1
fluid manufacturer documentation – refractive index limits, s 3.2.4
fluid manufacturer documentation – safety data sheet, ss 1.3.1, 4.5.2
fluid manufacturer documentation – shear stability, s 3.3.4
fluid manufacturer documentation – specific gravity, s 3.2.2
fluid manufacturer documentation – storage stability, s 3.3.1
fluid manufacturer documentation – surface tension, s 3.2.6
fluid manufacturer documentation – tendency to foam, s 3.3.5
fluid manufacturer documentation – thermal stability, s 3.3.2
fluid manufacturer documentation – trace contaminants, s 3.1.6
fluid manufacturer documentation – viscosity limits, s 3.2.7
fluid manufacturer documentation – WSET, s 3.5.2
freezing point depressant, Glycol, Conventional and Non-Conventional, s 3.1.1
freezing point depressant, Glycol, Conventional, ss 3.1.1, 3.1.1.1
freezing point depressant, Glycol, Non-conventional, ss 3.1.1, 3.1.1.2
freezing point depressant, Non-glycol, ss 3.1.1, 3.1.1.3, 3.1.3
glycerine. See Glycol, Non-conventional – glycerine
Glycol – definition, s 3.1.1.1
Glycol, Conventional – definition, s 3.1.1.1
Glycol, Conventional – diethylene glycol, s 3.1.1.1
Glycol, Conventional – ethylene glycol, s 3.1.1.1
Glycol, Conventional – propylene glycol, s 3.1.1.1
Glycol, Conventional and Non-conventional – definition, s 3.1.1
glycol, Non-. See Non-glycol
Glycol, Non-conventional – 1,3-propanediol, s 3.1.1.2
Glycol, Non-conventional – definition, s 3.1.1.2
Glycol, Non-conventional – glycerine, s 3.1.1.2
Glycol, Non-conventional – organic non-ionic diols and triols, mixtures of, s 3.1.1.2
Glycol, Non-conventional – organic non-ionic diols and triols, mixtures with Conventional Glycol, s 3.1.1.2
Glycol, Non-conventional – organic non-ionic diols and triols, s 3.1.1.2
glycol, recycled. See Type I – recycled glycol
HHET – Type I – 20 minutes minimum, s 3.5.2
lot – Type I – definition, s 4.3
Non-conventional Glycol. See Glycol, Non-conventional
Non-glycol – definition, s 3.1.1.3
Non-glycol – organic salts mixtures with Glycol, s 3.1.1.3
Non-glycol – organic salts, mixtures of, s 3.1.1.3
Non-glycol – potassium acetate, s 3.1.1.3
Non-glycol – potassium formate, s 3.1.1.3
Non-glycol – sodium acetate, s 3.1.1.3
Non-glycol – sodium formate, s 3.1.1.3
propylene glycol. See also Glycol, Conventional – propylene glycol; EG v PG
recycled glycol. See Type I – recycled glycol
specification, category, ss 1.1, 1.1.1
Dilutions of concentrate SAE Type I aircraft deicing fluid are normally given by volume, the first number being the volume percent of the concentrate fluid and the second number the volume of water. For example, a 70/30 mixture would be 70 parts by volume of the concentrate SAE Type I fluid mixed with 30 parts by volume of water.

AMS1424 refers to initial thickness and final thickness of the fluid in the aerodynamic acceptance test. AMS1428 refers to fluid elimination. The notions are related in that they attempt to quantify the quantity of fluid that is eliminated during the acceleration run.
Type I – corrosion, stress-, s 3.4.4
Type I – crawling, s 1.3.7
Type I – drums, ss 5.1.2, 5.1.5, 8.4
Type I – effect on aircraft materials, s 3.4
Type I – environmental information, s 3.1.5
Type I – exposure, human, s 1.3.1
Type I – field test with deicing unit, s 1.3.7
Type I – film breaks, s 1.3.7
Type I – fire hazard – circuit breakers, s 1.3.4
Type I – fire hazard – direct current, s 1.3.4
Type I – fire hazard – glycol, ss 1.3.4, 3.1
Type I – fire hazard – inhibitor, ss 1.3.4, 3.1
Type I – fire hazard – noble metal coated wiring, ss 1.3.4, 3.1
Type I – fire hazard – silver coated wiring, ss 1.3.4, 3.1
Type I – fire hazard – switches, electrical, s 1.3.4
Type I – fisheyes, s 1.3.7
Type I – flash point, minimum, ss 1.3.3, 3.2.1
Type I – flash point, ss 1.3.3, 3.2.1
Type I – fluid manufacturer to report – all technical requirement results, s 4.5
Type I – fluid manufacturer to report – recycled glycol, presence of, s 4.4.2.1
Type I – fluid manufacturer to report – recycled glycol, source of, s 4.4.2.1
Type I – foam, tendency to, s 3.3.5
Type I – foreign matter, free from, s 3.1.4
Type I – freezing point buffer, s 1.2.2.1
Type I – freezing point curve, s 3.5.1
Type I – freezing point depressant, non-glycol, s 3.1.1
Type I – freezing point of 50/50 dilution, ss 3.2.5, 3.5.1
Type I – freezing point of concentrate form, s 3.2.5.
Type I – freezing point of ready-to-use form, s 3.5.1.1
Type I – Glycol (Conventional and Non-conventional) based fluid – technical requirements, s 3.1.2.1
Type I – Glycol (Conventional) based fluid – technical requirements, s 3.1.2.1
Type I – Glycol (Conventional) based fluid, ss 1.1.1, 3.1.1, 3.1.1.1, 3.1.2.1
Type I – Glycol (Non-conventional) based fluid – technical requirements, s 3.1.2.1
Type I – Glycol based fluid, ss 1.1.1, 3.1.1. 3.1.1.1
Type I – halogens as contaminant, s 3.1.6
Type I – hard water stability, s 3.3.3
Type I – HHET – sample sheared, s 3.5.2
Type I – HHET, s 3.5.2
Type I – hydrogen embrittlement, s 3.4.5
Type I – label – AMS1424/1 or AMS142/2, s 5.1.3
Type I – label – lot number, s 5.1.3
Type I – label – manufacturer’s identification, s 5.1.3
Type I – label – purchase order number, s 5.1.3
Type I – label – quantity, s 5.1.3
Type I – label, ss 4.1, 5.1.3, 5.1.4, 5.1.5
Type I – lead as contaminant, s 3.1.6
Type I – lot acceptance tests, s 4.2.1, 4.3.3
Type I – lot number, s 4.1
Type I – lot rejection, s 4.6
Type I – LOUT – definition, s 1.2.2.1
Type I – LOUT of dilutions, s 1.2.2
Type I – LOUT reporting requirement, s 1.2.2
Type I – LOUT, fluid manufacturer obligation to report, s 1.2.2
Type I – lumps, free from, s 3.1.4
Type I – matter, free from, s 3.1.4
Type I – mercury as contaminant, s 3.1.6
Type I – mixing of fluids from different manufacturers, s 1.3.6
Type I – mold growth, s 3.1
Type I – nitrate as contaminant, s 3.1.6
Type I – nitrogen as contaminant, total, s 3.1.6
Type I – Non-glycol based – technical requirement, additional, ss 3.1.1.2, 3.1.3
Type I – Non-glycol based – technical requirements, s 3.1.2.2
Type I – Non-glycol based, ss 1.1.1, 3.1.1, 3.1.1.3, 3.1.2.2, 3.1.3
Type I – painted surface, effect on, s 3.4.7
Type I – particulate contamination, s 3.1.4
Type I – performance properties, s 3.5
Type I – pH, s 3.2.3,
Type I – phosphorus as contaminant, s 3.1.6
Type I – physical properties, s 3.2
Type I – polycarbonate, effect on, s 3.4.6.2
Type I – precautions, s 1.3
Type I – purchase order, ss 6, 8.4
Type I – qualification results, initial – comparison to subsequent results36, s 4.5.1
Type I – qualification, initial – what: all technical requirement, s 4.2.2
Type I – qualification, initial – when: change in ingredients, s 4.2.2
Type I – qualification, initial – when: change in processing, s 4.2.2
Type I – qualification, initial – when: confirmatory testing, s 4.2.2
Type I – qualification, initial – when: prior to first shipment, s 4.2.2
Type I – qualification, initial37, s 4.2.2
Type I – qualification, multiple location – different from original location, s 4.4.3.1
Type I – qualification, multiple location – same as original location, s 4.4.3.2
Type I – qualification, multiple location – when: once, s 4.4.3.3
Type I – qualification, multiple location, s 4.4.3
Type I – qualification, periodic re- – comparison to initial qualification, s 4.5.1
Type I – qualification, periodic re- – failures, maximum 2, 4.6
Type I – qualification, periodic re- – failures, reporting of, s 4.6
Type I – qualification, periodic re- – what: aerodynamic acceptance, s 4.2.3
Type I – qualification, periodic re- – what: WSET and HHET, s 4.2.3
Type I – qualification, periodic re- – when: 2 years and 4 years thereafter, s 4.2.3
Type I – quality assurance, s 4
Type I – recycled glycol – contaminants, s 4.4.2.1
Type I – recycled glycol – obligation to report presence of, s 4.4.2.1
Type I – recycled glycol – obligation to report source of, s 4.4.2.1
Type I – recycled glycol – quality assurance, s 4.4.2.1
Type I – recycled glycol – source of, s 4.4.2.1

36 In section 4.5.1 “subsequent reports” are defined as the periodic requalification reports. Presumably, the multiple site qualification reports should also be subject to the product consistency check of section 4.5.1.
37 AMS1424P lists three kinds of qualification (my understanding): 1) initial qualification (s 4.2.2), 2) periodic requalification (s 4.2.3) and 3) multiple site qualification (4.4.3). What tests? Initial qualification – all technical requirements; periodic qualification – aerodynamic acceptance, WSET and HHET; multiple site, if methods, materials and handling is different from original site – all technical requirements; multiple site, if same methods, materials and handling as the original site – aerodynamic acceptance, WSET and HHET. When? Initial qualification – prior to first shipment; periodic qualification – for non-recycled and recycled glycols after two years and every 4 years thereafter [AMS1424M required testing every 2 years for recycled glycol]; multiple site – after the first multiple site qualification, there no requirement for further testing at that site, unless there is a change in method, materials or handling.
Type I – refraction, s 3.2.4
Type I – refractive index, s 3.2.4
Type I – rejection, ss 4.6, 7
Type I – reports by independent facilities, ss 4.1, 4.2.3, 4.5
Type I – requalification. See Type I – qualification, periodic re-
Type I – Right to Know Regulation (US), s 5.1.4
Type I – runway concrete resistance, s 3.4.9
Type I – safety data sheet, ss 1.3.1, 4.5.2
Type I – same ingredients, s 4.4.2
Type I – same manufacturing procedures, s 4.4.2
Type I – same methods of inspection, s 4.4.2
Type I – sampling, bulk shipments, s 4.3.1
Type I – sampling, drum shipments, s 4.3.2
Type I – sampling, statistical, s 4.3.5
Type I – sampling, tote shipments, s 4.3.2
Type I – shear, resistance to, s 3.3.4
Type I – skins, free from, s 3.1.4
Type I – slipperiness, s 1.3.5
Type I – specific gravity, s 3.2.2
Type I – specification – AMS1424, Title at p 1
Type I – stability, hard water, s 3.3.3
Type I – stability, storage, s 3.3.1
Type I – stability, thermal, s 3.3.2
Type I – storage stability, s 3.3.1
Type I – sulfur as contaminant, s 3.1.6
Type I – surface tension, s 3.2.6
Type I – suspended matter, s 3.1.4
Type I – testing, autonomous facilities, s 4.2.3
Type I – testing, confirmatory, ss 4.1, 4.2.2
Type I – testing, independent facilities, ss 4.1, 4.2.3, 4.5
Type I – testing, independent laboratories 38, ss 4.1, 4.2.3, 4.5
Type I – thermal stability, s 3.3.2
Type I – thickeners, free from, s 3.1
Type I – totes, ss 4.3.2, 5.1.2, 5.1.5
Type I – transparent plastics, effect on, s 3.4.6
Type I – transportation, s 5.1.5
Type I – unpainted surface, effect on, s 3.4.8
Type I – use of concentrate form, s 1.3.2
Type I – use of dilution, s 1.3.2
Type I – water, composition of hard, s 3.3.3.1
Type I – water, soft, s 3.3.3
Type I – wetting, s 1.3.7
Type I – WSET – 3 minutes minimum, s 3.5.2
Type I – WSET – sample sheared, s 3.5.2
Type I Glycol – (Conventional and Non-conventional) based fluid, ss 1.1.1, 3.1.1, 3.1.2.1
Type II/III/IV – compatibility with Type I, s 1.3.6, see footnote 33
WSET – Type I – 3 minutes minimum, s 3.5.2

38 AMS1424P uses the various terms with apparently similar meaning: “independent laboratory” (s 4.1), “independent facility” (s 4.2.3), “autonomous test facility” (s 4.2.3), “independent testing facilities” (s 4.5). The term facility encompasses laboratory.
AMS1424/1 Deicing/Anti-Icing Fluid, Aircraft SAE Type I Glycol (Conventional and Non-Conventiona

Issued 2016-04-18 by SAE G-12 ADF.

SAE Type I fluids based on Conventional and Non-conventional Glycol freezing point depressants are defined and identified as AMS1424/1 (read AMS1424 slash one) Type I fluids. The purpose of the AMS1424/1 specification, which is called a category specification, is to identify the SAE Type I fluid as a Glycol (Conventional or Non-conventional) based fluid. For further information read the description for AMS1424P.

Keywords:
AMS1424/1, Title at p 1
category specification, s 1.1.1
foundation specification, s 1.1.1
freezing point depressant – Glycol, Conventional, s.1.1.1
freezing point depressant – Glycol, Non-conventional, s 1.1.1
freezing point depressant – Glycol, s 1.1.1
freezing point depressant – Non-glycol, s 1.1.1
Glycol, Conventional, s 1.1.1
Glycol, Non-conventional, s 1.1.1
specification, category, s 1.1.1
specification, foundation, s 1.1.1
Type I – Glycol (Conventional and Non-conventional) based fluid, Title at p 1, s 1.1.1
Type I – Glycol (Conventional) based fluid, s 1.1.1
Type I – Glycol (Non-conventional) based fluid, s 1.1.1
Type I – specification – AMS1424/1, Title at p 1

AMS1424/2 Deicing/Anti-Icing Fluid, Aircraft SAE Type I Non-Glycol Based

Issued 2016-05-05 by SAE G-12 ADF.

SAE Type I fluids based on Non-glycol freezing point depressants are defined and identified as AMS1424/2 (read AMS1424 slash two) Type I fluids. The purpose of the AMS1424/2 specification, which is called a category specification, is to identify the SAE Type I fluid as a Non-glycol based fluid. For further information read the description for AMS1424P.

Keywords:
AMS1424/2, Title at p 1
category specification, s 1.1.1
foundation specification, s 1.1.1
freezing point depressant – Non-glycol, s 1.1.1
specification, category, s 1.1.1
specification, foundation, s 1.1.1
AMS1428K Fluid, Aircraft Deicing/Anti-Icing, Non-Newtonian, SAE Types II, III, and IV

Revised 2018-10-24 by SAE G-12 ADF.

AMS1428 sets the technical requirements for deicing/anti-icing fluids (SAE Type II, III and IV) that are used to protect aircraft surfaces against freezing or frozen precipitation for a certain but limited period prior to takeoff. These fluids contain thickeners giving shear thinning properties to the fluids. In other words, the thickeners selected for these fluids are such that viscosity of the thickened fluid decreases when a shear strain is applied to the fluid. SAE Type II, III and IV are often known as thickened anti-icing fluids.

AMS1428 is defined as the foundation specification for SAE Type II, III and IV fluids. The SAE Type II, III and IV fluids are divided into two category specifications: a) SAE Type II/III/IV fluids based on Glycol freezing point depressants, which include Conventional Glycols and Non-conventional Glycols and b) SAE Type II/II/IV fluids based on Non-glycol freezing point depressants.

SAE Type II/II/IV fluids based on Conventional and Non-conventional Glycol freezing point depressants are defined and identified as AMS1428/1 (read AMS1428 slash one) Type II/III/IV fluids. The purpose of the AMS1428/1 specification, which is called a category specification, is to identify the SAE Type II/III/IV fluid as a Glycol (Conventional or Non-conventional) based fluid.

Conventional Glycols are defined as ethylene glycol, diethylene glycol and propylene glycol.

Non-conventional Glycols are defined as organic non-ionic diols and triols, e.g., 1,3-propanediol, glycerine and mixtures thereof and mixtures with conventional glycols.

SAE Type II/II/IV fluids based on Non-glycol freezing point depressants are defined and identified as AMS1428/2 (read AMS1428 slash two) Type II/III/IV fluids. The purpose of the AMS1428/2 specification, which is called a category specification, is to identify the SAE Type II/III/IV fluid as a Non-glycol based fluid.
Non-glycol is defined as all that is not Glycol (Conventional and Non-conventional), such as organic salts, e.g., sodium formate, sodium acetate, potassium formate, potassium acetate and any mixtures thereof.

Mixtures of any Glycol with Non-glycol are defined as Non-glycol.

In summary, there is one foundation specification for Type II/III/IV fluids, AMS1428K, and two category specifications AMS1424/1 and AMS1424/2.

Holdover Time Guidelines. SAE Type II, III and IV fluids, during winter operations, provide a limited period of protection against frozen or freezing precipitations while the aircraft is on the ground. The protection time can be estimated using fluid-specific holdover time guidelines that are published by the FAA or Transport Canada.

Commercialization Readiness. For fluid manufacturers wishing to commercialize a Type II/II/IV, it should be noted that it is insufficient to meet all the requirements of AMS1428K to be able to use such fluids on aircraft. The fluids must be on the list of qualified fluid published by the FAA or Transport Canada, obtain holdover time guidelines, also published by the FAA and Transport Canada, and preferably, perform full scale spray test. This process to prepare for commercialization of SAE Type II/III/IV fluids is described in ARP5718A.

Keywords:
1,3-propanediol. See Glycol, Non-conventional – 1,3-propanediol
aerodynamic acceptance test – Type II/III/IV requirement, s 3.2.5.2
aerodynamic acceptance test. See also Type II/III/IV – aerodynamic acceptance
alkali metal salts. See also Non-glycol
AMS1428 – performance v composition of matter specification, s 3.1
AMS1428/1, ss 1.1.1, 2.1.1
AMS1428/2, ss 1.1.1, 2.1.1
anti-icing performance39, s 3.2.4.1
Brix 40, s 3.2.1.4
Brookfield LV viscometer. See viscometer, Brookfield LV
Buehler test41, s 3.2.2.4, Appendix A
color uniformity, s 3.1.5
color, Type II – yellow, s 1.1.2
color, Type III – bright yellow, s 1.1.2

39 Anti-icing performance, as defined in AMS1428 (latest version), is comprised of WSET and HHET.
40 Brix is a unit of refraction. A table of conversion from Brix to index of refraction is available in Robert C. Weast, ed, Handbook of Chemistry and Physics, 49th ed (Cleveland OH, Chemical Rubber Co., 1968-1969) at E-225.
41 The successive dry-out and rehydration test is sometimes referred to as the Buehler test after Mr. Rolf Buehler who developed it.
color, Type IV – green, s 1.1.2
Conventional Glycol. See Glycol, Conventional
definition – fluid, non-Newtonian, s 1.1.3
definition – fluid, pseudoplastic, s 1.1.4
definition – Glycol, Conventional and Non-conventional, s 3.1.1
definition – Glycol, Conventional, s 3.1.1.1
definition – Glycol, Non-, s 3.1.1.3
definition – Glycol, Non-conventional, s 3.1.1.2
definition – Glycol, s 3.1.1.1
definition – HOWV, s 4.2.3.1 42
definition – lot, Type II/III/IV, s 4.3
definition – LOUT, Type II/III/IV, s 1.3.1
definition – Non-glycol, s 3.1.1.3
definition – pseudoplastic, s 1.1.4
fluid commingling. See Type I – commingling; Type II/III/IV commingling
fluid manufacturer documentation – aerodynamic acceptance data, ss 1.1.2, 3.2.5.2
fluid manufacturer documentation – aquatic toxicity, s 3.1.4
fluid manufacturer documentation – biodegradability, s 3.1.6.3
fluid manufacturer documentation – BOD, s 3.1.6.1
fluid manufacturer documentation – cold storage stability, 3.2.2.10
fluid manufacturer documentation – dry-out exposure to cold dry air, s 3.2.2.3
fluid manufacturer documentation – exposure to dry air, s 3.2.2.2
fluid manufacturer documentation – flash point, s 3.2.1.1
fluid manufacturer documentation – fluid stability, s 3.2.2
fluid manufacturer documentation – hard water stability, s 3.2.2.8
fluid manufacturer documentation – HHET, s 3.2.4.1
fluid manufacturer documentation – LOUT for intended dilutions, s 1.3.1
fluid manufacturer documentation – LOUT, s 1.3.1
fluid manufacturer documentation – materials compatibility data, 3.3.2
fluid manufacturer documentation – pavement compatibility, s 3.3.5
fluid manufacturer documentation – pH limits, s 3.2.1.3
fluid manufacturer documentation – physical properties, s 3.2
fluid manufacturer documentation – refractive index limits, s 3.2.1.4
fluid manufacturer documentation – safety data sheet, ss 1.3.2.4, 5.2
fluid manufacturer documentation – specific gravity, s 3.2.1.2
fluid manufacturer documentation – storage stability, s 3.2.2.6
fluid manufacturer documentation – successive dry out and rehydration, s 3.2.2.4
fluid manufacturer documentation – surface tension, s 3.2.1.5
fluid manufacturer documentation – tendency to foam, s 3.2.2.9
fluid manufacturer documentation – thin film thermal stability, s 3.2.2.5
fluid manufacturer documentation – TOD or COD, s 3.1.6.2
fluid manufacturer documentation – toxicity data, s 3.1.4
fluid manufacturer documentation – trace contaminants, s 3.1.7
fluid manufacturer documentation – Type I, Type II or Type IV, s 1.1.2
fluid manufacturer documentation – viscosity limits, s 3.2.3.3
fluid manufacturer documentation – WSET, s 3.2.4.1
fluid, neat. See also Type II/III/IV – neat fluid
fluid, non-Newtonian – definition, s 1.1.3
fluid, non-Newtonian, Title at p 1, ss 1.1, 1.1.3, 3.2.3, 3.2.3.1
fluid, pseudoplastic – definition, s 1.1.4

42 See footnote 5.
fluid, pseudoplastic, Title at p 1, ss 1.1.4, 3.2.3
fluid, thickened. See Type II/III/IV
freezing point depressant, Glycol, Conventional and Non-Conventional, ss 3.1.1, 3.1.2.1
freezing point depressant, Glycol, Conventional, ss 3.1.1, 3.1.1.1
freezing point depressant, Glycol, Non-conventional, ss 3.1.1, 3.1.1.2
freezing point depressant, Non-glycol, ss 3.1.1, 3.1.1.3, 3.1.2.2, 3.1.3
glycerine. See Glycol, Non-conventional – glycerine
Glycol – definition, s 3.1.1.1
Glycol, Conventional – definition, s 3.1.1.1
Glycol, Conventional – diethylene glycol, ss 3.1.1.1, 3.1.2.1
Glycol, Conventional – ethylene glycol, ss 3.1.1.1, 3.1.2.1
Glycol, Conventional – propylene glycol, ss 3.1.1.1, 3.1.2.1
Glycol, Conventional and Non-conventional – definition, s 3.1.1
glycol, Non-. See Non-glycol
Glycol, Non-conventional – 1,3-propanediol, s 3.1.1.2
Glycol, Non-conventional – definition, s 3.1.1.2
Glycol, Non-conventional – glycerine, s 3.1.1.2
Glycol, Non-conventional – organic non-ionic diols and triols, mixtures of, s 3.1.1.2
Glycol, Non-conventional – organic non-ionic diols and triols, mixtures with Conventional Glycol, s 3.1.1.2
Glycol, Non-conventional – organic non-ionic diols and triols, s 3.1.1.2
HHET – Type II 50/50 – 0.5 hours minimum, s 3.2.4.1
HHET – Type II 75/25 – 2 hours minimum, s 3.2.4.1
HHET – Type II neat – 4 hours minimum, s 3.2.4.1
HHET – Type III 75/25 – determine and report, s 3.2.4.1
HHET – Type III 50/50 – determine and report, s 3.2.4.1
HHET – Type III neat – 2 hours minimum, s 3.2.4.1
HHET – Type IV 50/50 – 0.5 hours minimum, s 3.4.2.1
HHET – Type IV 75/25 – 2 hours minimum, s 3.4.2.1
HHET – Type IV neat – 8 hours minimum, s 3.4.2.1
LOUT – Type II/III/IV – definition, s 1.3.1
maximum on-wing viscosity. See HOWV
neat. See Type II/III/IV – neat fluid
Non-conventional Glycol. See Glycol, Non-conventional
Non-glycol – definition, s 3.1.1.3
Non-glycol – organic salts mixtures with Glycol, ss 3.1.1.3, 3.1.2.2, 3.1.3
Non-glycol – organic salts, mixtures of, ss 3.1.1.3, 3.1.2.2, 3.1.3
Non-glycol – potassium acetate, ss 3.1.1.3, 3.1.2.2, 3.1.3
Non-glycol – potassium formate, ss 3.1.1.3, 3.1.2.2, 3.1.3
Non-glycol – sodium acetate, ss 3.1.1.3, 3.1.2.2, 3.1.3
non-Newtonian fluid. See fluid, non-Newtonian
propylene glycol. See also Glycol, Conventional – propylene glycol; EG v PG
pseudoplastic fluid. See fluid, pseudoplastic
refractometer – Brix scale, s 3.2.1.4
shear thinning. See Type II/III/IV – shear thinning
Type II 50/50 – HHET 0.5 hours minimum, s 3.2.4.1
Type II 50/50 – WSET 5 minutes minimum, s 3.2.4.1
Type II 75/25 – HHET 2 hours minimum, s 3.2.4.1
Type II 75/25 – WSET 20 minutes minimum, s 3.2.4.1
Type II color – yellow, s 1.1.2

43 Thickened fluid is a generic term for Type II/III/IV fluids as all these fluids contain thickeners.
Type II neat – HHET 4 hours minimum, s 3.2.4.1
Type II neat – WSET 30 minutes minimum, s 3.2.4.1
Type II. See also Type II/III/IV; Type II/IV
Type II/III/IV – aerodynamic acceptance of highest viscosity dilution sample, s 3.2.5.3
Type II/III/IV – aerodynamic acceptance of sheared sample, s 3.2.5.1
Type II/III/IV – aerodynamic acceptance of unsheared sample, s 3.2.5.1
Type II/III/IV – aerodynamic acceptance, ss 1.1.2, 3.2.5
Type II/III/IV – anti-icing performance, s 3.2.4.1
Type II/III/IV – apparent viscosity ss 1.1.3, 1.1.4
Type II/III/IV – appearance s 3.1.5
Type II/III/IV – application s 1.2
Type II/III/IV – approval by purchaser s 4.4.1
Type II/III/IV – approval, re- ss 4.2.3, 4.4.2
Type II/III/IV – aquatic toxicity, s 3.1.6.4
Type II/III/IV – biodegradability, s 3.1.6.3
Type II/III/IV – BOD, s 3.1.6.1
Type II/III/IV – Brix, s 3.2.1.4
Type II/III/IV – Brookfield LV viscometer, s 3.2.3.2.1
Type II/III/IV – cadmium reporting requirement, s 3.1.7
Type II/III/IV – carbon brake compatibility, s 1.3.6
Type II/III/IV – certificate of analysis, s 4.2.1
Type II/III/IV – change in formulation, ss 4.2.3, 4.4.2
Type II/III/IV – change in ingredients, ss 4.2.3, 4.4.2
Type II/III/IV – change in production method, ss 4.3.2, 4.4.2
Type II/III/IV – chromium reporting requirement, s 3.1.7
Type II/III/IV – circuit breakers, defective, s 1.3.3
Type II/III/IV – classification, ss 1.1.2, 3.2.4.1
Type II/III/IV – COD s 3.1.6.2
Type II/III/IV – cold storage stability, s 3.2.2.10
Type II/III/IV – color – mandatory, Rationale, s 3.1.5
Type II/III/IV – color, ss 1.1.2, 3.1.5
Type II/III/IV – commingling, s 1.3.4
Type II/III/IV – compatibility with brake material, s 1.3.6
Type II/III/IV – composition, s 3.1
Type II/III/IV – contaminants, s 3.1.7
Type II/III/IV – corrosion resistance, stress, s 3.3.2.4.1
Type II/III/IV – corrosion, aluminum alloy, s 3.3.2.2
Type II/III/IV – corrosion, low embrittling cadmium plate, s 3.3.2.3
Type II/III/IV – corrosion, sandwich, s 3.3.2.1
Type II/III/IV – corrosion, stress-, s 3.3.2.4
Type II/III/IV – corrosion, total immersion, s 3.3.2.2
Type II/III/IV – degradation, thermal – heated leading edge dry-out, s 3.2.2.5
Type II/III/IV – direct current hazard, s 1.3.3
Type II/III/IV – dry-out exposure to cold dry air, s 3.2.2.3
Type II/III/IV – dry-out exposure to dry air, s 3.2.2.3
Type II/III/IV – dry-out, heated leading edge, s 3.2.2.5
Type II/III/IV – dry-out, successive test. See Type II/III/IV – successive dry-out and rehydration test
Type II/III/IV – dry-out, successive. See Type II/III/IV – residue; Type II/IV – residue
Type II/III/IV – effect on acrylic plastics, s 3.3.2.6
Type II/III/IV – effect on aircraft materials, s 3.3.2
Type II/III/IV – effect on painted surfaces, s 3.3.3
Type II/III/IV – effect on polycarbonate, s 3.3.2.6.1
Type II/III/IV – effect on transparent plastics, s 3.3.2.6
Type II/III/IV – effect on unpainted surfaces, s 3.3.4
Type II/III/IV – electrochemical dehydrolysis, s 1.3.3
Type II/III/IV – environmental information, s 3.1.6
Type II/III/IV – exposure to cold dry air, s 3.2.2.3
Type II/III/IV – exposure to dry air, s 3.2.2.2
Type II/III/IV – exposure, human, s 1.3.2
Type II/III/IV – FAA/TC list of fluids
Type II/III/IV – fire hazard inhibitor, s 1.3.3
Type II/III/IV – fire hazard, s 1.3.3
Type II/III/IV – flash point, s 3.2.1.1
Type II/III/IV – fluid elimination, s 3.2.5.4
Type II/III/IV – fluid list (FAA/TC), s 1.5
Type II/III/IV – foam, tendency to, s 3.2.2.9
Type II/III/IV – freezing point buffer, s 1.3.1
Type II/III/IV – freezing point, s 3.3.1
Type II/III/IV – friction, s 1.3.5
Type II/III/IV – glycol dehydrolysis, s 1.3.3
Type II/III/IV – halogen reporting requirement, s 3.1.7
Type II/III/IV – hard water composition, s 3.2.2.8.1
Type II/III/IV – hard water stability, s 3.2.2.8
Type II/III/IV – HHET requirements, s 3.4.2.1
Type II/III/IV – high viscosity sample, ss 3.2.5.3, 4.2.3.1
Type II/III/IV – highest viscosity dilution, s 3.2.5.3
Type II/III/IV – HOWV, s 4.2.3.1
Type II/III/IV – HOWV, s 4.2.3.1
Type II/III/IV – hydrogen embrittlement, s 3.3.2.5
Type II/III/IV – label – AMS1428/1 or AMS1428/2, s 5.1.2
Type II/III/IV – label – fluid manufacturer’s identification, s 5.1.2
Type II/III/IV – label – lot number, s 5.1.2
Type II/III/IV – label – purchase order number, s 5.1.2
Type II/III/IV – label – quantity, s 5.1.2
Type II/III/IV – lead reporting requirement, s 3.1.7
Type II/III/IV – leading edge dry-out, heated, s 3.2.2.5
Type II/III/IV – licensee manufacturing, s 4.4.3
Type II/III/IV – list of qualified fluids, s 1.5
Type II/III/IV – lot – definition, s 4.3
Type II/III/IV – lot acceptance, s 4.2.1
Type II/III/IV – lot, ss 4.1, 4.2.1, 4.3, 4.5.1.1, 5.1.1.1, 5.1.2
Type II/III/IV – LOUT – fluid manufacturer obligation to report, s 1.3.1
Type II/III/IV – LOUT, s 1.3.1
Type II/III/IV – low embrittling cadmium plate, s 3.3.2.3

Both the FAA and Transport Canada issue a list of fluids. If a document refers to both, it will be indexed as “fluid list (FAA/TC)”. If the document refers to only one list, it will be indexed as “fluid list (FAA)” or “fluid list (TC)”, as the case may be.

ARP5718B recommends to fluid manufacturers to carefully select the viscosities of the high viscosity sample and low viscosity sample before submitting to the testing laboratories, as these viscosities will be used to establish the quality control limits for the fluid delivered. The viscosity of the high viscosity sample will become the highest on-wing viscosity (HOWV), also known as the maximum on-wing viscosity (MOWV).

See footnote 5

Section 1.5 of AMS1428J refers to the FAA’s and Transport Canada’s list of qualified fluids. FAA and Transport Canada no longer use the term “qualified” for the fluid list published in their holdover time guidelines.
Type II/III/IV – Low Viscosity sample, s 4.2.3.2
Type II/III/IV – magnesium alloy, corrosion of, s 3.3.2.2
Type II/III/IV – materials compatibility, s 3.3.2
Type II/III/IV – maximum on-wing viscosity. See Type II/III/IV – HOWV
Type II/III/IV – mercury reporting requirement, s 3.1.7
Type II/III/IV – mixing with fluid from different manufacturers, s 1.3.4
Type II/III/IV – mixture with other fluids, s 1.3.4
Type II/III/IV – multiple location manufacturing, s 4.4.3
Type II/III/IV – neat, ss 1.3.1, 3.2.1
Type II/III/IV – nitrate reporting requirement, s 3.1.7
Type II/III/IV – noble metal coated wiring, s 1.3.3
Type II/III/IV – non-glycol based, ss 3.1.1, 3.1.1.3, 3.1.3
Type II/III/IV – non-Newtonian, ss 1.1, 1.1.3
Type II/III/IV – overnight exposure to dry air, s 3.2.2.2
Type II/III/IV – packaging, s 5.1
Type II/III/IV – pavement compatibility, s 3.3.5
Type II/III/IV – pH, s 3.2.1.3
Type II/III/IV – phosphate reporting requirement, s 3.1.7
Type II/III/IV – polycarbonate, effect on. See Type II/III/IV – effect on transparent plastics
Type II/III/IV – preproduction tests, ss 3.2.2.2.2, 3.2.5.3.1, 4.2.3, 4.2.3.1, 48, 4.5.2, A.4, A.5.1, A.6.4
Type II/III/IV – pseudoplastic, s 1.1.4
Type II/III/IV – qualification, initial – report, s 4.5.1.1
Type II/III/IV – qualification, initial, ss 4.2.3.3, 4.2.3.1, 4.2.3.2, 4.5.1.3
Type II/III/IV – qualification, periodic re- – 50/50, ss 4.2.2, 4.5.1.2
Type II/III/IV – qualification, periodic re- – 75/25, ss 4.2.2, 4.5.1.2
Type II/III/IV – qualification, periodic re- – comparison to initial qualification, s 4.5.1.2
Type II/III/IV – qualification, periodic re- – neat, ss 4.2.2, 4.5.1.2
Type II/III/IV – qualification, periodic re- – sample, ≤ 6 months, s 4.2.2
Type II/III/IV – qualification, periodic re- – test facility, approved, s 4.5.1.3
Type II/III/IV – qualification, periodic re- – test facility, independent, s 4.5.1.3
Type II/III/IV – qualification, periodic re- – test variability, s 4.5.1.3
Type II/III/IV – qualification, periodic re- – what: viscosity, s 4.2.2, 4.5.1.2
Type II/III/IV – qualification, periodic re- – what: WSET and HHET, ss 4.2.2, 4.5.1.2
Type II/III/IV – qualification, periodic re- – when: every 2 years, s 4.2.2
Type II/III/IV – qualification, periodic re-, ss 4.2.2, 4.5.1.2
Type II/III/IV – quality assurance, s 4
Type II/III/IV – reaction, exothermic, s 1.3.3
Type II/III/IV – re-approval, ss 4.2.3, 4.4.2
Type II/III/IV – refractive index, s 3.2.1.4
Type II/III/IV – rejection, ss 4.6, 7
Type II/III/IV – requalification. See Type II/III/IV – qualification, periodic re-
Type II/III/IV – resampling, s 4.6
Type II/III/IV – residue – effect on flight safety, s 1.3.7
Type II/III/IV – residue – in aerodynamically quiet areas, s 1.3.7
Type II/III/IV – residue – in cavities, s 1.3.7
Type II/III/IV – residue – in gaps, s 1.3.7
Type II/III/IV – residue formation – first step application of Type II/III/IV in two-step application, s 1.3.7
Type II/III/IV – residue formation – one-step application of Type II/III/IV, s 1.3.7
Type II/III/IV – residue formation test. See Type II/III/IV – successive dry out and rehydration test

48 Several sections refer to preproduction samples or tests. The initial qualification tests of ss 4.2.3, 4.2.3.1, 4.2.3.2 are performed on preproduction samples. This is made explicit in ss A.4, A.5.1, A.6.4.
Type II/III/IV – residue formation, s 3.2.2.4
Type II/III/IV – residue formation. See also Type II/IV – residue formation
Type II/III/IV – residue. See also Type II/IV – residue
Type II/III/IV – retesting, s 4.6
Type II/III/IV – rheological properties, s 3.2.3
Type II/III/IV – runway concrete scaling, s 3.3.5.1
Type II/III/IV – sales specification, s 3.2.3.3
Type II/III/IV – same ingredients, s 4.4.2
Type II/III/IV – sample selection, ss 4.2.3, 4.2.3.1, 4.2.3.2
Type II/III/IV – sample selection. See also HOT, process to obtain – sample selection
Type II/III/IV – shear stability, s 3.2.2.7
Type II/III/IV – shear stress, effect on apparent viscosity, ss 1.1.3, 1.1.4
Type II/III/IV – shear thinning⁴⁹, s 1.1.4
Type II/III/IV – silver coated wiring, s 1.3.3
Type II/III/IV – slipperiness, s 1.3.5
Type II/III/IV – specific gravity, s 3.2.1.2
Type II/III/IV – specification – AMS1428, Title at p 1
Type II/III/IV – storage stability waived, s 4.2.3
Type II/III/IV – storage stability, cold, s 3.2.2.10
Type II/III/IV – storage stability, s 3.2.2.6
Type II/III/IV – storage, long term, s 3.2.2.1
Type II/III/IV – stress-corrosion resistance, s 3.3.2.4
Type II/III/IV – subcontractor manufacturing, s 4.4.3
Type II/III/IV – successive dry out and rehydration test, s 3.2.2.4, Appendix A
Type II/III/IV – sulfur reporting requirement, s 3.1.7
Type II/III/IV – surface tension, s 3.2.1.5
Type II/III/IV – switches, defective, s 1.3.3
Type II/III/IV – technical requirements, s 3
Type II/III/IV – temperature cycling, s 3.2.2.10
Type II/III/IV – thermal stability, accelerated aging, s 3.2.2.1
Type II/III/IV – thermal stability, thin film, s 3.2.2.5
Type II/III/IV – thickened fluid, s 3.2.3
Type II/III/IV – titanium corrosion resistance, s 3.3.2.2
Type II/III/IV – TOD, s 3.1.6.2
Type II/III/IV – toxicity, s 3.1.4
Type II/III/IV – trace contaminants, s 3.1.7
Type II/III/IV – transportation, s 5.1.3
Type II/III/IV – U.S Military procurement, s 4.2.3.3
Type II/III/IV – undiluted fluid, ss 1.3.1, 3.2.1
Type II/III/IV – viscosity limits, s 3.2.3.3
Type II/III/IV – viscosity measurement, s 3.2.3.2
Type II/III/IV – wiring, defective, s 1.3.3
Type II/III/IV – WSET limits, s 3.2.4.1
Type III – color – bright yellow, s 1.1.2
Type III 50/50 – HHET determine and report, s 3.2.4.1
Type III 50/50 – WSET determine and report, s 3.2.4.1
Type III 75/25 – HHET determine and report, s 3.2.4.1
Type III 75/25 – WSET determine and report, s 3.2.4.1
Type III neat – HHET 2 hours minimum, s 3.2.4.1
Type III neat – WSET 20 minutes minimum, s 3.2.4.1

⁴⁹ Shear thinning is generally considered a synonym of pseudoplastic, that is a fluid whose viscosity is decreased when subjected to shear strain (excluding time dependent effects).
Type III. See also Type II/III/IV
Type IV – color – green, s 1.1.2
Type IV 50/50 – HHET 0.5 hours minimum, s 3.2.4.1
Type IV 50/50 – WSET 5 minutes minimum, s 3.2.4.1
Type IV 75/25 – HHET 2 hours minimum, s 3.2.4.1
Type IV 75/25 – WSET 20 minutes minimum, s 3.2.4.1
Type IV neat – HHET 8 hours minimum, s 3.2.4.1
Type IV neat – WSET 80 minutes minimum, s 3.2.4.1
Type IV. See also Type II/III/IV; Type II/IV
viscometer, Brookfield LV – cold storage stability, s 3.2.2.10
viscometer, Brookfield LV – highest viscosity dilution, s 3.2.5.3.1
viscometer, Brookfield LV – small sample adapter, ss 3.2.3.2, 3.2.5.1
viscometer, Brookfield LV – Type II/III/IV viscosity measurement, ss 3.2.3.2, 3.2.3.2.1
WSET – Type II 50/50 – 5 minutes minimum, s 3.2.4.1
WSET – Type II 75/25 – 20 minutes minimum, s 3.2.4.1
WSET – Type II neat – 30 minutes minimum, s 3.2.4.1
WSET – Type III 50/50 – determine and report, s 3.2.4.1
WSET – Type III 75/25 – determine and report, s 3.2.4.1
WSET – Type III neat – 20 minutes minimum, s 3.2.4.1
WSET – Type IV 50/50 – 5 minutes minimum, s 3.2.4.1
WSET – Type IV 75/25 – 20 minutes minimum, s 3.2.4.1
WSET – Type IV neat – 80 minutes minimum, s 3.2.4.1

AMS1428/1 Fluid, Aircraft Deicing/Anti-icing, Non-Newtonian (Pseudoplastic), SAE Type II, III and IV Glycol (Conventional and Non-Conventional) Based

Issued 2017-02-14 by SAE G-12 ADF.

SAE Type II, II and IV fluids based on Conventional and Non-conventional Glycol freezing point depressants are defined and identified as AMS1428/1 (read AMS1428 slash one) Type II, III and IV fluids. The purpose of the AMS1428/1 specification, which is called a category specification, is to identify the SAE Type I fluid as a Glycol (Conventional or Non-conventional) based fluid. For further information, read the definition of Glycol Conventional and Non-Conventional in AMS1428K, which is defined as the base specification.

Keywords:
AMS1428/1, Title at p 1
category specification, s 1.1.1
foundation specification, s 1.1.1
freezing point depressant – Glycol, Conventional, s.1.1.1
freezing point depressant – Glycol, Non-conventional, s 1.1.1
freezing point depressant – Glycol, s 1.1.1
freezing point depressant – Non-glycol, s 1.1.1
Glycol, Conventional, s 1.1.1
Glycol, Non-conventional, s 1.1.1
specification, category, s 1.1.1
specification, foundation, s 1.1.1
AMS1428/2 Fluid, Aircraft Deicing/Anti-icing, Non-Newtonian (Pseudoplastic), SAE Type II, III and IV Non-Glycol Glycol Based

Issued 2017-02-09 by SAE G-12 ADF.

SAE Type II, II and IV fluids based on Non-Glycol freezing point depressants are defined and identified as AMS1428/2 (read AMS1428 slash two) Type II, III and IV fluids. The purpose of the AMS1428/2 specification, which is called a category specification, is to identify the SAE Type II, III and IV fluids as a Non-Glycol based fluid. For further information, read the definition of Glycol Conventional and Non-Conventional in AMS1428K, which is called the base specification.

Keywords:
AMS1428/2, Title at p 1
category specification, s 1.1.1
foundation specification, s 1.1.1
freezing point depressant – Glycol, Conventional, s.1.1.1
freezing point depressant – Glycol, Non-conventional, s 1.1.1
freezing point depressant – Glycol, s 1.1.1
freezing point depressant – Non-glycol, s 1.1.1
Glycol, Conventional, s 1.1.1
Glycol, Non-conventional, s 1.1.1
specification, category, s 1.1.1
specification, foundation, s 1.1.1
Type II/III/IV – Glycol (Conventional and Non-conventional) based, Title at p 1, s 1.1.1
Type II/III/IV – Glycol (Conventional) based, s 1.1.1
Type II/III/IV – Glycol (Non-conventional) based, s 1.1.1
Type II/III/IV – purchase documents, ss 2, 9.2
Type II/III/IV – specification – AMS1428/1, Title at p 1

AS9968 Laboratory Viscosity Measurement of Thickened Aircraft Deicing/Anti-icing Fluids with the Brookfield LV Viscometer

Issued 2014-07-22 by SAE G-12 ADF.
AS9968 describes a standard laboratory method (as opposed to a field method) for viscosity measurements of thickened (SAE Type II, III and IV) anti-icing fluids. Many fluid manufacturers publish alternate methods for their fluids. In case of conflicting results between the two methods, the manufacturer method takes precedence. To compare viscosities, exactly the same measurement elements (including spindle size, speed of rotation, time after beginning of rotation, container size and temperature) must have been used to obtain those viscosities.

Keywords:
- fluid manufacturer documentation – viscosity measurement method, s 1
- Type II/III/IV – viscosity measurement, Title at p 1, Rationale at p 1
- viscometer, Brookfield LV, Title at p 1, Rationale at p 1, ss 3.1, 3.3.8.1
- viscosity measurement method – air bubble free sample s 3.3.2
- viscosity measurement method – air bubble removal by centrifugation s 3.3.2
- viscosity measurement method – AS9968 v fluid manufacturer, s 1
- viscosity measurement method – AS9968, Title at p 1, s 1
- viscosity measurement method – Brookfield LV viscometer, Title at p1, Rationale at p
- viscosity measurement method – fluid manufacturer, Rationale at p 1, s 1
- viscosity measurement method – precedence of fluid manufacturer method over AS9968, s 1
- viscosity measurement method – report, s 8
- viscosity measurement method – Type II/III/IV, Title at p1, Rationale at p 1

AIR5704 Field Viscosity Test for Thickened Aircraft Anti-Icing Fluids

Reaffirmed 2016-06-09 by SAE G-12 ADF.

AIR5704 provides a description of a field screening method (or field “viscosity” check) for verifying an SAE Type II, III or IV anti-icing fluid is above its minimum low shear viscosity as published with holdover time guidelines. The test will determine if the fluid is (a) satisfactory, (b) unsatisfactory, or (c) borderline needing more advanced viscometry testing. Other field tests may be required to determine if an anti-icing fluid is useable, such as refractive index, pH, appearance or other tests as may be recommended by the fluid manufacturer.

This field viscosity test is not suitable for all Type II/II/IV.

Keywords:

50 *Viscosity measurement methods and viscosity field check.* There are three ways of verifying that an SAE Type II/III/IV is above its lowest on-wing viscosity (LOWV): a) viscosity measurement method provided by the fluid manufacturer (the “manufacturer method”), b) viscosity measurement method described in AS9968 (the “AS9968 method”) and c) “viscosity” field check (or field test) as described in AIR5704 or provided by the fluid manufacturer, such as a falling ball method. Here, we attempt to make a distinction between the laboratory viscosity measurement methods which use a Brookfield LV viscometer where the result is a numerical viscosity value in mPa·s and viscosity field checks where the result is generally a pass/fail result without a numerical viscosity value.
air bubble removal by centrifugation, s 3.2
Stony Brook apparatus for viscosity field check, s 3.3
viscosity field check – air bubble removal by centrifugation, s 3.2
viscosity field check – air bubbles, s 3.2
viscosity field check – screening method, Rationale at p 1
viscosity field check – Stony Brook apparatus, s 3.3
viscosity field check – Type II/III/IV, Title at p 1
viscosity field check – v fluid manufacturer method, Foreword at p 1, see footnote 50
viscosity field check, Title at p 1
viscosity field test. See viscosity field check
viscosity measurement method – v field check see footnote 50
Documents Issued by the SAE G-12 Holdover Time Committee

ARP6207 Qualification Required for SAE Type I Aircraft Deicing/Anti-icing Fluids

Issued 2017-10-10 by SAE G-12 HOT.

The purpose of ARP6207 is to explain to fluid manufacturers and users, at a high level, the steps required for an experimental fluid i) to become a commercially useable fluid, ii) to be allowed to use the generic Type holdover times, and iii) to be listed on the FAA and Transport Canada list of fluids.

Meeting all the technical requirements of AMS1424P is insufficient for a Type I deicing fluid to be used on an aircraft. ARP56207 explains that there are four conditions to commercialize an SAE Type I fluid, the first three are mandatory, the fourth one is highly recommended: 1) meet the technical requirements of AMS1424, 2) be identified on the FAA/Transport Canada fluid list and 3) have a performance such that it can be used with generic Type I holdover time guidelines published by the FAA/Transport Canada and 4) running a field spray test to demonstrate operational performance.

ARP6207 a) describes the preparatory steps to test an experimental fluid according to AMS1424, b) advises fluid manufacturers on sample selection issues for experimental fluids, c) provides a suggested protocol for field spray testing, d) details the protocol to demonstrate that an experimental Type I can be used with the FAA/Transport Canada generic Type I holdover time guidelines, e) explains the process for inclusion and exclusion of fluids on the FAA/Transport Canada fluid list, f) describes the role of the SAE G-12 ADF and HOT Committees and g) the publication process for Type I holdover time guidelines.

Its sister document for AMS1428 fluids, is ARP5718B whose title is Qualifications Required for SAE Type II/III/IV aircraft Deicing/Anti-Icing Fluid.

Keywords:
aerodynamic acceptance – definition, s 2.3
aircraft manufacturer documentation – list fluid types allowed on aircraft, footnote 1 at p 1
alkali organic salt based Type I – effect on Type II/III/IV protection time, s 3.2
alkali organic salt based Type I – exclusion from the fluid list (FAA/TC), s 3.2
alkali organic salt based Type I – HOT – invalid, s 3.2
allowance time – definition, s 2.3
allowance time – failure mode – aerodynamic and visual, s 2.3
allowance time – Type I – none, s 3.5
allowance time – Type II – none, s 3.5
allowance time – Type III neat, s 3.5
allowance time – Type IV neat, s 3.5
allowance time – wind tunnel testing, s 3.5
allowance time. See also wind tunnel testing
AMS1424 – purpose – minimum requirements for Type I, s 3.3.1
AMS1424/1 – purpose – identity of freezing point depressant, s 3.2
AMS1424/2 – purpose – identity of freezing point depressant, s 3.2
AOS. See alkali organic salt
color intensity, evaluation of – field spray test, s 4.3d
definition – aerodynamic acceptance, s 2.3
definition – allowance time, s 2.3
definition – endurance time, s 2.3
definition – FAA/TC list of fluids. See definition – fluid list (FAA/TC)
definition – fluid list (FAA/TC), s 2.3
definition – HOT guideline, fluid-specific, s 2.3
definition – HOT guideline, generic, ss 2.3, 5.5
definition – HOT guideline, s 2.3
definition – HOT table. See definition – HOT guideline
definition – HOT, s 2.3
definition – LOUT, Type I, s 2.3
definition – WSET, s 2.3
endurance time – definition, s 2.3
endurance time tests – Type I – glycol based – none, s 3.4.1
endurance time tests – Type I – non-glycol based – test required, s 3.4.1
endurance time tests – Type I – sample selection, s 3.4.2
FAA/Transport Canada list of fluids. See fluid list (FAA/TC)
failure mode, allowance time – aerodynamic and visual, s 2.3
failure mode, endurance time – visual, s 2.3
failure mode, HOT – visual, s 2.3
field spray test. See spray test, field
fluid list (FAA/TC) – addition of new Type I fluid, ss 5.6.2, 5.7
fluid list (FAA/TC) – definition, s 2.3
fluid list (FAA/TC) – fluid expiry dates, s 5.7c
fluid list (FAA/TC) – fluid manufacturer deadline to provide data – June 01, ss 5.6.1, 5.6.2, 5.6.3, 9
fluid list (FAA/TC) – obsolete data, removal of, ss 5.7b, 5.8
fluid list (FAA/TC) – publication process, ss 5.7, 5.8, 8, 9
fluid list (FAA/TC) – publication timeline, ss 8, 9
fluid manufacturer – obligation to provide to FAA/TC – additional requested data, s 5.6.4
fluid manufacturer – obligation to provide to FAA/TC – data – general obligation, s 5.6
fluid manufacturer – obligation to provide to FAA/TC – deadlines, ss 5.3, 5.6.1, 5.6.2, 5.6.3, 5.9.3, 9
fluid manufacturer – obligation to provide to FAA/TC – Type I – list of fluids to be commercialized by June 01, ss 5.6.1, 9
fluid manufacturer – obligation to provide to FAA/TC – Type I – periodic requalification test report – aerodynamic acceptance, ss 5.6.3, 5.6.3.1
fluid manufacturer – obligation to provide to FAA/TC – Type I – periodic requalification test report – anti-icing performance, ss 5.6.3, 5.6.3.1
fluid manufacturer – obligation to provide to FAA/TC – Type I – restrictions on use of, s 5.2
fluid manufacturer – obligation to provide to FAA/TC – Type I (licensee location) – initial qualification test report – aerodynamic acceptance, s 5.7.2
Aircraft Deicing Documents – Issued by the G-12 Holdover Time Committee

fluid manufacturer – obligation to provide to FAA/TC – Type I (licensee location) – original qualification test data, s 5.7.2
fluid manufacturer – obligation to provide to FAA/TC – Type I (licensee location) – initial qualification test report – WSET, s 5.7.2
fluid manufacturer – obligation to provide to FAA/TC – Type I (new) – initial qualification test report – aerodynamic acceptance, high speed and or low speed, ss 5.6.2, 5.6.2.1b
fluid manufacturer – obligation to provide to FAA/TC – Type I (new) – initial qualification test report – anti-icing performance, ss 5.6.2, 5.6.2.1a
fluid manufacturer – obligation to provide to FAA/TC – Type I (new) – freezing point data, 5.6.2, 5.6.2.1c
fluid manufacturer – obligation to provide to FAA/TC – Type I (new) – endurance time data, s 3.4.1
fluid manufacturer – obligation to provide to FAA/TC – Type I (new) EG based – endurance time data not required, s 3.4.1
fluid manufacturer – obligation to provide to FAA/TC – Type I (new) PG based – endurance time data not required, s 3.4.1
fluid manufacturer – obligation to provide to FAA/TC – Type I (new) DEG based – endurance time data not required, s 3.4.1
fluid manufacturer – obligation to provide to FAA/TC – Type I (new) – final name by May 01, s 5.3
fluid manufacturer – obligation to provide to FAA/TC – Type I (new) – unique name, s 5.3
fluid manufacturer – sample selection considerations, Type I, ss 3.3.2, 3.4.2
fluid name – final commercial name, s 5.3
fluid name – formulation change, upon, s 5.3
fluid name – new unique name, s 5.3
fluid name – reformulation, s 5.3
fluid, new – data required for use with generic HOT, s 5.7
fluid, new – new unique name, mandatory, s 5.3
fluid, new – obligation to provide information to FAA/TC, s 5.6.2
fluid-specific HOT guidelines. See HOT, fluid-specific
foam, tendency to – field spray test, s 4.3a
formulation change – name change, s 5.3
freezing point buffer – Type I – 10°C, s 2.3
generic HOT guidelines. See HOT, generic
HOT – definition, s 2.3
HOT – failure mode – visual, s 2.3
HOT – guideline – definition, s 2.3
HOT – guideline – fluid-specific – definition, s 2.3
HOT – guideline – generic – definition, s 2.3
HOT – guideline – publication date, ss 8, 9
HOT – guideline – publication timeline for, s 9
HOT – Type I fluid-specific – none, s 2.3
HOT table synonym for HOT guideline, s 2.3
HOT, preparation of Type I – cautions – HOT reduced – aircraft skin temperature lower than OAT, s 5.1.4a
HOT, preparation of Type I – cautions – no inflight-protection, s 5.1.4b
HOT, preparation of Type I – cautions – protection time shortened – jet blast, s 5.1.4a
HOT, preparation of Type I – cautions – protection time shortened – high winds, s 5.1.4a
HOT, preparation of Type I – cautions – protection time shortened – heavy weather, 5.1.4a
HOT, preparation of Type I – cautions – protection time shortened – heavy precipitation rates, s 5.1.4a
HOT, preparation of Type I – cautions – protection time shortened – high moisture content, s 5.1.4a
HOT, preparation of Type I – cells, s 5.1.2
HOT, preparation of Type I – date of issue, s 5.1.5
HOT, preparation of Type I – date of obsolescence, s 5.1.5
HOT, preparation of Type I – date of revision, s 5.1.5
HOT, preparation of Type I – fluid product names, s 5.3
HOT, preparation of Type I – fluid specific – none published, ss 2.3, 5.1, 5.4
HOT, preparation of Type I – format, s 5.1
HOT, preparation of Type I – generic – aluminum materials, s 5.1
HOT, preparation of Type I – generic – composite materials, s 5.1
HOT, preparation of Type I – generic – frost, active, s 5.1
HOT, preparation of Type I – generic – unchanging, s 2.3
HOT, preparation of Type I – generic, s 5
HOT, preparation of Type I – generic, ss 2.3, 5.1
HOT, preparation of Type I – HOT values from R&D, s 2.3
HOT, preparation of Type I – HOT values not from endurance time data, s 5.4
HOT, preparation of Type I – HOT values range, s 5.1.2
HOT, preparation of Type I – licensee, s 5.7.2
HOT, preparation of Type I – new fluids, ss 5.6.2, 5.7a
HOT, preparation of Type I – notes, s 5.1.3
HOT, preparation of Type I – obsolete data, removal of, ss 5.7b, 5.8
HOT, preparation of Type I – precipitation categories – freezing fog or ice crystals, s 5.1.1a
HOT, preparation of Type I – precipitation categories – freezing drizzle, s 5.1.1c
HOT, preparation of Type I – precipitation categories – frost, active s 5.1.1
HOT, preparation of Type I – precipitation categories – light freezing rain, s 5.1.1d
HOT, preparation of Type I – precipitation categories – rain on cold soaked wing, s 5.1.1e
HOT, preparation of Type I – precipitation categories – snow, snow grains or snow pellets, s 5.1.1b
HOT, preparation of Type I – precipitation categories, s 5.1.1
HOT, preparation of Type I – ready-to-use dilutions, s 5.7.1
HOT, preparation of Type I – removal of obsolete fluid data, ss 5.7b, 5.8
HOT, preparation of Type I – sample selection – fluid manufacturer considerations, ss 3.3.2, 3.4.2
HOT, preparation of Type I – sample selection, ss 3.3.2, 3.4.2
HOT, preparation of Type I – temperature ranges, s 5.1.2
HOT, preparation of Type I – timeline, s 9
LOUT – Type I – definition, s 2.3
name. See fluid name
new fluid. See fluid, new
product name. See fluid name
SAE G-12 ADF mid-year meeting timeline, s 9
SAE G-12 ADF, role of, s 6
SAE G-12 annual meeting timeline, s 9
SAE G-12 HOT agenda items, mandatory, s 7.3
SAE G-12 HOT co-chairs, s 7.1
SAE G-12 HOT mid-year meeting timeline, s 9
SAE G-12 HOT, role of, s 7
spray test, field – beading, evaluation of, s 4.3b
spray test, field – color intensity, evaluation of, s 4.3d
spray test, field – fisheyes, presence of, s 4.3b
spray test, field – flow, evaluation of, s 4.3c
spray test, field – foam, tendency to, s 4.3a
spray test, field – protocol, s 4.3
spray test, field – reason for, s 4.1
spray test, field – report, s 4.4
spray test, field – residues, presence of, s 4.3e
spray test, field – tendency to foam, evaluation of, s 4.3a
spray test, field – wetting, evaluation of, s 4.3b
spray test, field, s Foreword at p 1, s 4, see footnote 51
spray trial, field. See spray test, field
Transport Canada/FAA list of fluids. See fluid list (FAA/TC)
ARP5945A Endurance Time Tests for SAE Type I Aircraft Deicing/Anti-icing Fluids

Revised 2017-10-10 by SAE G-12 HOT.

ARP5945A provides sample selection criteria and test procedures for SAE Type I aircraft deicing/anti-icing fluids, required for the generation of endurance time data of acceptable quality for review by the SAE G-12 HOT. Specifically, ARP5945A describes laboratory endurance procedure testing for freezing fog, freezing drizzle, light freezing rain, rain on cold soaked wing, and snow (two methods, NCAR/APS method and the AMIL method). It describes natural outdoor procedures for snow and frost.

A significant body of previous research and testing has indicated that all Type I fluids formulated with propylene glycol, ethylene glycol, and diethylene glycol perform in a similar manner from an endurance time perspective. Type I deicing/anti-icing fluids whose freezing point depressant is one of those three glycols do not require testing for endurance times. Fluids formulated with 1) glycol freezing point depressants other than those listed above, and 2) all non-glycol freezing point depressants, must be tested for endurance times using the methods described in this ARP5945A.

Its sister document for AMS1428 Type II/III/IV fluids is ARP5485B whose title is Endurance Time Test Procedures for SAE Type II/III/IV Aircraft Deicing/Anti-Icing Fluids.

51 Field spray trial (p 1) and field spray test (s 4.1) appear to be used interchangeably in ARP6207.
Keywords:
contamination [frozen] – appearance – frost on treated surface, s 4.7.2
contamination [frozen] – appearance – ice crystals, disseminated, s 4.7.2
contamination [frozen] – appearance – ice front, s 4.7.2
contamination [frozen] – appearance – ice pieces imbedded in fluid, s 4.7.2
contamination [frozen] – appearance – ice pieces partially imbedded in fluid, s 4.7.2
contamination [frozen] – appearance – ice sheet, s 4.7.2
contamination [frozen] – appearance – slush front, s 4.7.2
contamination [frozen] – appearance – slush in clusters, s 4.7.2
contamination [frozen] – appearance – snow bridges, s 4.7.2
crystallization, delayed, s 4.7.3
definition – endurance time, Foreword at p 1
diethylene glycol based Type I – endurance time tests not required, ss 1.1, 3.1
endurance time – definition, Foreword at p 1
endurance time tests – Type I – crystallization, delayed, s 4.7.3
endurance time tests – Type I – data examination by SAE G-12 HOT, Rationale at p 1, ss 1.1, 1.2
endurance time tests – Type I – data validation by SAE G-12 HOT, Rationale at p 1, ss 1.1, 1.2
endurance time tests – Type I – delayed crystallization, s 4.7.3
endurance time tests – Type I – diethylene glycol based – test not required, s 1.1
endurance time tests – Type I – ethylene glycol based – test not required, s 1.1
endurance time tests – Type I – failure mode – visual, Foreword at p 1
endurance time tests – Type I – failure mode, snow – dilution – more prevalent, s 10.4.6
endurance time tests – Type I – failure mode, snow – dilution, s 10.4.6
endurance time tests – Type I – failure mode, snow – snow-bridging, s 10.4.6
endurance time tests – Type I – failure, frozen contamination – 30% area, s 4.7.2
endurance time tests – Type I – failure, frozen contamination – appearance, s 4.7.2
endurance time tests – Type I – failure, snow – 30% area or non-absorption over 5 crosshairs, s 10.4.6
endurance time tests – Type I – fluid manufacturer documentation – aerodynamic acceptance data, s 3.4.2
endurance time tests – Type I – fluid manufacturer documentation – freezing point data, s 3.2.5b
endurance time tests – Type I – fluid manufacturer documentation – freezing point v dilution data, s 3.2.5a
endurance time tests – Type I – fluid manufacturer documentation – freezing point v refractive index data, s 3.2.5a
endurance time tests – Type I – fluid manufacturer documentation – LOUT, s 3.4.2
endurance time tests – Type I – fluid manufacturer documentation – safety data sheet, s 3.2.5c
endurance time tests – Type I – fog, freezing, s 6
endurance time tests – Type I – freezing drizzle, s 7
endurance time tests – Type I – freezing fog, s 6
endurance time tests – Type I – frost, laboratory s 5
endurance time tests – Type I – frost, natural, s 12
endurance time tests – Type I – glycol based, other – test required, s 1.1
endurance time tests – Type I – ice crystal seeding, s 4.7.3
endurance time tests – Type I – icing intensity measurements by regression analysis, s 4.6.2.2
endurance time tests – Type I – icing intensity measurements with reference ice-catch plates, s 4.6.2.1
endurance time tests – Type I – icing intensity measurements, s 4.6.2
endurance time tests – Type I – light freezing rain, s 8
endurance time tests – Type I – manufacturer’s mandatory documentation, s 3.2.5
endurance time tests – Type I – non-glycol based – test required, ss 1.1, 3.1
endurance time tests – Type I – plate cleanliness, ss 7.4.1, 11.4.1
endurance time tests – Type I – propylene glycol based – test not required, ss 1.1, 3.1
endurance time tests – Type I – purpose, p 1
endurance time tests – Type I – rain on cold soaked wing, s 9
endurance time tests – Type I – regression analysis, ss 4.6.2.2, 6.2.1.3, 11.4.5
endurance time tests – Type I – relation to HOT, Foreword at p 1, s 1.2

66
endurance time tests – Type I – report, s 4.7.4
endurance time tests – Type I – sample selection, ss 1.1, 1.4.2, 1.4.3, 3
endurance time tests – Type I – sample, sheared, ss 3.2.2, 3.2.3, 3.3.1, 3.3.2, 3.4.3
endurance time tests – Type I – snow form excludes: graupel (soft hail), s 11.4.6
endurance time tests – Type I – snow form excludes: hail, s 11.4.6
endurance time tests – Type I – snow form excludes: ice pellets, s 11.4.6
endurance time tests – Type I – snow form excludes: soft hail (graupel), s 11.4.6
endurance time tests – Type I – snow form includes: capped columns, s 11.4.6
endurance time tests – Type I – snow form includes: columns, s 11.4.6
endurance time tests – Type I – snow form includes: irregular particles, s 11.4.6
endurance time tests – Type I – snow form includes: needles, s 11.4.6
endurance time tests – Type I – snow form includes: plates, s 11.4.6
endurance time tests – Type I – snow form includes: snow grains, s 11.4.6
endurance time tests – Type I – snow form includes: spatial dendrites, s 11.4.6
endurance time tests – Type I – snow grains, s 11.4.6
endurance time tests – Type I – temperature, lowest test, ss 3.4.2, 12.3
endurance time tests – Type I – test facility – independence from fluid manufacturer, s 1.5.1
endurance time tests – Type I – test facility, role of, s 1.4.2
endurance time tests – Type I – test facility, ss 1.5.1, 4.4, 4.6.2.4, 4.7.4
endurance time tests – Type I – test plate cleanliness, s 4.7.1
endurance time tests – Type I – testing agent – independence from fluid manufacturer, s 1.4.1
endurance time tests – Type I – testing agent duties, ss 1.4.2, 3.2, 3.3
endurance time tests – Type I – testing agent, role of, ss 1.4.2, 3.2, 3.3,
endurance time tests – Type I – variability across test plates, ’ss 4.6.3, 4.7.4, 6.2.2, 7.2.2, 8.2.2, 9.2.2, 10.2.5
endurance time tests – Type I – water droplet size – dye stain method, s 4.6.5d
endurance time tests – Type I – water droplet size – laser diffraction method, s 4.6.5c
endurance time tests – Type I – water droplet size – slide impact method with colloidal silver, s 4.6.5b
endurance time tests – Type I – water droplet size – slide impact method with oil, s 4.6.5a
endurance time tests – Type I – water hardness, s 4.5.6
endurance time tests – Type I – WSET check on sheared sample, ss 3.2.2, 3.2.3, 3.3.1, 3.3.2
endurance time tests – Type I, Title at p 1, Rationale at p 1, s 3
ethylene glycol based Type I – endurance time tests not required, ss 1.1, 3.1
failure mode, endurance time – visual, Foreword at p 1
failure, plate – 30% coverage with frozen contamination, s 4.7.2
failure, plate. See also contamination [frozen] – appearance
fluid manufacturer documentation. See also endurance time tests – Type I – fluid manufacturer documentation
fluid, supercooled. See crystallization, delayed
non-glycol based Type I – endurance time tests required, ss 1.1, 3.1
propylene glycol based Type I – endurance time tests not required, ss 1.1, 3.1
regression analysis method – icing intensity, ss 4.6.2.2, 6.2.1.3
regression analysis method for icing intensity measurement, Type I, ss 4.6.2.2, 6.2.1.3
SAE G-12 HOT, role of, s 1.2
supercooled fluid. See crystallization, delayed.
Type I – failure criteria, ss Foreword at p 1, 4.7.2, 4.7.3, 6.4.7, 10.4.6, 12.4.4
water droplet size – dye stain method, s 4.6.5d
water droplet size – laser diffraction method, s 4.6.5c
water droplet size – slide impact method with colloidal silver, s 4.6.5b
water droplet size – slide impact method with oil, s 4.6.5a

ARP5718B Qualifications Required for SAE Type II/III/IV Aircraft Deicing/Anti-icing Fluids

Revised 2017-12-07 by SAE G-12 HOT.

In its version B, the document name changed. The version A name was ARP5718A Process to Obtain Holdover Times for Aircraft Deicing/Anti-Icing Fluids, SAE AMS1428 Types II, III, and IV.

The purpose of ARP5718B is to explain to fluid manufacturers and users, at a high level, the steps required for an experimental fluid i) to become a commercially useable fluid, ii) to obtain allowance and holdover times, and iii) to be listed on the FAA and Transport Canada fluid list.

Meeting all the technical requirements of AMS1428 is insufficient for a Type II, III or IV de/anti-icing fluid to be used on an aircraft. For such a fluid to be used commercially, it must be associated to holdover time guideline and be identified on the fluid list published by the FAA and Transport Canada. It is further recommended that a field spray trial be conducted with the fluid to demonstrate acceptable operational performance.

ARP5718B a) describes the preparatory steps to test an experimental fluid according to AMS1428, b) advises fluid manufacturers on sample selection issues, particularly in selecting viscosity parameters for experimental fluids, c) offers a short description of wind tunnel testing for obtaining data to generate allowance times, d) provides a suggested protocol for field spray testing, e) details the protocol used to generate holdover time guidelines form endurance time data, including the format of the holdover time tables, e) explains the process for inclusion and exclusion of fluids on the FAA/Transport Canada fluid list, f) describes the role of the SAE G-12 ADF and HOT Committees and g) the publication process for the Type III/IV allowance and Type II/III/IV holdover time guidelines.

Its sister document for AMS1424 Type I fluids is ARP6207 Qualifications Required for SAE Type I Aircraft Deicing/Anti-icing Fluids.
Keywords:
aerodynamic acceptance – definition, s 2.3
aircraft manufacturer documentation – list fluid types allowed on aircraft, footnote 1 at p 1
allowance time – definition, s 2.3
allowance time – failure mode – aerodynamic and visual, s 2.3
allowance time – precipitation – ice pellets and small hail, s 5.1.1f
allowance time – sample selection – Type II/IV, ss 3.4.3
allowance time – wind tunnel testing, ss 3.4.1, 3.4.2, 3.4.3
allowance time. See also wind tunnel testing
AMIL gel residue tables, s 3.2.3
AMIL gel residue tables. See AMIL gel residue tables
AMS1428 – purpose – minimum requirements for Type II/II/IV fluids, ss 3.2.1
AMS1428/1 – purpose – identity of freezing point depressant, ss 3.2.1
AMS1428/2 – purpose – identity of freezing point depressant, ss 3.2.1
bleed-through. See color bleed-through
color bleed-through – definition, s 4.3
color bleed-through – evaluation, s 4.3
color intensity, evaluation of – field spray test, s 4.3c
definition – aerodynamic acceptance, s 2.3
definition – allowance time, s 2.3
definition – bleed-through, s 4.3c
definition – endurance time, s 2.3
definition – FAA/TC list of fluids. See definition – fluid list (FAA/TC)
definition – fluid list (FAA/TC), ss 2.3
definition – highest useable precipitation rate. See definition – HUPR
definition – HOT guideline, fluid-specific, s 2.3
definition – HOT guideline, generic, ss 2.3, 5.8
definition – HOT guideline, s 2.3
definition – HOT table. See definition – HOT guideline
definition – HOT, s 2.3
definition – HUPR, s 2.3
definition – LOUT, Type II/II/IV, s 2.3
definition – lowest useable precipitation rate. See definition – LUPR
definition – LOWV, ss 2.3, 3.3.2
definition – LUPR, s 2.3
definition – precipitation rate, highest useable. See definition – HUPR
definition – precipitation rate, lowest useable. See definition – LUPR
definition – viscosity limit, lower sales specification, s 2.3
definition – WSET, s 2.3
endurance time – definition, s 2.3
endurance time – limits in natural snow, s 5.5
endurance time – LUPR and HUPR analysis, s 5.5.2
endurance time tests – Type II/II/IV – sample selection, ss 3.3.2
FAA/TC list of fluids. See fluid list (FAA/TC)
failure mode, allowance time – aerodynamic and visual, s 2.3
failure mode, endurance time – visual, s 2.3

AMIL, “Anti-icing Fluids Gel Residue Testing Results”, online: <http://amillaboratory.ca/aircraft-deanti-icing-fluids/aaa/>. Type II/II/IV upon evaporation may leave residue on aircraft surface, particularly in aerodynamically quiet areas. The residues may upon rehydration form gels that are susceptible to freezing and which may hinder the movement of critical parts of the aircraft. Different Type II/II/IV fluids have different propensity to form such residues. AMIL conducted a study where several fluids were tested for the propensity for form rehydrated residues. The results are published online.
The requirement for fluid manufacturers to provide data for each manufacturing location was an explicit requirement of s 5.7.3 of ARP5718A. The section 5.7.3 became section 5.9.3 in ARP5718B but the sentence requiring the provision of data for each manufacturing location is no longer present in that section. We believe it is an implicit obligation as there is no statement excluding multiple sites from reporting.
fluid manufacturer – option not to publish fluid-specific HOT, s 5.7.1
fluid manufacturer – sample selection considerations, Type II/III/IV, ss 3.2.2, 3.3.2
fluid manufacturer licensee – fluid-specific HOT guideline, s 5.7.5
fluid name – final commercial name, s 5.6
fluid name – formulation change, upon, s 5.6
fluid name – new unique name, s 5.6
fluid name – reformulation, s 5.6
fluid residue table, s 3.2.3
fluid retesting, s 5.7.4
fluid, new – development of fluid-specific HOT, s 5.7
fluid, new – new unique name, mandatory, s 5.6
fluid, new – obligation to provide information to FAA/TC, s 5.9
fluid-specific HOT guidelines. See HOT, fluid-specific
foam, tendency to – field spray test, s 4.3a
formulation change – name change, s 5.6
freezing point buffer – Type II/III/IV – 7°C, s 2.3
gel residue table, AMIL, s 3.2.3
generic HOT guidelines. See HOT – generic
high viscosity pre-production sample – MOWV, s 3.2.2
HOT – capping of. See HOT, preparation of Type II/III/IV – HOT values, capping of
HOT – definition, s 2.3
HOT – failure mode – visual, s 2.3
HOT – guideline – definition, s 2.3
HOT – guideline – fluid-specific – definition, s 2.3
HOT – guideline – generic – definition, s 2.3
HOT – guideline – publication date, s 9
HOT – guideline – validity – LOWV, ss 2.3, 5.7.2
HOT – rounding of. See HOT, preparation of Type II/III/IV – HOT values, rounding of
HOT – validity of – LOWV s 5.7.2
HOT table synonym for HOT guideline, s 2.3
HOT, preparation of Type II – generic – to exclude Type IV data, s 5.8
HOT, preparation of Type II/III/IV – cautions – HOT reduced – aircraft skin temperature lower than OAT, s 5.1.5c
HOT, preparation of Type II/III/IV – cautions – HOT reduced – high winds, s 5.1.5b
HOT, preparation of Type II/III/IV – cautions – HOT reduced – jet blast, s 5.1.5b
HOT, preparation of Type II/III/IV – cautions – no inflight-protection, s 5.1.5d
HOT, preparation of Type II/III/IV – cautions – protection time shortened – heavy weather, 5.1.5a
HOT, preparation of Type II/III/IV – cautions – protection time shortened – heavy precipitation rates, s 5.1.5a
HOT, preparation of Type II/III/IV – cautions – protection time shortened – high moisture content, s 5.1.5a
HOT, preparation of Type II/III/IV – cautions, s 5.1.5
HOT, preparation of Type II/III/IV – cells, s 5.1.3
HOT, preparation of Type II/III/IV – date of issue, s 5.1.6
HOT, preparation of Type II/III/IV – date of obsolescence, s 5.1.6
HOT, preparation of Type II/III/IV – date of revision, s 5.1.6
HOT, preparation of Type II/III/IV – fluid product names, s 5.6
HOT, preparation of Type II/III/IV – fluid retesting, s 5.7.4
HOT, preparation of Type II/III/IV – fluid-specific – licensee, s 5.7.5
HOT, preparation of Type II/III/IV – fluid-specific – manufacturer option not to publish, s 5.7.1
HOT, preparation of Type II/III/IV – format, s 5.1
HOT, preparation of Type II/III/IV – generic, s 5.8
HOT, preparation of Type II/III/IV – HOT values from endurance time data, ss 3.3.1, 5.4
HOT, preparation of Type II/III/IV – HOT values range, s 5.1.3
HOT, preparation of Type II/III/IV – HOT values, capping of, s 5.4.2
HOT, preparation of Type II/III/IV – HOT values, rounding of, s 5.4.1
HOT, preparation of Type II/III/IV – new fluids, s 5.10
HOT, preparation of Type II/III/IV – notes, s 5.1.4
HOT, preparation of Type II/III/IV – obsolete data, removal of, s 5.11
HOT, preparation of Type II/III/IV – precipitation categories – freezing fog or ice crystals, s 5.1.1a
HOT, preparation of Type II/III/IV – precipitation categories – freezing drizzle, s 5.1.1c
HOT, preparation of Type II/III/IV – precipitation categories – frost, active s 5.1.1f
HOT, preparation of Type II/III/IV – precipitation categories – light freezing rain, s 5.1.1d
HOT, preparation of Type II/III/IV – precipitation categories – rain on cold soaked wing, s 5.1.1e
HOT, preparation of Type II/III/IV – precipitation categories – snow, snow grains or snow pellets, s 5.1.1b
HOT, preparation of Type II/III/IV – precipitation categories, s 5.1.1
HOT, preparation of Type II/III/IV – removal of obsolete fluid data, s 5.11
HOT, preparation of Type II/III/IV – sample selection – fluid manufacturer considerations, ss 3.2.2, 3.2.3, 3.3.2
HOT, preparation of Type II/III/IV – sample selection, ss 3.2.2, 3.2.3, 3.3.2
HOT, preparation of Type II/III/IV – temperature ranges, s 5.1.2
HOT, preparation of Type II/III/IV – timeline, s 9
HOT, preparation of Type III – generic – none published, s 5.8
HOT, preparation of Type IV – generic – to exclude Type II data, s 5.8
HOWV – definition, s 2.3
HOWV – manufacturer consideration in selecting sample for high viscosity pre-production sample, s 3.2.2
HOWV – relation to high viscosity pre-production sample, s 3.2.2
HUPR – definition, s 2.3
HUPR – purpose – sets limit for light and very light natural snow, s 5.5.1a
HUPR – purpose – sets limit for LWE systems, s 5.5.1b
list of fluids. See fluid list
LOUT – Type II/III/IV – definition, s 2.3
lower sales specification viscosity limit. See viscosity limit, lower sales specification
LOWV – definition, ss 2.3, 3.3.2
LOWV – HOT validity, s 5.7.2
LOWV – lower than lower sales specification viscosity limit, s 2.3, 5.7.2
LOWV – manufacturer considerations in selecting sample for endurance testing, s 3.3.2
LUPR – definition, s 2.3
LUPR – purpose – sets limit for light and very light natural snow, s 5.5.1a
LUPR – purpose – sets limit for LWE systems, s 5.5.1b
LUPR and HUPR calculations, s 5.5.2
name. See fluid name
new fluid. See fluid, new
precipitation rate, highest useable. See HUPR
precipitation rate, lowest useable. See LUPR
product name. See fluid name
residues, gel – AMIL gel residue tables, s 3.2.3
residues, presence of – field spray test, s 4.3c.
SAE G-12 ADF mid-year meeting timeline, s 9
SAE G-12 ADF, role of, ss 6.7.3
SAE G-12 annual meeting timeline, s 9
SAE G-12 HOT agenda items, mandatory, s 7.3
SAE G-12 HOT co-chairs, s 7.1
SAE G-12 HOT mid-year meeting timeline, s 9
SAE G-12 HOT, role of, s 7
spray test, field – color bleed-through, evaluation of, s 4.3c
spray test, field – color intensity, evaluation of, s 4.3c
spray test, field – flow, evaluation of, s 4.3b
There are four conditions to commercialize an SAE Type II/III/IV fluid, the first three are mandatory, the fourth one is highly recommended: 1) meet the technical requirements of AMS1428, 2) be identified on the FAA/Transport Canada list of fluids and 3) have a holdover time guideline published by the FAA/Transport Canada and 4) running a field spray test to demonstrate operational performance (see ARP5718B p 1).

Field spray trial (p 1) and field spray test (s 4.1) appear to be used interchangeably in ARP5718B.

See footnote 5.
ARP5485B Endurance Time Test Procedures for SAE Type II/III/IV Aircraft Deicing/Anti-icing Fluids

Revised 2017-10-10 by SAE G-12 HOT.

ARP5485B provides the sample selection and endurance time test procedures, for SAE Type II, III, and IV aircraft deicing/anti-icing fluids, required for the generation of endurance time data of acceptable quality for review by the SAE G-12 HOT. Specifically, ARP5485B describes laboratory endurance procedure testing for freezing fog, freezing drizzle, light freezing rain, rain on cold soaked wing, and snow (two methods, NCAR/APS Aviation method and the AMIL method). It describes natural outdoor procedures for snow and frost.

Snow tests can be performed by three methods: 1) outdoors with natural snow, 2) indoors with artificial snow or collected natural now, storing the artificial snow or collected natural snow, and distributing either systematically over the test plates\(^{57}\) or 3) indoors with artificial snow made as the test is being performed\(^{58}\). Artificial snow is made by a) spraying fine water droplets in a cold chamber resulting in fine solid ice crystals that are collected on the cold chamber floor (used in method 2) or b) shaving ice cores into ice shavings with a so-called snowmaker (used in method 3). Outdoor tests are performed under uncontrolled weather conditions, which means all desired temperature/snow precipitation rate combinations may not be tested during a given winter; indoor tests are performed under controlled conditions.

Its sister document for AMS1424 Type I fluids is ARP5945A whose title is *Endurance Time Test Procedures for SAE Type I Aircraft Deicing/Anti-Icing Fluids*.

Keywords:
- contamination [frozen] – appearance – frost on treated surface, s 4.7.2
- contamination [frozen] – appearance – ice crystals, disseminated, s 4.7.2
- contamination [frozen] – appearance – ice front, s 4.7.2
- contamination [frozen] – appearance – ice pieces imbedded in fluid, s 4.7.2
- contamination [frozen] – appearance – ice pieces partially imbedded in fluid, s 4.7.2
- contamination [frozen] – appearance – ice sheet, s 4.7.2
- crystallization, delayed, s 4.7.3
- definition – endurance time, Foreword at p 1

\(^{57}\) The collected snow process and subsequent distribution method were developed at AMIL.

\(^{58}\) The instantaneous shaving core snowmaker method was developed at NCAR and extensively used by APS Aviation.
endurance time – definition, Foreword at p 1
endurance time tests – Type II/III/IV – data examination by SAE G-12 HOT, Foreword at p 1, ss 1.1,1.2
endurance time tests – Type II/III/IV – data validation by SAE G-12 HOT, Foreword at p 1, ss 1.1,1.2
endurance time tests – Type II/III/IV – delayed crystallization, s 4.7.3
endurance time tests – Type II/III/IV – facility – independence from fluid manufacturer, s 1.5.1
endurance time tests – Type II/III/IV – facility, s 1.5
endurance time tests – Type II/III/IV – failure mode – visual, Foreword at p 1
endurance time tests – Type II/III/IV – failure mode, snow – dilution, s 10.4.6
endurance time tests – Type II/III/IV – failure mode, snow – snow-bridging, s 10.4.6
endurance time tests – Type II/III/IV – failure, frozen contamination – 30% area, s 4.7.2
endurance time tests – Type II/III/IV – failure, frozen contamination – appearance, s 4.7.2
endurance time tests – Type II/III/IV – failure, snow – 30% area or non-absorption over 5 crosshairs, s 10.4.6
endurance time tests – Type II/III/IV – fluid manufacturer documentation – freezing point data, s 3.2.5c
endurance time tests – Type II/III/IV – fluid manufacturer documentation – color, s 3.2.5a
endurance time tests – Type II/III/IV – fluid manufacturer documentation – refractive index data, s 3.2.5a
endurance time tests – Type II/III/IV – fluid manufacturer documentation – safety data sheet, s 3.2.5c
endurance time tests – Type II/III/IV – fluid manufacturer documentation – viscosity, s 3.2.5b
endurance time tests – Type II/III/IV – fluid manufacturer documentation – viscosity method, s 3.2.5b
endurance time tests – Type II/III/IV – fluid manufacturer documentation – freezing point depressant, s 3.2.5c
endurance time tests – Type II/III/IV – fluid manufacturer documentation – test name, s 3.2.5a
endurance time tests – Type II/III/IV – fluid manufacturer documentation – freezing point data, s 3.2.5c
endurance time tests – Type II/III/IV – fluid manufacturer documentation – dilutions to be tested, s 3.2.5c
endurance time tests – Type II/III/IV – fog, freezing, s 6
endurance time tests – Type II/III/IV – freezing drizzle, s 7
endurance time tests – Type II/III/IV – freezing fog, s 6
endurance time tests – Type II/III/IV – frost, laboratory s 5
endurance time tests – Type II/III/IV – frost, natural s 12
endurance time tests – Type II/III/IV – ice crystal seeding, s 4.7.3
endurance time tests – Type II/III/IV – icing intensity measurements, s 4.6.2
endurance time tests – Type II/III/IV – icing intensity measurements by regression analysis, s 4.6.2.2
endurance time tests – Type II/III/IV – icing intensity measurements with reference ice-catch plates, s 4.6.2.1
endurance time tests – Type II/III/IV – light freezing rain, s 8
endurance time tests – Type II/III/IV – manufacturer’s mandatory documentation, s 3.1.5
endurance time tests – Type II/III/IV – purpose, Foreword at p 1, s 1.1
endurance time tests – Type II/III/IV – rain on cold soaked wing, s 9
endurance time tests – Type II/III/IV – regression analysis, s 4.6.2.2
endurance time tests – Type II/III/IV – relation to HOT, Foreword at p 1, s 1.2
endurance time tests – Type II/III/IV – sample – viscosity reduced after manufacturing, s 3.1.1
endurance time tests – Type II/III/IV – sample – without shearing, ss 3.1.3, 3.2.1
endurance time tests – Type II/III/IV – sample selection – viscosity reduction by manufacturer, s 3.3.1
endurance time tests – Type II/III/IV – sample selection, s 3.1
endurance time tests – Type II/III/IV – sample viscosity, s 3.1.4
endurance time tests – Type II/III/IV – snow form excludes: graupel (soft hail), s 11.4.6
endurance time tests – Type II/III/IV – snow form excludes: hail, s 11.4.6
endurance time tests – Type II/III/IV – snow form excludes: ice pellets, s 11.4.6
endurance time tests – Type II/III/IV – snow form excludes: soft hail (graupel), s 11.4.6
endurance time tests – Type II/III/IV – snow form includes: capped columns, s 11.4.6
endurance time tests – Type II/III/IV – snow form includes: columns, s 11.4.6
endurance time tests – Type II/III/IV – snow form includes: irregular particles, s 11.4.6
endurance time tests – Type II/III/IV – snow form includes: needles, s 11.4.6
endurance time tests – Type II/III/IV – snow form includes: plates, s 11.4.6
endurance time tests – Type II/III/IV – snow form includes: snow grains, s 11.4.6
endurance time tests – Type II/III/IV – snow form includes: spatial dendrites, s 11.4.6
endurance time tests – Type II/III/IV – snow form includes: stellar crystals, s 11.4.6
endurance time tests – Type II/III/IV – snow grains, s 11.4.6
endurance time tests – Type II/III/IV – snow, artificial – made by shaving ice cores ss 10, 10.1.7
endurance time tests – Type II/III/IV – snow, artificial – made by spraying water in a cold chamber, ss 10.1.6.3, 10.1.6.4
endurance time tests – Type II/III/IV – snow, artificial – test, indoor – with storage and distribution, ss 10, 10.1.6
endurance time tests – Type II/III/IV – snow, artificial – test, indoor – without storage, ss 10, 10.1.7
endurance time tests – Type II/III/IV – snow, laboratory, s 10
endurance time tests – Type II/III/IV – snow, natural – test, outdoor, s 11
endurance time tests – Type II/III/IV – snow, natural, s 11
endurance time tests – Type II/III/IV – test plate cleanliness, ss 4.7.1, 11.4.1
endurance time tests – Type II/III/IV – testing agent – independence from fluid manufacturer, s 1.4.1
endurance time tests – Type II/III/IV – testing agent role/duties, ss 1.4.2, 3.2
endurance time tests – Type II/III/IV – variability across test plates, s 4.6.3
endurance time tests – Type II/III/IV – viscosity check on unsheared sample, s 3.2.2
endurance time tests – Type II/III/IV – viscosity reduction by manufacturer, s 3.3.1
endurance time tests – Type II/III/IV – water droplet size – dye stain method, s 4.6.5d
endurance time tests – Type II/III/IV – water droplet size – laser diffraction method, s 4.6.5c
endurance time tests – Type II/III/IV – water droplet size – slide impact method with colloidal silver, s 4.6.5b
endurance time tests – Type II/III/IV – water droplet size – slide impact method with oil, s 4.6.5a
endurance time tests – Type II/III/IV – water hardness, nozzles, s 4.5.6
endurance time tests – Type II/III/IV – WSET check on unsheared sample, s 3.2.1
endurance time tests – Type II/III/IV, Title at p 1
endurance time tests – Type III – fluid manufacturer documentation – intended method of use, s 3.2.5
endurance time tests, Title at p 1
fluid manufacturer documentation. See also endurance time tests – Type II/III/IV – fluid manufacturer documentation
regression analysis method – icing intensity, s 4.6.2.2
regression analysis method for icing intensity measurements, Type II/III/IV, s 4.6.2.2
Type II/III/IV – failure criteria, ss 4.7.2, 11.4.6
water droplet size – dye stain method, s 4.6.5d
water droplet size – laser diffraction method, s 4.6.5c
water droplet size – slide impact method with colloidal silver, s 4.6.5b
water droplet size – slide impact method with oil, s 4.6.5a

AS5681B Minimum Operational Performance Specification for Remote On-Ground Ice Detection Systems

AS5681B revised 2016-05-17 by SAE G-12 Ice Detection, now part of SAE G-12 HOT.

AS5681B specifies the minimum operational performance specification (MOPS) of remote on-ground ice detection systems (ROGIDS). ROGIDS are ground-based systems that indicate whether frozen contamination is present on aircraft surfaces.

ROGIDS are intended to be used during aircraft ground deicing operations to inform ground crews or flight crews about the condition of the aircraft.
AS5681B presents a functional description of ROGIDS, design requirements, minimum performance requirements, laboratory tests conditions to evaluate the ROGIDS, recommended test procedure to demonstrate compliance with the minimum requirements and operational evaluation requirements to verify the performance of in-service ROGIDS.

Keywords:
accidents, ground icing – catastrophic – rate, s D.4.1
accidents, ground icing – categories – detected frozen contamination but ignored, s D.3.1
accidents, ground icing – categories – fluid failure after deicing, s D.3.1
accidents, ground icing – categories – undetected frozen contamination, s D.3.1
accidents, ground icing – categories – undetected frozen contamination after deicing, s D.3.1
accidents, ground icing – historical data, ss D.3.1, D.4, D.5
anti-icing – definition, s 2.2.1
check, post-deicing. See post deicing/anti-icing check
clear ice – definition, s 2.2.1
clear ice – detection – ROGIDS as supplement to tactile pre-deicing check, s 1.3
clear ice – detection – ROGIDS as supplement to visual pre-deicing check, s 1.3
clear ice – detection – ROGIDS detection threshold, s 4.1.1
clear ice – detection – ROGIDS v tactile check, Foreword at par 3 at p 1
clear ice – detection – ROGIDS v visual check, Foreword at par 3 at p 1
clear ice – detection – ROGIDS, s 1.3
clear ice – difficulty to detect s 2.2.1
clear ice – occurrence – inflight, s 2.2.1
clear ice – occurrence – on the ground, s 2.2.1
clear ice – undetected – probability estimate, s D.4.1
contaminant, frozen. See contamination [frozen]
contamination [frozen] – definition, s 2.2.1
critical ice contamination – definition, s D.3.2
critical ice contamination rate, s D.4.1
definition – anti-icing, s 2.2.1
definition – check, pre-deicing, s 2.2.1
definition – clear ice, s 2.2.1
definition – contamination [frozen], s 2.2.1
definition – critical ice contamination, s D.3.2
definition – deicing event, s 2.2.1
definition – deicing, s 2.2.1
definition – failure, latent, s 2.2.1
definition – fluid failure, s 2.2.1
definition – ice contamination, critical, s D.3.2
definition – illuminance, s 2.2.2
definition – ROGIDS detection angle, maximum, s 2.2.1
definition – ROGIDS detection angle, minimum, s 2.2.1
definition – ROGIDS detection distance, maximum, s 2.2.1
definition – ROGIDS detection distance, minimum, s 2.2.1
definition – ROGIDS false negative, s 2.2.1
definition – ROGIDS false positive, s 2.2.1
definition – ROGIDS, s 2.2.1
definition – system, s 2.2.1
deicing – definition, s 2.2.1
deicing event – definition, s 2.2.1
deicing events – historical data 1985-2005, s D.3.1
deicing events – worldwide estimate 1985-2005, s D.3.1
failed fluid. See fluid failure
failed, deicing/anti-icing fluid. See fluid failure
failed, fluid. See fluid failure
failed, latent – definition, s 2.2.1
failed, latent, ss 2.2.1, 3.7.2,
failed, undetected. See failure, latent
fluid failure – definition, s 2.2.1
fluid failure description – adherence of frozen contamination, s 2.2.1
fluid failure description – dulling of surface reflectivity, s 2.2.1
fluid failure description – no absorption of precipitation, s 2.2.1
fluid failure description – presence of frozen contamination in the fluid, s 2.2.1
fluid failure description – presence of frozen contamination on the fluid, s 2.2.1
fluid failure description – snow accumulation, random, s 2.2.1
fluid failure description – snow accumulation, s 2.2.1
fluid failure description – surface freezing, s 2.2.1
fluid failure description, s 2.2.1
frost – detection – ROGIDS less reliable than visual check, Foreword at par 4 at p 1
frost – detection – ROGIDS v visual check, Foreword at par 4 at p 1
frozen contaminant\(^59\). See contamination [frozen]
ice contamination, critical – definition, s D.3.2
ice contamination, critical – probability estimate, s D.4.2
ice detection system, remote on-ground. See ROGIDS
ice, clear. See clear ice
illuminance – definition, s 2.2.2
remote on-ground ice detection system. See ROGIDS
ROGIDS – alternative to tactile post deicing/anti-icing check, s 1.3
ROGIDS – alternative to visual post deicing/anti-icing check, s 1.3
ROGIDS – approval by regulator, ss 1.1, 1.3
ROGIDS – approval for post deicing/anti-icing check, s 1.3
ROGIDS – approval for pre-deicing check, s 1.3
ROGIDS – clear ice detection v tactile check, Foreword at par 3 at p 1
ROGIDS – definition, s 2.2.1
ROGIDS – design requirement, s 3
ROGIDS – detection angle, maximum – definition, s 2.2.1
ROGIDS – detection angle, minimum – definition, s 2.2.1
ROGIDS – detection distance, maximum – definition, s 2.2.1
ROGIDS – detection distance, minimum – definition, s 2.2.1
ROGIDS – detection of clear ice – detection threshold, s 4.1.1
ROGIDS – detection of clear ice pre-deicing, s 4.1
ROGIDS – detection of frost – below reliable detection threshold, Foreword par 3 at p 1
ROGIDS – detection of frost – undefined, s 4.1
ROGIDS – detection of residual clear ice post-deicing during precipitation, s 4.1
ROGIDS – detection of residual clear ice post-deicing, s 4.1
ROGIDS – detection of slush – undefined, s 4.1
ROGIDS – detection of snow – undefined, s 4.1
ROGIDS – detection threshold, s 4.1.1
ROGIDS – effect of fluid foam on, s 4.3
ROGIDS – false negative – definition, s 2.2.1
ROGIDS – false positive – definition, s 2.2.1

\(^59\) Frozen contaminants and frozen contamination are generally used as synonyms.
ROGIDS – frost detection v visual check, Foreword at par 4 at p 1
ROGIDS – functional description – clear ice detection, s 1.3
ROGIDS – hand held, s 1.3
ROGIDS – human factors tests, Foreword at par 3-4 at p 1
ROGIDS – latent failure rate, ss 2.2.1, 3.7.2, D.3.2
ROGIDS – minimum operational performance specification, Title at p 1, ss 1, 1.1, 4
ROGIDS – minimum performance specification, s 4
ROGIDS – monitored surface – definition, s 2.2.1
ROGIDS – MOPS, Title at p 1, ss 1, 1.1, 4
ROGIDS – pedestal mounted, s 1.3
ROGIDS – performance specification in environmental test conditions, minimum, s 5
ROGIDS – performance specification, minimum, s 4
ROGIDS – performance, minimum operational, s 6
ROGIDS – regulatory requirements, ss 1.1, 1.3
ROGIDS – v human inspection, s D.3.1
ROGIDS – vehicle mounted, s 1.3
ROGIDS, Title at p 1
system – definition, s 2.2.1
This document sets the procedures to perform deicing and anti-icing of aircraft subject to any form of freezing or frozen precipitation.

It distinguishes the responsibilities of the pilot-in-command, the aircraft operator, the service provider, the airport authority, the regulator and air traffic control.

It covers methods to deice and anti-ice aircraft using AMS1424- and AMS1428-qualified fluid and processes not using fluids. It provides procedures to deal with frost prevention with cold soaked aircraft and spot deicing.

It informs on the checks to be performed to ascertain if deicing is required or to verify for the presence of frozen contamination after deicing. It describes the how communications should be done.

It explains the requirement for quality program, quality assurance and quality control. It states that staff must be trained and qualified.

Keywords:
- anti-icing code – functional definition, § 5.4
- aircraft manufacturer documentation – aircraft deicing procedure, specific, § 1.1
- aircraft manufacturer documentation – aircraft surface coating, § 8.5.3
- aircraft manufacturer documentation – areas to be deiced, § 7.1
- aircraft manufacturer documentation – check, tactile, § 7.2
- aircraft manufacturer documentation – cleaner for cockpit windows, § 6.8
- aircraft manufacturer documentation – cold soaked fuel frost exception, §§ 6.1, 7.3
- aircraft manufacturer documentation – compliance with, § 1.1
- aircraft manufacturer documentation – deicing configuration, § 8.7.5
- aircraft manufacturer documentation – engine deicing procedure, § 8.7.16
- aircraft manufacturer documentation – fluid application, §§ 1.1, 8.4.5, 8.4.5.4, 8.5.1
- aircraft manufacturer documentation – fluid temperature limit, Tables 1-3
- aircraft manufacturer documentation – frost exception for fuselage, §§ 6.7, 7.3, 8.4.5.4
- aircraft manufacturer documentation – frost exception for wings, tail, control surfaces, § 6.1
- aircraft manufacturer documentation – local frost prevention, § 8.5.2
- aircraft manufacturer documentation – need for tactile check, § 7.2
- aircraft manufacturer documentation – salt-based fluid, § 8.5
- aircraft manufacturer documentation – Type II/III/IV – residue, §§ 8.6.2, 8.7.1, 8.7.2
aircraft operator – ground crew qualification, s 5.2
aircraft operator – responsibility – adaptation of deicing/anti-icing procedures, Rationale par 4 at p 1
aircraft operator – responsibility – aircraft deicing configuration in absence of flightcrew, s 5.2
aircraft operator – responsibility – deicing/anti-icing procedures, s 3.2
aircraft operator – responsibility – deicing/anti-icing procedures, Rationale par 4 at p 1, s 3.2
aircraft operator – responsibility – engine ice removal procedure, s 8.7.16
aircraft operator – responsibility – ground deicing programs, s 3.2
aircraft operator – responsibility – management, s 3.2
aircraft operator – responsibility – party assignment for anti-icing code, s 5.5
aircraft operator – responsibility – party assignment for post deicing/anti-icing check, s 5.5
aircraft operator – responsibility – pilot-in-command, s 3.2
aircraft operator – responsibility – special checks, ss 7.1, 7.3
aircraft skin temperature lower than OAT. See wing temperature lower than OAT
airline. See aircraft operator
airport authority – responsibility – communications before, during, after deicing, s 5.7a
airport authority – responsibility – deicing facilities operability, s 3.4
airport authority – responsibility – environmental regulation compliance, s 3.4
airport authority – responsibility – fluid logistics airside, s 3.4
airport authority – responsibility – health and safety, s 3.4
airport authority – responsibility – message boards, s 3.4
airport authority – responsibility – off gate/CDF/DDF procedures, s 5.7a
airport authority – responsibility – taxi and stop guidance, s 5.7a
airport authority – responsibility – taxi routing, s 5.7a
airport authority – responsibility – unique requirements, s 5.7a
airport authority – responsibility – weather support, s 3.4
anti-icing – definition, s 2.2.2.2
anti-icing code – definition, s 2.2.2.2
anti-icing code – exception for local deicing, s 5.4
anti-icing code – transmission after completion of post deicing/anti-icing check, s 5.5
anti-icing code – transmission to flightcrew, s 5.5
anti-icing code, ss 3.3, 5.3, 5.4, 5.5, 5.7, 5.8
anti-icing fluid – definition, s 2.2.2.2
anti-icing procedure. See fluid application; fluid application – anti-icing
application equipment. See deicing unit
ATC – responsibilities, s 3.6
audit pool – DAQCP, s 4.1
audit pool, s 4.1
brooms. See contamination [frozen] – removal with brooms
buffer. See freezing point buffer
buffer, negative. See freezing point buffer – negative
certificate of analysis, ss 4.3.1.1a, 4.3.1.1b
certificate of conformance, ss 4.3.1.1a, 4.3.1.1b
check – definition, s 2.2.2.2
check, clear ice, s 7.1
check, contamination. See contamination check
check, deicing/anti-icing. See post deicing/anti-icing check
check, flight control. See flight control check
check, fluid acceptance. See fluid acceptance
check, fluid. See fluid check
check, pretakeoff contamination. See pretakeoff contamination check
check, pretakeoff. See pretakeoff check
check, special – aircraft-specific check, ss 7.1 note, 7.3 note
check, special – clear ice check, ss 7.1 note, 7.3
Aircraft Deicing Documents – Issued by the SAE G-12 Methods Committee

check, special – excludes contamination check, s 7.1 note
check, tactile – aircraft manufacturer requirements, s 7.2
check, tactile – clear ice detection, ss 5.4f, 7.1 note
check, tactile – definition, s 2.2.2.2
check, tactile – mandatory for some aircraft, s 2.2.2.2
check, tactile – post deicing/anti-icing check completion, s 8.5.2f
check, tactile, ss 2.2.2.2, 5.4f, 7.1 note, 7.2, 7.3 note, 8.5.2f

clean aircraft concept, s 3.5
clean condition – air conditioning inlets, s 6.4
clean condition – air conditioning outlets, s 6.4
clean condition – air conditioning pressure-release valves, s 6.4
clean condition – angle of attack sensors, s 8.7.8
clean condition – cockpit windows, s 6.8
clean condition – control surfaces, s 6.1
clean condition – critical surfaces, s 6
clean condition – data sensing devices, s 6.2
clean condition – engine control system probes, s 6.3
clean condition – engine cooling intakes, s 6.3
clean condition – engine exhaust, s 6.3
clean condition – engine fan blades, s 6.3, 8.4.5.7
clean condition – engine inlets, s 6.3
clean condition – engine intake, s 8.4.5.7
clean condition – engine leading edge, s 6.3
clean condition – engine ports, s 6.3
clean condition – engine spinner cones, s 6.3
clean condition – fuel tank vents, 6.6
clean condition – fuselage – presence of frost, s 6.7
clean condition – fuselage, s 6.7
clean condition – horizontal stabilizer, s 6.1
clean condition – inlets, s 6.7
clean condition – landing gear doors, s 6.5
clean condition – landing gear, ss 6.5, 8.7.13
clean condition – nose, ss 6.2 note, 6.8
clean condition – outflow valves, s 6.4
clean condition – outlets, s 6.7
clean condition – pitot tubes, s 6.2
clean condition – pressure release valves, s 6.2
clean condition – propellers, ss 6.3, 8.4.5.7
clean condition – radome, s 6.8
clean condition – rudder, s 6.1
clean condition – sensor – angle of attack, ss 6.2, 7.3
clean condition – sensor – temperature, ss 6.2, 7.3

clean condition – sensors near heated windows, s 6.8
clean condition – stabilizer, vertical, s 6.1
clean condition – static ports, s 6.2
clean condition – tail, s 6.1
clean condition – wheel bays, s 8.7.13
clean condition – window caution, heated, s 6.8 note

clean condition – window, cockpit, s 6.8

83
clear ice – cold soaked – definition, s 2.2.2.2 sub verbo “cold soaked clear ice”
clear ice – conditions conducive to, ss 2.2.2.2 sub verbo “cold soaking”, 8.7.19
clear ice – detection, s 8.7.19
clear ice – difficulty to detect, ss 2.2.2.2 sub verbo “cold soaked clear ice”, 8.7.19
clear ice – hazard, ss 2.2.2.2 sub verbo “cold soaked clear ice”
cold soaked clear ice – definition, s 2.2.2.2
cold soaked fuel frost – definition, s 2.2.2.2
cold soaked horizontal stabilizer, s 8.5.2
cold soaked wing ice/frost – definition, s 2.2.2.2
cold soaked wing, ss 8.5.2, Tables 2-4
cold soaking – definition, s 2.2.2.2
cold soaking – factors – fuel cell location, s 2.2.2.2
cold soaking – factors – fuel cell type, s 2.2.2.2
cold soaking – factors – fuel quantity, s 2.2.2.2
cold soaking – factors – fuel temperature, s 2.2.2.2
cold soaking – factors – time at high altitude, s 2.2.2.2
cold soaking – factors – time since fueling, s 2.2.2.2
cold soaking – fuel caused, ss 2.2.2.2, 5.4, 6.1, 7, 7.3a, 8.5.2, Table 2
cold-soak effect – definition s 2.2.2.2
combustion heaters – asphyxiation danger in poorly ventilated areas, ss 4.3.3, 9.1
communication – English language, s 5.1
communication – local language, s 5.1
communication with flightcrew – absence of flightcrew at time of deicing 60, s 5.2c
communication with flightcrew – ACARS, ss 5.4, 5.7
communication with flightcrew – after deicing/anti-icing, s 5.2
communication with flightcrew – aircraft deicing configuration, ss 5.2b, 5.2c, 5.9
communication with flightcrew – all clear signal, ss 5.1, 5.3, 5.6
communication with flightcrew – anti-icing code, ss 3.3, 5.3, 5.4, 5.5, 5.7, 5.8
communication with flightcrew – before starting deicing/anti-icing, ss 5.2, 5.7
communication with flightcrew – CDF, s 5.7
communication with flightcrew – communication plan, s 5.7a
communication with flightcrew – contamination check results, s 5.7b
communication with flightcrew – DDF, s 5.7
communication with flightcrew – deicing unit proximity sensor activation, ss 5.10, 8.7.20
communication with flightcrew – deicing/anti-icing treatment required, ss 5.2a, 5.2c
communication with flightcrew – electronic flight bag, ss 5.4, 5.7
communication with flightcrew – emergency, s 5.7c
communication with flightcrew – engines-on, s 5.7
communication with flightcrew – English language, s 5.1
communication with flightcrew – flight interphone, ss 5.1, 5.7
communication with flightcrew – frost removal with Type I in non-active frost, note at s 5.1
communication with flightcrew – frost, local, s 8.5.2
communication with flightcrew – hand signals, s 5.1
communication with flightcrew – headsets, ss 5.1, 5.7
communication with flightcrew – interruption of deicing/anti-icing, ss 5.3, 8.7.18
communication with flightcrew – local language, s 5.1
communication with flightcrew – message boards, ss 5.1, 5.4, 5.7
communication with flightcrew – off-gate, s 5.7
communication with flightcrew – phraseology, s 5.9
communication with flightcrew – post deicing/anti-icing check completion, ss 5.4, 5.4f, 7.3

60 AS6285C is not explicit about the need to communicate with the flightcrew if deicing/anti-icing is performed in its absence. See s 13.a. of FAA Notice N 8900.525 for more information.
communication with flightcrew – printed forms, ss 5.1, 5.4
communication with flightcrew – proximity sensor activation, ss 5.10, 8.7.20
communication with flightcrew – scripts, s 5.8
communication with flightcrew – taxi and stop guidance, s 5.7
communication with flightcrew – taxi routing, s 5.7a
communication with flightcrew – verbal, precedence of, s 5.7
communication with flightcrew – VHF, ss 5.1, 5.7
communications, s 5
configuration, aircraft deicing, ss 5.2b, 5.2c, 5.6, 5.8, 5.9, 8.7.5
contamination [frozen] – definition, s 2.2.2.2
contamination [frozen] – removal from cockpit windows, s 8.4.5.5
contamination [frozen] – removal from elevator, s 8.4.5.1
contamination [frozen] – removal from engine fan blades, 8.7.16
contamination [frozen] – removal from engines, ss 8.4.5.7, 8.7.16
contamination [frozen] – removal from flap track, s 8.7.15
contamination [frozen] – removal from flaps, ss 8.4.5.2, 8.7.15
contamination [frozen] – removal from fuselage, s 8.4.5.4
contamination [frozen] – removal from hard wing aircraft, s 8.4.5.1
contamination [frozen] – removal from horizontal stabilizer, s 8.4.5.1
contamination [frozen] – removal from landing gear, s 8.4.5.6
contamination [frozen] – removal from lower wing surface, s 8.4.5.2
contamination [frozen] – removal from nose [aircraft], s 8.4.5.5
contamination [frozen] – removal from propeller driven aircraft, s 8.4.5.1
contamination [frozen] – removal from radome, s 8.4.5.5
contamination [frozen] – removal from underwing surface, 8.4.5.2
contamination [frozen] – removal from vertical surfaces, s 8.4.5.3
contamination [frozen] – removal from wheel bays, s 8.4.5.6
contamination [frozen] – removal from wings, s 8.4.5.1
contamination [frozen] – removal general strategy, ss 8.4.1, 8.4.5
contamination [frozen] – removal with brooms, s 8.2
contamination [frozen] – removal with fluid injected into forced air, s 8.2
contamination [frozen] – removal with fluids, s 8.4
contamination [frozen] – removal with forced air, s 8.2
contamination [frozen] – removal with heat, s 8.2
contamination [frozen] – removal with hot water, s 8.2
contamination [frozen] – removal with infrared, ss 8.2, 8.3
contamination [frozen] – removal with negative buffer hot fluid s 8.2
contamination check – definition, s 2.2.2.2
contamination check – establishes need for deicing, ss 2.2.2.2, 7.1, 7.5,
contamination check – excludes special check, s 7.1
contamination check – performance of, s 5.7b
contamination check – responsibility of qualified personnel, s 5.7b
contamination check – verification of all areas needing clean condition, s 7
contamination, chemical – definition, s 2.2.2.2 sub verbo “chemical contamination”
critical component – definition, Rationale par 3 at p 1
critical surface – definition, Rationale par 3 at p 1
DAQCP, s 4.1
definition – anti-icing code, s 2.2.2.2
definition – anti-icing fluid, s 2.2.2.2
definition – anti-icing, s 2.2.2.2
definition – check, s 2.2.2.2
definition – check, tactile, s 2.2.2.2 sub verbo “tactile check”
definition – clear ice, cold soaked, s 2.2.2.2 sub verbo “cold-soaked clear ice”
definition – cold-soaked clear ice, s 2.2.2.2
definition – cold-soaked fuel frost, s 2.2.2.2
definition – cold-soaked wing ice/frost, s 2.2.2.2
definition – cold soaking, s 2.2.2.2
definition – cold-soak effect, s 2.2.2.2
definition – contamination [frozen], s 2.2.2.2
definition – contamination check, s 2.2.2.2
definition – contamination, chemical, s 2.2.2.2 *sub verbo* “chemical contamination”
definition – critical component, Rationale par 3 at p 1
definition – critical surface, Rationale par 3 at p 1
definition – deicing fluid, s 2.2.2.2
definition – deicing service provider, s 2.2.2.2
definition – deicing, s 2.2.2.2
definition – deicing/anti-icing, s 2.2.2.2
definition – freezing drizzle, s 2.2.2.2
definition – freezing fog, s 2.2.2.2
definition – freezing point buffer, negative, s 2.2.2.2
definition – freezing point buffer, s 2.2.2.2
definition – freezing rain, heavy, s 2.2.2.2 *sub verbo* “heavy freezing rain”
definition – freezing rain, light, s 2.2.2.2 *sub verbo* “freezing rain (light)”
definition – freezing rain, moderate, s 2.2.2.2 *sub verbo* “moderate freezing rain”
definition – frost, s 2.2.2.2
definition – frost, active, s 2.2.2.2 *sub verbo* “active frost”
definition – frost, cold-soaked fuel, s 2.2.2.2 *sub verbo* “cold-soaked fuel frost”
definition – frost, local, s 2.2.2.2 *sub verbo* “local frost”
definition – gel, s 2.2.2.2 *sub verbo* “residue/gel”
definition – hail, s 2.2.2.2
definition – hoarfrost, s 2.2.2.2 *sub verbo* “frost/hoar frost”
definition – HOT, s 2.2.2.2 *sub verbo* “holdover time”
definition – HOT guidelines, s 8.5.3
definition – HOWV, s 2.2.2.2 *sub verbo* “highest on-wing viscosity”
definition – ice pellets, s 2.2.2.2
definition – LOUT, s 2.2.2.2 *sub verbo* “lowest operational use temperature”
definition – LOWV, s 2.2.2.2 *sub verbo* “lowest on-wing viscosity”
definition – may (SAE), s 2.2.2.1
definition – negative buffer. *See* definition – freezing point buffer, negative
definition – post deicing/anti-icing check, s 2.2.2.2
definition – pre-deicing process, s 2.2.2.2
definition – preflight check, s 2.2.2.2
definition – pretakeoff check, s 2.2.2.2
definition – pretakeoff contamination check, s 2.2.2.2
definition – proximity sensor, s 2.2.2.2
definition – qualified staff, s 2.2.2.2
definition – refractive index, s 2.2.2.2
definition – refractometer, s 2.2.2.2
definition – residue/gel, s 2.2.2.2
definition – rime ice, s 2.2.2.2
definition – service provider, deicing, s 2.2.2.2 *sub verbo* “deicing service provider”
definition – shall (SAE), s 2.2.2.1
definition – should (SAE), s 2.2.2.1
definition – slush, s 2.2.2.2
definition – snow grains, s 2.2.2.2
definition – snow pellets, s 2.2.2.2
definition – snow, s 2.2.2.2
definition – staff, qualified, s 2.2.2.2 sub verbo “qualified staff”
definition – storage tank, s 2.2.2.2
definition – tactile check. See definition – check, tactile
deicing – definition, s 2.2.2.2
deicing facility, infrared. See infrared deicing facility
deicing fluid – definition, s 2.2.2.2
deicing service provider. See service provider
deicing unit – asphyxiation danger in poorly ventilated areas, ss 4.3.3, 9.1
deicing unit – operation in confined areas, s 9.1
deicing unit – operation in poorly ventilated areas, s 9.1
deicing, s 8.4
deicing. See also contamination [frozen], removal of deicing. See also fluid application
deicing/anti-icing – absence of flightcrew at the time of, ss 5.1, 5.2c
deicing/anti-icing – definition, s 2.2.2.2
deicing/anti-icing contracts, s 1.2
deicing/anti-icing decision – aircraft deiced or anti-iced some time before flightcrew arrival, ss 5.1, 5.2c, 7
deicing/anti-icing decision – aircraft subject to ice accretion in-flight, s 7
deicing/anti-icing decision – aircraft subject to snow or ice conditions during taxi to gate, s 7
deicing/anti-icing decision – aircraft subject to snow or ice conditions, s 7
deicing/anti-icing decision – aircraft subject to snow or ice conditions while parked, s 7
deicing/anti-icing decision – cold soaked aircraft with ice or frost, s 7
deicing/anti-icing decision – contamination check by flightcrew, s 7
deicing/anti-icing decision – contamination check by ground crew, s 7
deicing/anti-icing processes, Title at p 1
deicing/anti-icing. See also fluid application
deicing/anti-icing, aircraft requirements after. See clean condition
deicing/anti-icing, interruption of, s 8.7.18
deicing/anti-icing, one-step. See fluid application – one-step
deicing/anti-icing, two-step. See fluid application – two-step
deposition, frost formation by, s 2.2.2.2 sub verbo “frost/hoar frost”
engine deicing – deicing fluid, s 8.4.5.7
engine deicing – hot air, s 8.4.5.7, 8.7.16
engine deicing – mechanical means, s 8.4.5.7
engine deicing, ss 8.4.5.7, 8.7.16
engine icing – conditions conducive to – freezing fog, s 8.7.16
engine icing – conditions conducive to – freezing precipitation, s 8.7.16
engine manufacturer documentation – engine deicing procedure, ss 1.1, 8.7.16
engine manufacturer recommendations – compliance with, s 1.1
flaps and slats contamination – blowing snow, s 8.7.15
flaps and slats contamination – in-flight ice accretion, s 8.7.15
flaps and slats contamination – not visible when retracted, 8.7.15
flaps and slats contamination – splash up during taxi, s 8.7.15
flight control check, s 7.6
flight control, ss 7.6, 8.6.2, 8.7.1, 8.7.2
fluid acceptance – appearance [documentation], 4.3.1.1
fluid acceptance – batch number, s 4.3.1.1 b
fluid acceptance – brand name, s 4.3.1.1b
fluid acceptance – certificate of conformance, ss 4.3.1.1a, 4.3.1.1b
fluid acceptance – cleanliness, s 4.3.1.3
fluid acceptance – color, s 4.3.15
fluid acceptance – concentration [by refraction], s 4.3.1.5
fluid acceptance – concentration [documentation], s 4.3.1.1b
fluid acceptance – discrepancies, s 4.3.1.6
fluid acceptance – discrepancy procedure, s 4.3.1.6
fluid acceptance – foreign body contamination [aka suspended matter], 4.3.1.5a.1.(b)
fluid acceptance – lot number, s 4.3.1.1
fluid acceptance – nonconformities, s 4.3.1.6
fluid acceptance – nonconformity procedure, s 4.3.1.6
fluid acceptance – pH [documentation], s 4.3.1.1
fluid acceptance – pH, s 4.3.1.5b
fluid acceptance – previous load [documentation], s 4.3.1.3
fluid acceptance – product name, s 4.3.1.1b
fluid acceptance – records, s 4.3, 4.3.1.2b
fluid acceptance – refractive index documentation, s 4.3.1.1a
fluid acceptance – refractive index, s 4.3.1.5a
fluid acceptance – samples, s 4.3.1.4
fluid acceptance – seals, s 4.3.1.2
fluid acceptance – viscosity, ss 4.3.1.1, 4.3.1.5
fluid acceptance – visual examination, s 4.3.1.5
fluid application – air conditioning off, s 8.7.6
fluid application – aircraft deicing configuration, ss 5.2, 5.6, 5.8, 5.9, 8.7.5
fluid application – aircraft manufacturer requirements, ss 1.1, 8.7.5, 8.7.9
fluid application – anti-icing – amount required, s 8.7.2, Table 1
fluid application – anti-icing – before first step fluid freezes, Tables 1-3
fluid application – anti-icing – clean aircraft, on, ss 2.2.2.2 sub verbo “anti-icing fluid”, 8.5.2c, 8.5, Tables 1-3
fluid application – anti-icing – insufficient amount, Tables 1-3
fluid application – anti-icing – maximum protection, s 8.5
fluid application – anti-icing – not on top of contamination, s 8.7.1
fluid application – anti-icing – one-step application of Type II/III/IV – residue formation, s 8.7.1
fluid application – anti-icing – overnight aircraft, s 8.5
fluid application – anti-icing – uniformity, s 8.5.1
fluid application – APU bleed air off, s 8.7.6
fluid application – composite surfaces, s 8.4.4
fluid application – elevator, ss 8.4.5.1, 8.5.1, 8.6.2, 8.7.1, 8.7.2
fluid application – engine manufacturer recommendations, s 1.1
fluid application – engine, ss 8.7.6, 8.7.9, 8.4.5.7, 8.7.16
fluid application – folding wing bushings, s 8.7.11
fluid application – folding wing hinges, s 8.7.11
fluid application – fuselage, s 8.4.5.4
fluid application – general strategy, s 8.4.5
fluid application – guidelines, Tables 1–3
fluid application – heat loss, s 8.4.1
fluid application – horizontal stabilizer, ss 8.4.5.1, 8.5.1, 8.6.2, 8.7.1, 8.7.2
fluid application – interruption – communication with flightcrew s 8.7.18
fluid application – interruption of, s 8.7.18
fluid application – landing gear and wheel bays, s 8.4.5.6
fluid application – local areas, s 8.4.6
fluid application – minimize dilution with the first step fluid, s 8.4.5
fluid application – one-step, ss 5.4d, 8.1, 8.4.5.2, 8.4.6, 8.5.3, 8.6.1, 8.6.2, 8.7.1, 8.7.2, Tables 1–3
fluid application – re-deicing, s 8.3b
fluid application – removal of all frozen contamination, s 8.4.5
fluid application – removal of diluted fluid, s 8.4.5
fluid application – rudder, ss 8.4.5.1, 8.5.1
fluid application – side-effect, possible – lubricant removal, s 6.10
fluid application – side-effect, possible – residues. See also Type II/III/IV – residue; Type II/IV – residue
fluid application – side-effect, possible – residues, s 6.10
fluid application – stabilizer, vertical, ss 8.4.5.1, 8.4.5.3, 8.5.1
fluid application – steering system, s 8.4.5.6
fluid application – symmetrical, ss 5.4, 8.4.5.2, 8.4.6, 8.5.2d, 8.7.4
fluid application – temperature limits, Type I, 8.5.1, Tables 1–3
fluid application – Type I – anti-icing – quantity ≥ 1 liter/m2, s 8.5.1, Table 1
fluid application – Type I – anti-icing – temperature ≥ 60°C, s 8.5.1, Table 1
fluid application – three-minute rule, s 8.7.2, Table 1 at note 2, Table 2 at note 2, Table 3 at note 2
fluid application – two-step – compatibility of Type I with Type II/III/IV, s 8.7.2
fluid application – two-step, ss 8.5.2c, 8.5.3, 8.6.1, 8.6.2, 8.7.2, Tables 1–3
fluid application – unheated – ineffective to deice, s 2.2.2.2 sub verbo “deicing fluid”
fluid application – wheel bays, s 8.4.5.6
fluid application – windows, cabin, ss 8.7.10, 8.7.12
fluid application – windows, cockpit, s 8.7.10, 8.7.12
fluid application – wing skin temperature lower than OAT, Tables 1–3
fluid application – wing, ss 8.4.5.1, 8.4.5.2, 8.4.6, 8.5.1, 8.5.2 a), 8.5.2.d), 8.6.2,8.7.1, 8.7.2
fluid check – daily, s 4.3.3
fluid check – frequency, ss 4.2, 4.3.2, 4.3.2.1, 4.3.2.2, 4.3.3
fluid check – limits set by fluid manufacturer, ss 4.3.2, 4.3.2.3
fluid check – mid-season, s 4.3.2
fluid check – pre-season 61, ss 4.2, 4.3.2, 4.3.2.1, 4.3.2.2
fluid check – program, s 4.3.2
fluid check – records, s 4.3
fluid check – within-season, s 4.3.2
fluid check, ss 4.2, 4.3, 4.3.1 – 4.3.6
fluid compatibility – Type I with Type II/III/IV 62
fluid delivery. See fluid acceptance
fluid failure description – color change to white, s 8.5.2f
fluid failure description – loss of gloss, s 8.5.2f
fluid failure description – presence of ice crystals in the fluid, s 8.5.2f
fluid failure, deicing/anti-icing anew upon, s 8.7.2
fluid manufacturer documentation – acceptance field tests, s 4.3, 4.3.1
fluid manufacturer documentation – aerodynamic acceptance data, ss 4.3.2.3, 8.6.1
fluid manufacturer documentation – appearance, s 4.3.1.1
fluid manufacturer documentation – certificate of analysis, s 4.3.1.1
fluid manufacturer documentation – color, s 4.3.1.4c, 4.3.2.3
fluid manufacturer documentation – concentration limits, s 8.6.1
fluid manufacturer documentation – field viscosity test limits [optional], s 4.3.1.5c
fluid manufacturer documentation – field viscosity test method [optional], s 4.3.5d
fluid manufacturer documentation – fluid application, s 8.5.1
fluid manufacturer documentation – fluid name, s 10.1
fluid manufacturer documentation – fluid transfer system requirements, ss 4.3, 10.2, 10.4
fluid manufacturer documentation – fluid, heating of, ss 4.3.4, 10.3
fluid manufacturer documentation – foreign body contamination limits, s 4.3.1.5c, 4.3.2.3
fluid manufacturer documentation – freezing point data, s 8.6.1
fluid manufacturer documentation – mixing of different products, s 10.1
fluid manufacturer documentation – pH limits, ss 4.3.1.5c, 4.3.2.3, 4.3.5c,
fluid manufacturer documentation – refractive index limits, ss 4.3.1.5c, 4.3.2.3, 4.3.5b

61 Pre-season and start-of-the-season appear to be used interchangeably.
62 See footnote 65.
fluid manufacturer documentation – refractive index, maximum [for LOUT calculation], 8.6.1
fluid manufacturer documentation – safety data sheet, s 10.1
fluid manufacturer documentation – specification, fluid, ss 4.3, 4.3.1.1
fluid manufacturer documentation – storage tank requirements, s 10.1
fluid manufacturer documentation – temperature limits, s 4.3.4
fluid manufacturer documentation – viscosity limits, ss 4.3.1.1, 4.3.2.3
fluid manufacturer documentation – viscosity test limits, field, s 4.3.5d
fluid manufacturer documentation – viscosity test method [optional], field, s 4.3.5d
fluid manufacturer documentation – visual check test\(^6\), ss 4.3.1.4.3.2.3
fluid manufacturer documentation – LOUT, ss 2.2.2 sub verbo “lowest operational use temperature”, 8.8
fluid mixing from different manufacturers – prevention of inadvertent mixing, s 10.2
fluid mixing of different types – prevention of inadvertent mixing, s 10.2
fluid sampling. See sampling
fluid storage. See storage
fluid test. See fluid check
fluid transfer system – chemical contamination, s 10.2
fluid transfer system – dedicated, s 10.2
fluid transfer system – design, s 10.2
fluid transfer system – fluid manufacturer’s recommendation, s 10.2
fluid transfer system – hoses, s 10.2
fluid transfer system – labeling of discharge points, s 10.2
fluid transfer system – labeling of fill ports, 10.2
fluid transfer system – labeling, s 10.2
fluid transfer system – no inadvertent mixing, s 10.2
fluid transfer system – no mixing with fluid of different manufacturer, s 10.2
fluid transfer system – no mixing with fluid of different Types of fluids, s 10.2
fluid transfer system – nozzle, s 10.2
fluid transfer system – piping, s 10.2
fluid transfer system – pumps, s 10.2
fluid transfer system – shearing, s 10.2
fluid transfer system – valves, s 10.2
fluid, pseudoplastic, s 8.5.3
folding wing – bushings, deicing of, s 8.7.11
folding wing – deicing, s 8.7.11
folding wing – hinges, deicing of, s 8.7.11
folding wing – lubricant removal by deicing, s 8.7.11
forced air, s 8.2, 9.1
freezing drizzle – definition, s 2.2.2.2
freezing fog – definition, s 2.2.2.2
freezing point buffer – definition, s 2.2.2.2 sub verbo “buffer (freezing point buffer)”
freezing point buffer – negative – definition, s 2.2.2.2 sub verbo “negative buffer”
freezing point buffer – negative – pre-deicing process, s 8.2
freezing point buffer – sufficient – wing skin temperature lower than OAT, ss 8.7.1, 8.7.2, Tables 1-3
freezing point buffer – Type I – 10°C, ss 2.2.2.2 sub verbo “lowest operational use temperature”, 4.3.3.1, Table 1
freezing point buffer – Type II/III/IV – 7°C, ss 2.2.2.2 sub verbo “lowest operational use temperature”, Tables 2–3
freezing rain, heavy – definition, s 2.2.2.2 sub verbo “heavy freezing rain”

\(^6\) Section 4.3.1.1 calls for a “fluid appearance”. Section 4.3.2.1 and 4.3.2.2 only refers to “visual examination” which should include an assessment of appearance (color and form, e.g., green liquid) and suspended matter, aka foreign body. In this guide we index “visual examination” as “visual check” which should probably be broken down as appearance test and suspended matter test.
freezing rain, light – definition, s 2.2.2.2 sub verbo “freezing rain (light)”
freezing rain, moderate – definition, s 2.2.2.2 sub verbo “moderate freezing rain”
frost – active – definition, s 2.2.2.2 sub verbo “active frost”
frost – active – formation conditions, s 2.2.2.2 sub verbo “active frost”
frost – definition, s 2.2.2.2 sub verbo “frost/hoar frost”
frost – formation – condensation and freezing, s 2.2.2.2 sub verbo “active frost”
frost – formation – sublimation (aka deposition) 64, s 2.2.2.2 sub verbo “active frost”
frost – local – definition, s 2.2.2.2 sub verbo “local frost”
frost – local – flightcrew communications, ss 5.4, 8.5.2f
frost – local – fluid application (≥ 50°C) when frost starts to form, s 8.5.2c
frost – local – fluid application and coverage, s 8.5.2a
frost – local – fluid application to clean surface, s 8.5.2c
frost – local – prevention – aircraft operator approval, s 8.5.2b
frost – local – prevention – no HOT, ss 5.4, 8.5.2e
frost – local – prevention – trained personnel, s 8.5.2b
frost – local – prevention, s 8.5.2
frost – local – removal, s 8.4.6
frost – local – symmetrical treatment, ss 8.4.6, 8.5.2d
frost – local – tactile check, s 8.5.2f
frost – removal, s 8.4.2
frost, cold soaked fuel – definition, s 2.2.2.2 sub verbo “cold soaked fuel frost”
frost, cold soaked fuel – exception, s 6.1
frost, cold soaked wing, s 2.2.2.2 sub verbo “cold soaked wing ice/frost”
gel – definition, s 2.2.2.2 sub verbo “residue/gel”
ground deicing program – aircraft operator responsibility, s 3.2
ground deicing program – approval by regulator, s 3.5
ground deicing program – infrared deicing facility, s 8.3
hail – definition, s 2.2.2.2
heat loss, s 8.4.1
hoarfrost – definition, s 2.2.2.2 sub verbo “hoarfrost”
holdover time. See HOT
HOT – definition, s 2.2.2.2 sub verbo “holdover time”
HOT – effect of aircraft surface coating, s 8.5.3
HOT – end, s 8.5.3
HOT – estimated time of protection, s 8.5.3
HOT – guidelines – definition, s 8.5.3
HOT – maximum – neat Type II/III/IV, s 8.5.3
HOT – publication by FAA and TC, s 8.5.3
HOT – reduction of – heavy precipitation rates, s 8.5.3
HOT – reduction of – high moisture content precipitation, s 8.5.3
HOT – reduction of – high wind velocity, s 8.5.3
HOT – reduction of – jet blast, s 8.5.3
HOT – reduction of – wing skin temperature lower than OAT, s 8.5.3
HOT – responsibility of HOT guideline data remains with user, s 8.5.3
HOT – start of – one-step deicing anti-icing, s 8.5.3
HOT – start of – two-step deicing/anti-icing, s 8.5.3
HOT – start of, s 8.5.3

64 When the surface is below the frost point, frost is formed by sublimation (also known as deposition), that is from the water vapor in the atmosphere directly to solid phase on the surface, without going through a liquid phase. Sublimation: “Direct evaporation from ice. In meteorology, the term is also applied to the reverse process, in which water vapour changes directly to the solid phase.”. Deposition: “The formation of ice on a surface directly from water vapour, without passing through a liquid phase. See sublimation” Source: oxfordreference.com.
HOT, no – local area deicing, ss 5.4, 8.4.6
HOT, no – local frost prevention, ss 5.4, 8.5.2e
HOT, no – specific area deicing, ss 5.4, 8.4.6
HOWV – definition, s 2.2.2.2 *sub verbo* “highest on-wing viscosity”

ice accretion, in-flight, s 8.7.15
ice pellets – definition, s 2.2.2.2
ice ridges on nose – pitot tubes affected by, s 6.2 note
ice, light – removal of, s 8.4.2
ice, removal of, s 8.4.4
impact ice. *See* ice accretion, in-flight

infrared deicing – functional description, s 8.3b
infrared deicing facility – general requirements, s 8.3a
infrared deicing facility – procedure for aircraft inspection, s 8.3c
infrared deicing facility – procedure for anti-icing aircraft, s 8.3d
infrared deicing facility – procedure for deicing aircraft, s 8.3b
infrared deicing, s 8.3
infrared facility. *See* infrared deicing facility
local frost. *See* frost – local

LOUT – definition, s 2.2.2.2 *sub verbo* “lowest operational use temperature”
LOUT – HOT validity, Tables 1–3
LOUT – Type I, s 2.2.2.2 *sub verbo* “lowest operational use temperature”, Table 1
LOUT – Type II, s 2.2.2.2 *sub verbo* “lowest operational use temperature”, Table 2
LOUT – Type III, s 2.2.2.2 *sub verbo* “lowest operational use temperature”, Table 3
LOUT – Type IV, s 2.2.2.2 *sub verbo* “lowest operational use temperature”, Table 2
LOUT – wing skin temperature lower than OAT, ss 8.7.1, 8.7.2, Tables 1–3

LOWV – definition, s 2.2.2.2 *sub verbo* “lowest on-wing viscosity”
LOWV – HOT validity, s 4.3.2.3

may (SAE) – definition, s 2.2.2.1

negative buffer. *See* freezing point buffer – negative
negative freezing point buffer. *See* freezing point buffer – negative

nozzle samples. *See* fluid sampling, nozzle
OAT, wing temperature lower than, Tables 1–3

one-step deicing/anti-icing, s 8.7.1

pH – indicator paper, s 4.3.5c
pH – meter, s 4.3.5c
pH – method, s 4.3.5c

pilot-in-command – responsibility – clean aircraft, Rationale par 5 at p 1, s 3.1
pilot-in-command. *See also* communication with flightcrew

post deicing check. *See* post deicing/anti-icing check

deg deicing check – before aircraft dispatch, s 7.3

deg deicing check – by qualified staff, s 7.3

deg deicing check – definition, s 2.2.2.2

post deicing/anti-icing check – elements of, s 7.3

post deicing/anti-icing check – excludes clear ice check, s 7.3

post deicing/anti-icing check – from points offering visibility of all treated surfaces, s 7.3

post deicing/anti-icing check – incorporated in deicing/anti-icing operation or as separate check, s 7.3

post deicing/anti-icing check – repetition, s 7.3e

post deicing/anti-icing check – responsibility to conduct, ss 3.3, 5.5

post deicing/anti-icing check, ss 2.2.2.2, 5.5, 7.3

pre-deicing process – brooms, s 8.2

pre-deicing process – definition, s 2.2.2.2

pre-deicing process – forced air with fluid, s 8.2

pre-deicing process – forced air, s 8.2
pre-deicing process – heat, s 8.2
pre-deicing process – heavy frozen contaminant accumulation, s 8.4.3
pre-deicing process – hot air, s 8.2
pre-deicing process – hot water, s 8.2
pre-deicing process – infrared, s 8.2
pre-deicing process – negative freezing point buffer hot fluid, s 8.2
pre-deicing process, ss 2.2.2.2, 8.2
preflight check – by flightcrew, ss 2.2.2.2, 7
preflight check – by ground crew, ss 2.2.2.2, 7
preflight check – definition, s 2.2.2.2
pretakeoff check – assessment by flightcrew if HOT is still appropriate, s 7.4
pretakeoff check – definition, s 2.2.2.2
pretakeoff check, ss 2.2.2.2, 7.4, 7.5, 8.5.3
pretakeoff contamination check – alternative is re-deicing, s 7.5
pretakeoff contamination check – definition, s 2.2.2.2
pretakeoff contamination check – when critical surface conditions cannot be determined by flightcrew, s 7.5
pretakeoff contamination check – when HOT exceeded, ss 2.2.2.2, 7.5
pretakeoff contamination check, ss 2.2.2.2, 7.5
program, ground deicing and anti-icing, ss 3.2, 3.5
proximity sensor – definition, s 2.2.2.2
proximity sensor activation – communications with flightcrew, ss 5.10, 8.7.20
proximity sensor activation – deicing unit, s 5.10
proximity sensor activation – reporting procedure, s 8.7.20
qualified staff – definition, s 2.2.2.2
quality assurance – audit, s 4.1
quality assurance – subset of quality program, s 4
quality assurance, s 4.1
quality control – subset of quality program, s 4
quality control, ss 3.3, 4.1, 4.2, 4.3, 4.3.6, 11
quality program – superset of quality assurance and quality control, s 4
refractive index – definition, s 2.2.2.2
refractive index – method, s 4.3.5b
refractometer – definition, s 2.2.2.2
regulator – responsibility – aircraft operator deicing program, approval of, s 3.5
regulator – responsibility – aircraft operator deicing program, review of, s 3.5
regulator – responsibility – clean aircraft concept policies and standards, s 3.5
regulator – responsibility – clean aircraft concept, advocacy of, s 3.5
regulator – responsibility – regulations and guidance material, s 3.5
residue. See Type II/III/IV – residue
residue/gel – definition, s 2.2.2.2
rime ice – definition, s 2.2.2.2
sample bottle label – concentration [e.g., 100/0, 75/25, 50/50], s 4.3.6c
sample bottle label – date sample taken, s 4.3.6c
sample bottle label65 – hazard category
sample bottle label – name of airline or company sending the sample, see footnote 65
sample bottle label – name of vessel [e.g., deicing unit 5, storage tank B, tote 57], s 4.3.6c
sample bottle label – origin [airport code, city], s 4.3.6c
sample bottle label – product name, s 4.3.6c
sample bottle label – where the sample was taken from [e.g., nozzle, bottom valve, top of tank, middle of tank], s 4.3.6c

65 Although not listed in section 4.3.6c of AS6285C, the following should appear on a sample label: name of the airline or company sending the sample and hazard category of the fluid, a mandatory requirement for shipping chemicals.
sampling – frequency. See fluid test – frequency
sampling – nozzle – collection with stand, s 4.3.6a
sampling – nozzle – collection with trash cans, s 4.3.6b
sampling – procedure 66, s 4.3.6
sampling, nozzle. See fluid sampling, nozzle
seals, shipment. See fluid acceptance – seals
service provider – definition, s 2.2.2.2 sub verbo “deicing service provider”
service provider – responsibility – anti-icing code communication to flightcrew, s 3.3
service provider – responsibility – communication protocol with flightcrew, s 3.3
service provider – responsibility – compliance with regulations, s 3.3
service provider – responsibility – deicing according to standards, s 3.3
service provider – responsibility – deicing facility, operability of, s 3.3
service provider – responsibility – deicing facility, safety of, s 3.3
service provider – responsibility – documentation of deicing processes, s 3.3
service provider – responsibility – environmental compliance, s 3.3
service provider – responsibility – post deicing/anti-icing check, s 3.3
service provider – responsibility – qualification of personnel, s 3.3
service provider – responsibility – quality control program, s 3.3
service provider – responsibility – remote facility instructions, s 3.3
service provider – responsibility – reporting anti-icing code to flightcrew, s 3.3
service provider – responsibility – safety of personnel, s 3.3
service provider – responsibility – sufficient number of personnel, s 3.3
service provider – responsibility – supervision of deicing processes, s 3.3
service provider – responsibility – supervision, s 3.3
service provider – responsibility – tools and clothing for personnel, s 3.3
service provider – responsibility – training of personnel, s 3.3
shall (SAE) – definition, s 2.2.2.1
should (SAE) – definition, s 2.2.2.1
slipperiness, s 10.1
slush – definition, s 2.2.2.2
snow – definition, s 2.2.2.2
snow grains – definition, s 2.2.2.2
snow grains – subset of snow [for HOT], s 2.2.2.2 s 2.2.2.2 sub verbo “snow grains”
snow pellets – definition, s 2.2.2.2
snow pellets – subset of snow [for HOT], s 2.2.2.2 s 2.2.2.2 sub verbo “snow pellets”
snow removal [from the aircraft], s 8.4.3
snowflake formation, s 2.2.2.2 s 2.2.2.2 sub verbo “snow”
spray directly, no – air stream direction detectors, s 8.7.8
spray directly, no – angle of attack sensors, s 8.7.8
spray directly, no – brakes, ss 6.5, 8.7.7, 8.4.5.6
spray directly, no – cabin windows, s 8.7.10
spray directly, no – cockpit windows, s 8.7.10
spray directly, no – control surface openings, s 8.4.5.1
spray directly, no – electrical components, ss 6.5, 8.7.7
spray directly, no – engine core, ss 8.4.5.7, 8.7.6, 8.7.9
spray directly, no – engine probes, s 8.7.9
spray directly, no – engine, ss 8.4.5.7, 8.7.9,

66 Although not covered in AS6285C, a complete sampling procedure should cover safety precautions, personal protective equipment, special hazards at airport such as movement of trucks and aircraft, specific procedure for sampling delivery trucks, storage tanks, deicing unit tanks, drums, totes, warning about the possible high temperature of fluid (fluid heat hazard), disposal of excess fluid taken during sampling, site clean up after sampling, specific sampling equipment (e.g., zone sampler), specific type of sample bottle.
spray directly, no – exhausts, ss 6.5, 8.7.7
spray directly, no – folding wing bushings, s 8.7.11
spray directly, no – folding wing hinges, s 8.7.11
spray directly, no – pitot tubes, s 8.7.8
spray directly, no – static ports, s 8.7.8
spray directly, no – thrust reversers, ss 6.5, 8.7.7
spray directly, no – vertical tail, into, s 8.4.5.1
spray directly, no – wheels, ss 6.5, 8.7.7, 8.4.5.6
spray directly, no – windows, cabin, s 8.7.10
spray directly, no – windows, cockpit, s 8.7.10
spray directly, no – wire harness, ss 6.5, 8.7.7
spray, no – APU, s 8.7.9
spray, no – control surface cavities, s 8.7.9
spray, no – intakes and outlets, s 8.7.9
staff, qualified – definition, s 2.2.2.2 sub verbo “qualified staff”
storage – contamination check, s 10.1
storage – corrosion check, s 10.1
storage – corrosion in vapor space, s 10.1
storage – dedicated, s 10.1
storage – degradation check – frequency, s 10.1
storage – degradation check, s 10.1
storage – dissimilar metals, s 10.1
storage – effect of prolonged heating, s 4.3.4
storage – galvanic couple, s 10.1
storage – inspection, annual, s 10.1
storage – label, s 10.1
storage – labeling, conspicuous, s 10.1
storage – prolonged heating, s 10.3
storage – sampling frequency s 10.1
storage – temperature, s 10.1
storage – viscosity test, s 4.3.2.3
storage – water loss, s 10.3
storage tank – definition, s 2.2.2.2 sub verbo “lowest operational use temperature”, Table 1
temperature at nozzle, Tables 1–3
three-minute rule, s 8.7.3, Table 1 at note 2, Table 2 at note 2, Table 3 at note 2
training, s 11
two-step deicing/anti-icing, 8.7.2
Type I – acetate based, s 8.5
Type I – application guidelines. See fluid application
Type I – compatibility with Type II/III/IV, s 8.7.2
Type I – degradation, thermal – undesirable aerodynamic effects, s 10.3
Type I – degradation, thermal – upon low fluid usage (turnover), s 10.3
Type I – degradation, thermal – water loss, s 10.3
Type I – fluid application. See fluid application
Type I – formate based, s 8.5
Type I – functional description, s 8.5.3
Type I – LOUT, s 2.2.2.2 sub verbo “lowest operational use temperature”, Table 1
Type I – maximum concentration, ss 4.3.3.1, 8.6.1
Type I – use of concentrate form, no, s 8.6.1
Type I – water loss – undesirable aerodynamic effects, s 10.3
Type II/III/IV – 50/50 – cold soaked wing, do not used for, Tables 2–3
Type II/III/IV – 50/50 – tolerance on fluid/water mixtures, s 4.3.3.3
Type II/III/IV – 75/25 – tolerance on fluid/water mixtures, s 4.3.3.3
Type II/III/IV – application guidelines. See fluid application
Type II/III/IV – degradation, thermal – fluid manufacturer recommendations, s 4.3.4
Type II/III/IV – degradation, thermal – heating, direct, s 4.3.4
Type II/III/IV – degradation, thermal – heating, indirect, s 4.3.4
Type II/III/IV – degradation, thermal – HOT reduction, s 10.3
Type II/III/IV – degradation, thermal – standby heating, excessive, s 10.3
Type II/III/IV – degradation, thermal – viscosity reduction, s 10.3
Type II/III/IV – degradation, thermal – water loss, s 10.3
Type II/III/IV – dehydration. See Type II/III/IV – degradation, thermal – water loss
Type II/III/IV – fluid application. See fluid application
Type II/III/IV – fluid transfer system – dedicated, s 10.2
Type II/III/IV – fluid transfer system – labeling, s 10.2
Type II/III/IV – fluid transfer system, s 10.2
Type II/III/IV – functional description, s 8.5.3
Type II/III/IV – LOUT differs for dilutions, Table 2
Type II/III/IV – minimum quantity (1 liter/m²), s 8.5.1
Type II/III/IV – removal from cockpit windows, 8.7.12
Type II/III/IV – residue – flight control restrictions, ss 8.7.1, 8.7.2
Type II/III/IV – residue cleaning – program, s 8.7.1
Type II/III/IV – residue cleaning, s 8.7.17
Type II/III/IV – residue detection, ss 8.7.1, 8.7.2
Type II/III/IV – residue detection. See also Type II/IV – residue detection
Type II/III/IV – residue formation – conditions conducive to, ss 8.6.2, 8.7.1, 8.7.2, 8.7.17
Type II/III/IV – residue formation – no takeoff and no precipitation after fluid application, s 6.9
Type II/III/IV – residue formation – Type I to alleviate, s 8.7.1
Type II/III/IV – residue formation – use of Type II/III/IV without Type I, s 8.7.2
Type II/III/IV – residue inspection, ss 8.7.1, 8.7.2, 8.7.17
Type II/III/IV – residue, s 8.7.17
Type II/III/IV – thickness application, sufficient, ss 8.5, 8.5.1
Type II/III/IV – use as deicing fluid – residue inspection and cleaning program required, ss 8.7.1, 8.7.2
Type II/III/IV – use in first-step of two-step process – residue inspection and cleaning program required, s 8.7.2
Type II/III/IV – use in one-step deicing – residue inspection and cleaning program required, s 8.7.2
Type II/III/IV – water loss – degradation and lower HOT, s 10.3
Type II/III/IV – water loss, ss 8.5, 10.3
viscosity field check – falling ball, s 4.3.5d
viscosity field check – fluid manufacturer recommendation, s 4.3.5d
viscosity field check – Stony Brook apparatus, s 4.3.5d
viscosity measurement method – AS9968, s 4.3.5e
viscosity measurement method – fluid manufacturer, s 4.2.3e
viscosity test, laboratory. See viscosity measurement method
windows, cockpit – removal of Type II/III/IV, s 6.8
windows, heated – precaution, s 6.8
wing skin temperature lower than OAT, ss 8.5.3, 8.7.2, Tables 1–3

ARP6257 Aircraft Ground De/Anti-icing Communication Phraseology for Flight and Ground Crews

ARP6257 issued 2016-10-25 by SAE G-12 M.
AS6287 contains standardized scripts for communication between aircraft flight and ground crews during aircraft deicing operations. It covers contact protocols, aircraft configuration, de/anti-icing treatment needed and post deicing reporting requirements.

Keywords:
anti-icing code, s. 3.2.1
communication with flightcrew – aircraft configuration confirmation, s 3.2.1
communication with flightcrew – all clear signal, s 3.2.1
communication with flightcrew – anti-icing code, s 3.2.1
communication with flightcrew – before starting deicing/anti-icing, s 3.2.1
communication with flightcrew – deicing unit proximity sensor activation s 3.2.2.1a
communication with flightcrew – emergency, s 3.2.2.1b
communication with flightcrew – interrupted operations, s 3.2.2.2a
communication with flightcrew – phraseology, need for standard, s 1.1, 1.2
communication with flightcrew – phraseology, Rationale at p 1, ss 1, 3
communication with flightcrew – post deicing/anti-icing check completion, s 3.2.1
communication with flightcrew – proximity sensor activation s 3.2.2.1a
emergency – communications, s 3.2.2.1b
phraseology, Rationale at p 1, ss 1, 3
phraseology, use of standard, ss 1.1, 1.2

AS5537 Weather Support to Deicing Decision Making (WSDMM) Winter Weather Nowcasting System

AS5537 issued 2004-05-04 by SAE G-12 M.

AS5537 provides guidelines for the deployment of WSDMM nowcasting weather system which is a form of holdover time determination system (HOTDS). This system converts real-time snow data and other precipitation data into liquid water equivalent data which is matched to endurance time data using appropriate regression equation. The system provides a check time for an aircraft treated with Type I/II/II/IV fluids. The check time is used to determine the fluid protection capability in varying weather conditions.

Keywords:
GEONOR, s 4
HOTDS – WSDMM, Foreword at p 1
LWES, Foreword at p 1
METAR snowfall intensity underestimation. See snowfall intensity, METAR – underestimation.
nowcasting, Title at p 1
snow gauge – hotplate, s 4
snow gauge – precipitation, s 4
snow gauge, Foreword at p 1, s 4
snowfall intensity, METAR – underestimation in heavily rimed snow, Foreword at p 2, s 1.2
snowfall intensity, METAR – underestimation in snow containing single crystals of compact shape, Foreword at p 2, s 1.2
snowfall intensity, METAR – underestimation in wet snow, Foreword at p 2, s 1.2
snowfall rate – liquid water equivalent, Foreword at p 2, s 1.2
weather support to deicing decision making, Title at p 1
wind shield – single alter, s 4.1
WSDMM, Title at p 1
Documents Issued by the SAE G-12 Deicing Facilities Committee

ARP5660A Deicing Facility Operational Procedures

ARP5660A revised 2011-01-06 by SAE G-12 DF.

ARP5660A provides guidelines for the standardization of safe operating procedures to be used in performing the services and maintenance at designated deicing facilities (DDF), centralized deicing facilities (CDF) or remote deicing facilities. AIR5660A should be used by regulators and airport authorities to develop and standardize approvals and permits for the establishment and operation of a DDF. The coordination of stakeholders is required prior to the approval of design plans for a deicing facility. Operating procedures must be agreed to, in writing, by all air operators, airport authorities, regulators and service providers prior to commencing deicing operations.

Keywords:
AC 150/5300-13, s 3.2.1.1
ACARS – definition, s 2.3
CDF – definition, s 2.3
CDF – subset of DDF, Foreword at p 1
CDF. See also DDF
central deicing facility. See CDF
centralized deicing facility. See CDF
contamination [frozen] – removal with forced air at DDF, s 3.3
contamination [frozen] – removal with infrared at DDF, s 3.3
contamination [frozen] – removal with steam at DDF, s 3.3
control point – definition, s 2.3
control point. See also transfer point
DDF – approval, s 14
DDF – control boundaries, s15.2
DDF – definition, s 2.3
DDF – design of, s 1.2
DDF – documentation, s 11
DDF – emergency action plans, s 7
DDF – emergency communications protocol, Table A3
DDF – engines-on deicing, Rationale at p 1, ss 3.2, 4.1.4, 4.2.5.1
DDF – environmental considerations, s 5
DDF – fluid acceptance, ss 12.2.3, 12.2.4
DDF – fluid management, s 12
DDF – fluid testing, ss 12.2.5, 12.2.6
DDF – operational procedure, ss 1.1, 3
DDF – phraseology, Appendix A
DDF – pilot brief sheet, Appendix B
DDF – pre-storm planning, s 15.1, Table 1
DDF – quality control, s 13
DDF – safety, s 9
DDF – service provider, single, s 4.3.1
DDF – service providers, several, s 4.3.2
DDF – snow removal, s 8
DDF – spent deicing fluid, s 5.9
DDF – superset of centralized deicing facility, s 1.1
DDF – superset of remote deicing facility, s 1.1
definition – ACARS, s 2.3 sub verbo “Aircraft Addressing and Reporting system”
definition – CDF, s 2.3 sub verbo “Central Deicing Facility”
definition – control point, s 2.3
definition – DDF, s 2.3 sub verbo “Designated Deicing Facility”
definition – deicing bay, s 2.3
definition – deicing coordinator, s 2.3
definition – deicing crew, s 2.3
definition – deicing facility, s 2.3
definition – deicing lead, s 2.3
definition – deicing operator, s 2.3
definition – deicing pad, s 2.3
definition – deicing vehicle operator, primary, s 2.3
definition – ground coordinator, s 2.3
definition – icehouse, s 2.3 sub verbo “Deicing Crew”
definition – iceman, s 2.3
definition – pad control point, s 2.3 sub verbo “control point”
definition – pad control, s 2.3
definition – pad leadership, s 2.3
definition – pink snow, s 2.3
definition – primary deicing vehicle operator, s 2.3 sub verbo “Deicing Lead”
definition – remote deicing facility, s 2.3 sub verbo “Central Deicing Facility”
definition – slot management, s 2.3
definition – snow desk, s 2.3
definition – snow, pink, s 2.3
definition – staging area, s 2.3
definition – transfer point, s 2.3
definition – windrows, s 2.3
deicing bay – definition, s 2.3
deicing coordinator – definition, s 2.3
deicing crew – definition, s 2.3
deicing facility – definition, s 2.3
deicing facility – operational procedure, Title at p 1
deicing facility, designated. See DDF
deicing lead – definition, s 2.3
deicing operator – definition, s 2.3
deicing lead – definition, s 2.3
deicing pad – definition, s 2.3
deicing vehicle operator, primary – definition, s 2.2
designated deicing facility. See DDF
engines-on deicing, Rationale at p 1, ss 3.2, 4.1.4, 4.2.5.1
fluid acceptance – DDF, ss 12.2.3, 12.2.4
glycol mitigation, s 5.11
ground coordinator – definition, s 2.3
hand signals, ss 4.2.1, 4.2.6
icehouse – definition, s 2.3 sub verbo “Deicing Crew”
iceman – definition, s 2.3
message boards – use at DDF, s 4.1.4
pad control – definition, s 2.3
pad control point – definition, s 2.3
pad leadership – definition, s 2.3
pink snow – definition, s 2.3
primary deicing vehicle operator – definition, s 2.3
remote deicing facility – definition, s 2.3
remote deicing facility – subset of DDF, s 15.2
remote deicing facility. See also DDF (designated deicing facility)
slot management – definition, s 2.3
snow desk – definition, s 2.3
snow removal – DDF, s 9
snow, pink – definition, s 2.3
staging areas⁶⁷ – definition, s 2.3
transfer point – definition, s 2.3
windrows – definition, s 2.3

ARP4902C Design of Aircraft Deicing Facilities

Revised 2018-02-15 by SAE G-12 DF.

ARP4902C provides guidance material to assist in assessing the need for and feasibility of developing deicing facilities, the planning (size and location) and design of deicing facilities including environmental and operational considerations.

Keywords:
14 CFR 77 Subpart C, s 3.2.1.1.1
AC 150/5300-13, ss 3.2.1.1, 3.2.1.1.1, 4.3.2, 4.3.4, 4.4.1.1, 6.2.1
AC 150/5300-14, ss 4.1, 4.2.4.2, 4.3.1, 4.4.1.2.2, 5.5.1
ADF, spent. See spent deicing fluid; see also deicing facility – spent deicing fluid
aircraft deicing facility. See deicing facility
aircraft deicing pad. See deicing pad
common fluid, s 6.1.3
definition – deicing facility, remote, s 2.2.1.2
definition – deicing facility, s 2.2.1
definition – deicing facility, terminal, s 2.2.1.1
definition – deicing pad, s 2.2.2
definition – deicing, primary, s 4.2.2
definition – deicing, secondary, s 4.2.2
definition – spent deicing fluid, compliant, s 5.3.3
definition – spent deicing fluid, high concentration, s 5.3.3
definition – spent deicing fluid, low concentration, s 5.3.3
definition – storm water, clean, s 4.1.2
definition – storm water, contaminated, s 4.1.2
deicing facility – accident reporting, s 6.9.1c
deicing facility – aircraft dimensions, s 3.2.2.3
deicing facility – aircraft failure, s 6.5.1.5

⁶⁷ Section 2 of ARP4902C defines staging area, yet the deicing pad definition refers to staging bay.
deicing facility – aircraft fleet mix, s 4.2.3.1
deicing facility – aircraft ground movement complexity, s 3.3.2
deicing facility – aircraft marshaling plan, s 6.5.1.1
deicing facility – aircraft parking area, s 2.2.2
deicing facility – aircraft queueing, ss 3.3.2.2, 3.3.2.2.1, 3.3.2.2.2
deicing facility – aircraft types, ss 3.2.2.3, 3.2.2.1.1
deicing facility – aircraft wait times, s 3.3.2.2
deicing facility – airport security, s 3.3.5.2
deicing facility – airport utility master plan, s 3.5.1
deicing facility – airspace analysis, s 3.2.1.4
deicing facility – airway facilities, s 3.2.1.1.1f
deicing facility – all clear signal, s 6.4.1
deicing facility – apron perimeter, s 4.5.2
deicing facility – arrival/departure priority during deicing events, s 3.3.2.2.4
deicing facility – ATC line-of-sight limitations, s 3.2.1.3
deicing facility – ATC workload, s 3.3
deicing facility – ATC, coordination with, ss 3.3.1, 6.2, 6.2.1, 6.2.2
deicing facility – building code, s 3.2.1.4
deicing facility – bypass taxiing capability, s 3.2.2.2
deicing facility – clean aircraft concept, facilitation of, s 3.1
deicing facility – clean aircraft concept, s 6.4.2
deicing facility – clearance standards, ss 3.2.1, 3.2.1.1, 3.2.1.1.1
deicing facility – common fluid, s 6.1.3
deicing facility – communications with flightcrew – all clear signal, ss 6.4.1, 6.4.2
deicing facility – communications with flightcrew, ss 6.4, 6.4.1, 6.4.2
deicing facility – communications with ground crew, ss 6.4.3, 6.9.1
deicing facility – construction, Foreword p 1, ss 4, 4.9
deicing facility – containment, s 5.3.1
deicing facility – definition, s 2.2.1
deicing facility – deicing agreement, s 6.4.2
deicing facility – deicing contract, s 6.4.2
deicing facility – deicing fluid transfer system, s 3.3.6.3
deicing facility – deicing pad safety, s 6.7.1
deicing facility – deicing pads, number of, ss 4.2.4, 4.2.4.1, 4.2.4.2
deicing facility – deicing unit – mobile v fixed, s 6.6.5
deicing facility – deicing unit maneuvering area, ss 2.2.2, 3.3.4
deicing facility – deicing unit, number of, s 4.2.5.6
deicing facility – deicing unit, ss 3.3.6.1, 3.3.6.2, 4.2.5, 4.2.5.1–4.2.5.5
deicing facility – deicing unit, types of, ss 4.2.5, 4.2.5.1–4
deicing facility – departure demand, s 4.2.3
deicing facility – departure sequencing program, s 3.3.2.2.3
deicing facility – design, Title at p 1, Rationale at p 1, Foreword at p 1, s 4
deicing facility – detention pond. See deicing facility – spent deicing fluid – detention pond
deicing facility – disabled aircraft, ss 3.2.2.2, 6.5.1.2
deicing facility – drainage and collection, ss 4.1, 4.5, 4.6, 5.3.2
deicing facility – drainage, ss 3.2.1.4, 3.5.3.1, 4.1, 4.5, 4.6, 4.6.1, 4.6.3, 4.6.4, 4.6.5, 4.6.5.1, 4.8, 5.3.1, 5.3.2, 5.3.2.2, 5.3.2.3, 6.5.2.2
deicing facility – driver training, s 6.9.1e
deicing facility – effect on water quality, s 5.1.2
deicing facility – emergency response, ss 6.2.1, 6.5.1.5, 6.9.1, 6.9.2
deicing facility – emergency road access, s 3.3.7
deicing facility – engine exhaust wake, s 3.2.1.4
deicing facility – engine shutdown/restart, s 6.5.1.2
deicing facility – engines-on deicing – HOT maximization, s 4.2.4
deicing facility – engines-on deicing – throughput improvement, s 4.2.4
deicing facility – environmental considerations, ss 3.3, 3.2.1.4, 3.3.9, 5, 5.1.2, 5.6
deicing facility – environmental monitoring – BOD, ss 5.1.1, 5.2
deicing facility – environmental monitoring – COD, s 5.2
deicing facility – environmental monitoring – pH, s 5.2
deicing facility – environmental monitoring – TOC, s 5.2
deicing facility – environmental monitoring – total suspended solids, s 5.2
deicing facility – environmental reporting, s 6.9.6
deicing facility – equipment failures, s 6.5.1.2
deicing facility – escort. See deicing facility – follow me vehicle
deicing facility – facility activation, s 6.4.4
deicing facility – FBO, s 6.1.1.4
deicing facility – fleet mix, s 4.2.3.1
deicing facility – fluid biodegradation. See deicing facility – spent deicing fluid – biodegradation
deicing facility – fluid labeling, ss 3.3.6.4, 5.3.1
deicing facility – fluid photolysis. See deicing facility – spent deicing fluid – photolysis
deicing facility – fluid quality control, s 6.3
deicing facility – fluid transfer labeling, 3.3.6.4, 5.3.1
deicing facility – fluid transfer system, s 3.3.6.3, 5.3.1
deicing facility – follow me vehicle, 4.1.1.2.1, 6.9.1g.
deicing facility – gate hold procedure, s 6.2.2
deicing facility – glycol – oxygen depleting potential, s 5.1.1
deicing facility – glycol recovery vehicle, ss 5.3.3, 5.5.2
deicing facility – grooved pavements, s 4.5.1
deicing facility – ground power unit, s 6.6.6
deicing facility – ground power unit, s 6.6.6
deicing facility – ground vehicle movement control, ss 3.3.4.1, 3.3.4.2, 3.3.5
deicing facility – groundwater protection, s 5.3.5
deicing facility – growth, future, s 3.2.2.3
deicing facility – GRV, s 5.3.3, 5.5.2
deicing facility – HOT considerations, ss 3.3.1.1, 3.3.2.2.4, 4.2.4
deicing facility – HOT maximization – engines-on deicing, s 4.2.4
deicing facility – illumination glare, s 3.5.2.1
deicing facility – infrared, s 5.5.1
deicing facility – jet blast, protection from, s 6.8
deicing facility – jet blast, ss 3.2.1.4, 4.3.3, 6.8
deicing facility – jet start, s 6.6.6
deicing facility – labeling, discharge points, s 3.3.6.4
deicing facility – labeling, fill ports, s 3.3.6.4
deicing facility – labeling, storage tank, s 3.3.6.4
deicing facility – land use considerations, adjacent, s 3.2.1.4
deicing facility – lighting, in-pavement, ss 3.5.2.3, 4.4.1.2, 4.4.1.2.2
deicing facility – lighting, ss 3.5.2, 3.5.2.1, 3.5.2.2, 3.5.2.3, 4.4.2
deicing facility – location considerations, Rationale at p 1, ss 3, 6.1.6
deicing facility – NAVAIDS, interference with, s 3.2.1.2
deicing facility – object clearing criteria, s 3.2.1.1
ndeicing facility – object free area, s 3.2.1.1.1
ndeicing facility – obstacle clearance limits, s 3.1
ndeicing facility – oil/water separator, ss 5.3.2.2, 5.4, 5.4.2
ndeicing facility – operational considerations, Rationale at p 1, Foreword at p 1, ss 3.2.2, 6
ndeicing facility – pad configuration, s 4.3
ndeicing facility – passenger emergency, s 6.5.1.5
deicing facility – pavement lighting, ss 3.5.2.3, 4.4.1.2, 4.4.1.2.1, 4.4.1.2.2
deicing facility – pavement markings, s 4.4.1.1
deicing facility – pavement system, ss 4.5, 4.5.1, 4.5.2
deicing facility – pedestrian traffic, s 6.7.1
deicing facility – personnel security permits, s 6.9.1f
deicing facility – personnel shelters, ss 6.6.3, 6.8
deicing facility – piping, s 5.3.1
deicing facility – planning, Rationale at p 1, Foreword at p 1
deicing facility – post deicing/anti-icing check, ss 3.2.2.1.2, 6.1.4.1
deicing facility – prevailing winds, ss 3.3.3.1, 4.3.5
deicing facility – prop wash, s 3.2.1.4
deicing facility – queuing, aircraft, s 3.3.2.2
deicing facility – ramp safety procedures, s 6.7.1
deicing facility – recycling ADF, s 5.4.2
deicing facility – remote – definition, s 2.2.1.2
deicing facility – remote – subset of deicing facility, s 2.2
deicing facility – runway obstacle free zone, s 3.2.1.1.1c
deicing facility – runway protection zone, s 3.2.1.1.1g
deicing facility – runway proximity, departure, s 3.3.1.1
deicing facility – runway safety area, s 3.2.1.1.1b
deicing facility – runway safety area, s 3.2.1.1.1c
deicing facility – secondary containment, s 5.3.1
deicing facility – security requirements, ss 6.5.1.5, 6.9.5
deicing facility – separation standards, ss 3.2.1, 3.2.1.1, 3.2.1.1.2, 4.3.1, 4.3.2
deicing facility – signage, s 6.5.1.4
deicing facility – site considerations, multiple, s 3.4e
deicing facility – site, multiple, s 3.4
deicing facility – siting, ss 3, 3.3, 3.6, 4.2
deicing facility – size, Rationale at p 1, ss 4.2, 4.2.1, 6.1.6
deicing facility – snow and ice control plan. See deicing facility – snow removal
deicing facility – snow removal, ss 3.3.3.2, 3.3.8, 4.6.3, 6.5.2.1, 6.9.3
deicing facility – speed limit, s 6.9.1b
deicing facility – spent deicing fluid – above ground storage tanks, s 5.3.4.3
deicing facility – spent deicing fluid – biodegradation, s 5.4.2
deicing facility – spent deicing fluid – biological destruction, 5.4.2
deicing facility – spent deicing fluid – detention pond, ss 4.6.5.2, 5.3.4.1, 5.3.5
deicing facility – spent deicing fluid – disposal – controlled release, s 5.2
deicing facility – spent deicing fluid – disposal – permitting, ss 5.2, 5.4.2
deicing facility – spent deicing fluid – disposal, sanitary, ss 5.2, 5.4.2
deicing facility – spent deicing fluid – disposal, ss 5.2, 5.4.1
deicing facility – spent deicing fluid – fluid segregation, s 5.3.3
deicing facility – spent deicing fluid – photochemical oxidation, s 5.4.4
deicing facility – spent deicing fluid – photolysis, s 5.3.2
deicing facility – spent deicing fluid – recycling, s 5.4.3
deicing facility – spent deicing fluid – storage size, s 5.3.4
deicing facility – spent deicing fluid – underground storage tanks, s 5.3.4.2
deicing facility – spent deicing fluid – waste water treatment plant, s 5.4.2
deicing facility – staffing, qualified, s 6.1.5
deicing facility – staging areas, s 3.5.2.2
deicing facility – stop marks, s 6.5.1.1
deicing facility – storage labeling, s 3.3.6.4
deicing facility – storage, deicing fluid, ss 3.3.6.3, 3.3.6.4, 5.3.1
deicing facility – storm drain system, s 5.3.2.2
Aircraft Deicing Documents – Issued by the SAE G-12 Deicing Facilities Committee

deicing facility – storm water, s 4.6.5
deicing facility – superset of remote deicing facility, s 2.2
deicing facility – superset of terminal deicing facility, s 2.2
deicing facility – surface water, s 5.3.2.1
deicing facility – taxi routes – deicing facility bypass, ss 3.2.2.2, 6.2.3
deicing facility – taxi routes, ss 3.3.2, 6.2.3
deicing facility – taxiway safety area, s 3.2.1.1.1c
deicing facility – terminal – definition, s 2.2.2.1
deicing facility – threshold siting requirements, s 3.2.1.1.1e
deicing facility – throughput capacity, s 3.2.2.1
deicing facility – throughput demand, ss 3.2.1.1, 6.6.1
deicing facility – training, s 6.1.2
deicing facility – use, alternative, s 4.7
deicing facility – valve types, s 5.3.2.2
deicing facility – vehicle staging, s 6.6.3
deicing facility – vehicle traffic, ss 6.5.2, 6.5.2.1, 6.5.2.2
deicing facility – water quality guidelines, ss 5.2, 5.4.1
deicing facility – water quality standards, s 5.2
deicing facility – weather considerations, s 3.3.3
deicing facility – winds, prevailing, ss 3.3.3.1, 4.3.5
deicing facility – wingtip separation, s 4.3.1
deicing fluid disposal. See deicing facility – spent deicing fluid
deicing pad – definition, s 2.2.2
deicing service provider, s 6.1.1.1
deicing, primary – definition, s 4.2.2
deicing, secondary – definition, s 4.2.2
FBO, s 6.1.1.4
FBO. See also service provider
fluid, common, s 6.1.3
gate hold procedure, s 6.2.2
GRV, ss 5.3.3, 5.5.2
HOT maximization – engines-on deicing, s 4.2.4
ICAO Doc 9157, ss 3.2.1.1, 4.1, 4.3.1, 4.3.2, 4.3.4, 4.4.1.1, 4.4.1.2.2, 6.2.1
labeling – discharge points, s 3.3.6.4
labeling – fill ports, s 3.3.6.4
labeling – fluid transfer system, s 3.3.6.4
labeling – storage tanks, s 3.3.6.4
remote deicing facility. See deicing facility, remote
service provider, deicing/anti-icing, ss
service provider, ss 6.1.1.1, 6.1.2, 6.1.5
snow removal, ss 3.3.8, 6.5.2.1
spent deicing fluid – fluid segregation, s 5.3.3
spent deicing fluid, compliant – definition, s 5.3.3
spent deicing fluid, high concentration – definition, s 5.3.3
spent deicing fluid, low concentration fluid – definition, s 5.3.3
taxi routes, s 6.2.3
terminal deicing facility – subset of deicing facility, s 2.2
water quality guidelines, purpose of, s 5.2
water quality guidelines. See also deicing facility – water quality guidelines
water quality standard. See deicing facility – water quality guidelines
AS5635 Message Boards (Deicing Facilities)

AS5635 issued 2005-02-16 by SAE G-12 DF.

AS5635 establishes the minimum standard requirements for message boards deicing facilities including the minimum content and appearance of the display, functional capabilities, design, inspection, and testing requirements

Keywords:
- deicing facility – message boards, Title at p 1
- message boards – aircraft entry, s 3.4.3.1
- message boards – aircraft exit, s 3.4.3.4
- message boards – aircraft positioning, s 3.4.3.2
- message boards – deicing/anti-icing information, s 3.4.3.3
- message boards – design requirements, s 3
- message boards – inspection and testing, s 4
- message boards – minimum design requirement, s 3.5
- message boards – precedence of verbal communications, s 3.4.3
- message boards – purpose, s 3.2
- message boards – safety requirements, s 3.6
- message boards – system malfunction, s 3.6.2
- message boards – technical requirements, s 3.3
- message boards, Title at p 1
ARP1971D Aircraft Deicing Vehicle - Self-Propelled

Revised 2019-02-13 by SAE G-12 E.

ARP1971D covers requirements for a self-propelled, boom type aerial device, equipped with an aircraft deicing/anti-icing fluid spraying system, with open basket or enclosed cabin.

Keywords:
aircraft deicing vehicle – self-propelled. See deicing unit
anti-icing truck. See deicing unit
basket. See deicing unit – basket
boom. See deicing unit – boom
cabin. See deicing unit – basket; deicing unit – cabin, enclosed
deicing truck. See deicing unit
deicing unit – acceptance, s 4
deicing unit – aerial device, ss 3.1, 3.2.3, 3.4, 4.3.3
deicing unit – aircraft washing, s 3.9.17
deicing unit – axle mass, s 3.2.12
deicing unit – basket – load capacity, ss 3.2.3, 3.2.12
deicing unit – basket – person capacity, number of, ss 3.2.3, 3.2.12
deicing unit – basket – weight capacity, s 3.2.3
deicing unit – basket, ss 3.1, 3.2.3, 3.2 note, 3.2.12, 3.3.2, 3.4.1, 3.4.2, 3.4.4, 3.4.6.1, 3.4.6.3, 3.4.7.8-3.4.18, 3.5.2, 3.5.10, 3.5.12, 3.8.1, 3.8.6, 3.9.1, 3.9.3, 3.9.11, 3.9.16, 3.9.17, 3.9.21, 3.9.29, 4.3.2, 4.3.4, 4.3.7
deicing unit – blower, s 3.2.9
deicing unit – boom elevation system, s 3.2.11
deicing unit – boom, ss 3.1, 3.2, 3.2.4, 3.2.8, 3.2.11, 3.4-3.4.18, 3.5.12, 3.7.1, 3.7.6, 3.8.1, 3.8.9, 3.9.9, 3.9.21, 3.9.29, 3.9.29.5, 4.3.2, 4.3.5, 4.3.7,
deicing unit – cabin, enclosed, s 3.9.29
deicing unit – cabin. See deicing unit – basket; deicing unit – cabin, enclosed
deicing unit – chassis, ss 3.1, 3.2.2, 3.2.9, 3.3-3.3.13, 3.9.7, 3.9.27,
deicing unit – combustion heaters, s 3.2.7
deicing unit – controls and instrumentation, s 3.6
deicing unit – engine speed, s 3.2.9
deicing unit – fast heating system, s 3.2.7
deicing unit – fill ports – sizes, s 3.9.19
deicing unit – fill ports, s 3.9.19
deicing unit – fluid contamination68, s 3.5.6
deicing unit – fluid degradation test, s 3.9.1
deicing unit – fluid delivery pressure, s 3.2.4
deicing unit – fluid delivery rate, s 3.2.4

68 ARP1971D does not offer an exhaustive list of potential sources of chemical contamination, for example when new equipment is placed into service, it may have been shipped with an antifreeze solution in the pump and piping system. This antifreeze solution is an unwanted contaminant and needs to be cleaned off. Rain can enter through covers, so can melted snow. Often deicing trucks tanks are filled with water in the summertime for training purpose; care should be taken to drain the water before the deicing truck is put back into service.
deicing unit – fluid delivery temperatures, ss 3.2.7, 3.5.20
deicing unit – fluid fill couplings, s 3.9.19
deicing unit – fluid fill ports, s 3.9.19
deicing unit – fluid heating system ss 3.2.7, 3.5.15-18, 3.9.3, 3.9.25-26
deicing unit – fluid heating system, electric 3.9.25
deicing unit – fluid labeling, s 3.5.1
deicing unit – fluid level gauges, s 3.6.8
deicing unit – fluid mixing system, ss 3.9.2, 3.9.3
deicing unit – fluid pressure gauge, ss 3.6.2, 3.9.20
deicing unit – fluid proportioning system, ss 3.2.5, 3.9.2, 3.9.3
deicing unit – fluid pumps – circulating/mixing, s 3.9.1
deicing unit – fluid pumps – on demand, s 3.9.1
deicing unit – fluid pumps – positive displacement, s 3.9.1
deicing unit – fluid pumps – rotary diaphragm, s 3.9.1
deicing unit – fluid pumps – self-priming, s 3.5.7
deicing unit – fluid pumps – strainer, s 3.5.7
deicing unit – fluid pumps – test for fluid shear degradation, s 3.9.1
deicing unit – fluid pumps – Type II/III/IV, s 3.9.1
deicing unit – fluid sampling, s 3.9.30.4
deicing unit – fluid spray pattern, s 3.5.11
deicing unit – fluid system labelling, s 3.5.1
deicing unit – fluid system, s 3.5
deicing unit – fluid tank capacity, s 3.5.2
deicing unit – fluid tank design, s 3.5.4
deicing unit – fluid tank fittings, s 3.5.5
deicing unit – fluid temperature, ss 3.2.6, 3.9.3
deicing unit – fuel capacity, s 3.2.10
deicing unit – heating system – combustion type, s 3.2.7
deicing unit – heating system – fast heating, s 3.2.7
deicing unit – heating system, s 3.2.7, 3.2.11
deicing unit – hose color, anti-icing fluid – green with yellow stripe, s 3.5.1
deicing unit – hose color, deicing fluid – red with yellow stripe, s 3.5.1
deicing unit – hose couplings, s 3.9.19
deicing unit – hot water deicing system, ss 3.2.7, 3.5.4, 3.9.2
deicing unit – labeling of, s 3.2.12
deicing unit – maintenance manuals, s 5
decing unit – maintenance training, s 6.3
decing unit – markings, s 3.2.12
decing unit – mixing system. See deicing unit – fluid mixing system
decing unit – modifications, s 6.4
decing unit – name-plate, s 3.2.12
decing unit – nozzle – adjustable, s 3.5.11
decing unit – nozzle – flow rate adjustment, s 3.5.11
decing unit – nozzle – fluid degradation test, s 3.9.1
decing unit – nozzle – ground level – deicing fluid only, s 3.5.2
decing unit – nozzle – ground level, s 3.5.2
decing unit – nozzle – gun type, s 3.5.10
decing unit – nozzle – pressure gauge, s 3.9.23
decing unit – nozzle – spray patterns, s 3.5.11
decing unit – nozzle – turret, ss 3.4.13, 3.5.10, 3.5.13
decing unit – nozzle – Type II/III/IV, ss 3.9.1–3.9.3
decing unit – nozzle, ss 3.2.4, 3.2.7, 3.4.13, 3.5.1, 3.5.2, 3.5.4, 3.5.10-14, 3.5.16, 3.6.3, 3.9.1-3, 3.9.5, 3.9.16, 3.9.17, 3.9.23, 3.9.29.2, 3.9.29.9, 3.9.30.4, 4.3.6
Forced air is a process by which an air stream is utilized to remove accumulation of frozen contamination from the aircraft. Forced air can be used with or without deicing fluid, heated or unheated. AIR6284 provides information on equipment, safety, operation, and methodology for use of deicing vehicles equipped with forced air.

Keywords:
- air stream, Rationale at p 1, ss 3, 4.3.2, 5.1.3
- contamination [frozen] – removal with forced air and fluid, Rationale at p 1
- contamination [frozen] – removal with forced air, Title at p 1
- deicing unit – forced air. See forced air
ARP5058A Enclosed Operator's Cabin for Aircraft Ground Deicing Equipment

Revised 2004-06-21 by SAE G-12 E.

ARP5058A sets guidelines and design requirements for an enclosed cabin for both mobile deicers and fixed deicing equipment.

Keywords:
Documents Issued by the SAE G-12 Training and Quality Control Committee

AS6286A Aircraft Ground Deicing/Anti-Icing Training and Qualification Program

Revised 2019-06-26 by SAE G-12 T.

This document sets the standard for the qualification and training programs as well as evaluations for personnel involved in aircraft ground deicing.

A standard teaching plan with theoretical and practical elements is proposed in sections 6.2 and 6.4.

Appendix A provides background to the theoretical elements of the standard teaching plan (Appendix A chapter heads not provided in the document, provided here for convenience):

A.1 Introduction
A.2 Trainer and course introduction
A.3 Basic knowledge of aircraft performance
A.4 Effects of frozen contamination on aircraft performance
A.5 The clean aircraft concept, regulatory bodies and recommendations
A.6 General weather conditions of aircraft ground icing
A.7 General techniques for removing frozen deposits from an aircraft
A.8 Deicing/anti-icing by fluids
A.9 Basic characteristics of aircraft deicing/anti-icing fluids
A.10 Type of fluid checks required and the equipment for doing this
A.11 Deicing/anti-icing equipment operating procedures
A.12 Fluid application and the use plus limitations of holdover time tables
A.13 The deicing codes and communications procedures
A.14 Aircraft in general and common critical surfaces and instruments
A.15 Safety precautions and human factors
A.16 Environmental impact and mitigation
A.17 Deicing facility operations
A.18 Operational quality management, audit findings and updating procedures
A.19 The special requirements for the local situation

Appendix B provides aircraft diagrams with showing zones where deicing/anti-icing fluids may be applied, areas where fluids should be applied indirectly and where fluid should not be applied (no-spray zones). It also provides wing surface area, horizontal surface area, wingspan, aircraft category and suggested anti-icing fluid quantities for several commonly used aircraft.

Keywords:
accountable executive – definition, s 2.3.1 sub verbo “winter program manager”
accountable person – definition, s 2.3.1 sub verbo “winter program manager”
Airbus A220 spray area diagram, s B.1.3
Airbus A220-100 dimensions, s B.2.2.1.9
Airbus A220-200 dimensions, s B.2.2.1.10
Airbus A300 spray area diagram, s B.1.4
Airbus A310 dimensions, s B.2.2.1.5
Airbus A310 spray area diagram, s B.1.5
Airbus A318/319 spray area diagram, s B.1.6
Airbus A318/319/320/321 dimension, s B.2.2.1.6
Airbus A320 spray area diagram, s B.1.7
Airbus A321 spray area diagram, s B.1.8
Airbus A330 dimensions, s B.2.2.1.2
Airbus A330 spray area diagram, s B.1.9
Airbus A340 dimensions, s B.2.2.1.1
Airbus A340 spray area diagram, s B.1.10
Airbus A350 spray area diagram, s B.1.11
Airbus A350-1000 dimensions, s B.2.2.1.11
Airbus A380 dimensions, s B.2.2.1.3
Airbus A380 spray area diagram, s B.1.12
Airbus A400M spray area diagram, s B.1.13
aircraft category. See category, aircraft
calendar diagram, Fig B1
aircraft handedness, s B.2.1.4, Fig B1
aircraft left-hand, s B.2.1.4, Fig B1
aircraft operator – responsibility – special deicing procedures, s B.2.1.1
aircraft right-hand, s B.2.1.4, Fig B1
anti-icing fluid – functional description, s 3.1
anti-icing fluid additives – aquatic toxicity, s A.15.3.1
Antonov AN-12 dimensions, s B.2.2.4.1
Antonov AN-124 dimensions, s B.2.2.4.4
Antonov AN-70 dimensions, s B.2.2.4.2
Antonov AN-74/AN-74T dimensions, s B.2.2.4.3
APU fluid ingestion, s B.2.1.3
APU glycol ingestion, s B.2.1.3
area, wetted – definition, s B.2.2
AS6286 aircraft deicing procedures – precedence of AS6285 procedures, s A.1
ATR42/ATR72 dimensions, s B.2.2.3.8,
ATR42/ATR72 spray area diagram, s B.1.14
Avro RJ dimensions, s B.2.2.3.3
Avro RJ spray area diagram, s B.1.15
BAe 146/Avro RJ dimensions, s B.2.2.3.3
BAe 146/Avro RJ spray area diagram, s B.1.15
BAe 748/HS 748 spray area diagram, s B.1.16
BAe ATP dimensions, s B.2.2.3.1
BAe Jetstream 31/41 dimensions, s B.2.2.3.2
BAe Jetstream 31/41 spray area diagram, s B.1.17
BAe Jetstream 41 dimensions, s B.2.2.3.2
Beech 1900 D dimensions, s B.2.2.5.2
Beech Beechjet 400A dimensions, s B.2.2.5.3
Beech King Air 350 dimensions, s B.2.2.5.1
Beech King Air B200 dimensions, s B.2.2.5.5
Beech King Air C90B/C90SE dimensions, s B.2.2.5.4
Beechcraft B1900 spray area diagram, s B.1.18
Beechcraft B1900 spray area diagram, s B.1.18
Boeing B707 dimensions, s B.2.2.2.1
Boeing B717 dimensions, s B.2.2.2.2
Boeing B717 spray area diagram, s B.1.19
Boeing B727 dimensions, s B.2.2.2.3
Boeing B727 spray area diagram, s B.1.20
Boeing B737 dimensions, s B.2.2.2.4
Boeing B737 spray area diagram, s B.1.21
Boeing B747 dimensions, s B.2.2.2.5
Boeing B747 spray area diagram, s B.1.22
Boeing B757 dimensions, s B.2.2.2.6
Boeing B757 spray area diagram, s B.1.23
Boeing B767 dimensions, s B.2.2.2.7
Boeing B767 spray area diagram, s B.1.24
Boeing B777 dimensions, s B.2.2.2.8
Boeing B777 spray area diagram, s B.1.25
Boeing B787 dimensions, s B.2.2.2.13
Boeing B787 spray area diagram, s B.1.26
Boeing C-17 dimensions, s B.2.2.2.12
Boeing C-17 spray area diagram, s B.1.27
Boeing MD DC10/MD-10/MD-11 spray area diagram, s B.1.30
Boeing MD DC-10/MD-11 dimensions, s B.2.2.2.11
Boeing MD DC-8 dimensions, s B.2.2.2.9
Boeing MD DC-8 spray area diagram, s B.1.28
Boeing MD DC-9 dimensions, s B.2.2.5.2.10
Boeing MD DC-9 spray area diagram, s B.1.29
Boeing MD DC-9/MD-8x spray area diagram, s B.1.29
Boeing MD MD-80/MD-90 dimensions, s B.2.2.2.10
Boeing MD MD-80/MD-90 spray area diagram, s B.1.31
Boeing MD MD-80/MD-90 spray area diagram, s B.1.31
Bombardier 130-100 Continental dimensions, s B.2.2.5.7
Bombardier Challenger CL600 dimensions, s B.2.2.5.8
Bombardier CL 100/200 dimensions, s B.2.2.5.6
Bombardier CRJ dimensions, s B.2.2.3.4
Bombardier Global Express dimensions, s B.2.2.3.7
Bombardier Global Express spray area diagram, s B.1.36
Bombardier Shorts. See Shorts
boot, deicing, s B.2.1.5
boot, leading edge deicing boot. See boot, deicing
Canadair RJ100/200 spray area diagram, s B.1.32
Canadair RJ700/900/1000 spray area diagram, s B.1.33
category, aircraft, s Table B2
Cessna 525 Citation CJ1 dimensions, s B.2.2.5.12
Cessna 525 Citation CJ2 dimensions, s B.2.2.5.13
Cessna 550 Citation Bravo dimensions, s B.2.2.5.14
Cessna 560 Encore dimensions, s B.2.2.5.15
Cessna 560 Excel dimensions, s B.2.2.5.16
Cessna 680 Citation Sovereign dimensions, s B.2.2.5.18
Cessna 750 Citation X dimensions, s B.2.2.5.17
Cessna Caravan C208 spray area diagram, s B.1.39
check, flight control. See flight control check
clear ice – definition, s A.6.4.1
configuration, aircraft deicing – elevator, B.2.1.7
contamination [frozen] – effect on air flow, ss A.4.3, A.4.5
contamination [frozen] – effect on control surfaces, s A.4.5
contamination [frozen] – effect on drag, ss A.4.3, A.4.5, A.4.8
contamination [frozen] – effect on engine, s A.4.8
contamination [frozen] – effect on lift, ss A.4.3, A.4.5
contamination [frozen] – effect on operating envelope, s A.4.3
contamination [frozen] – effect on propeller balance, s A.4.8
contamination [frozen] – effect on propeller performance, s A.4.8
contamination [frozen] – effect on stall angle, s A.4.3
contamination [frozen] – effect on stall speed, s A.4.3
contamination [frozen] – from fuselage melted ice or snow, s A.6.4.4
contamination [frozen] – from ice accretion in-flight, s A.6.4.3
contamination [frozen] – from water blown by propellers, s A.6.4.3
contamination [frozen] – from water splashed by wheels, s A.6.4.3
critical component – definition, s A.5.2
critical surface – definition, s A.5.2
Dassault Falcon 2000 dimensions, s B.2.2.5.21
Dassault Falcon 50 dimensions, s B.2.2.5.19
Dassault Falcon 900 dimensions, s B.2.2.5.20
Dassault Falcon spray area diagram, B.1.40
de Havilland DASH-8 100/200 dimensions, s B.2.2.3.5
de Havilland DASH-8 100/200/300 spray area diagram, s B.1.34
de Havilland DASH-8 400/Q400 dimensions, s B.2.2.3.6
de Havilland DASH-8 400/Q400 spray area diagram, s B.1.35
definition – accountable executive, s 2.3.1 sub verbo “winter program manager”
definition – accountable person, s 2.3.1 sub verbo “winter program manager”
definition – area, wetted, s 4.2
definition – clear ice, s A.6.4.1
definition – critical component, s A.5.2
definition – critical surface, s A.5.2
definition – dewpoint, s A.6.3
definition – drag, s A.3.2
definition – freezing drizzle, s A.6.3c
definition – freezing fog, s A.6.3d
definition – freezing rain, heavy, s A.6.3i
definition – freezing rain, light, s A.6.3h
definition – freezing rain, moderate, s A.6.3i
definition – frost point, s A.6.3b
definition – frost, s A.6.3e
definition – frost, active, s A.6.3a
definition – hail, s A.6.3f
definition – hail, small, s A.6.3g
definition – hazard, s A.15.2
definition – hoarfrost, s A.6.3e
definition – ice pellets, s A.6.3g
definition – lift, s A.3.2
definition – management team, senior, s 2.3.1 sub verbo “senior management team”
definition – quality management system, s 2.3.1
definition – responsible person, s 2.3.1 sub verbo “winter program manager”
definition – risk, s A.15.2
definition – snow grains, s A.6.3k
definition – snow pellets, A.6.3l
definition – snow, s A.6.3j
definition – thrust, s A.3.2
definition – training, head of deicing, s 2.3.1 sub verbo “head of deicing training”
definition – training, postholder, s 2.3.1 sub verbo “postholder training”
definition – weight, s A.3.2
definition – winter program manager, s 2.3.1
deicing fluid – functional description, s 3.1
deicing fluid additives – aquatic toxicity, s A.15.3.1
deicing unit – maintenance schedule, s A.11.5
deicing/anti-icing contracts, s 1.2

dewpoint – definition, s A.6.3b
dimension, aircraft, ss B.2.2.1.1-2.2.5.31

drag – definition, s A.3.2
Embraer E120 dimensions, s B.2.2.3.9
Embraer E120 spray area diagram, s B.1.41
Embraer E135/E140/E145 spray area diagram, B.1.42
Embraer E145 dimensions, s B.2.2.3.10
Embraer E170/E175 dimensions, s B.2.2.3.11
Embraer E170/E175 spray area diagram, s B.1.43
Embraer E190/E195 dimensions, s B.2.2.3.11
Embraer E190/E195 spray area diagram, s B.1.44
engine numbering, s B.2.1.4, Fig B1
Fairchild Dornier 328JET dimensions, s B.2.2.3.12
Fairchild Dornier 728JET dimensions, s B.2.2.3.13
Fairchild Dornier D328 Propeller spray area diagram, s B.1.45
Fairchild Dornier J328JET spray area diagram, s B.1.46
Fairchild Metro/Merlin spray area diagram, s B.1.47
fluid failure description – lack of wetting, s A.12.6.2
fluid manufacturer documentation – acceptance field tests, s 10.3.2
fluid manufacturer documentation – certificate of analysis, s A.10.2
fluid manufacturer documentation – fluid transfer handling, ss A.9.2, A.10.4, A.11.18
fluid manufacturer documentation – fluid, heating of, s A.10.4
fluid manufacturer documentation – product information bulletin, s A.15.3.1
fluid manufacturer documentation – safety data sheet, s A.15.3.1
fluid manufacturer documentation – storage tank requirements, s A.10.4
FOD, s A.6.2.1
Fokker F100 dimensions, s B.2.2.3.17
Fokker F27 dimensions, s B.2.2.3.14
Fokker F28 dimensions, s B.2.2.3.15
Fokker F70 dimensions, s B.2.2.3.16
Fokker F70/F100 spray area diagram, s B.1.48
freezing drizzle – definition, s A.6.3c
freezing fog – definition, s A.6.3d
freezing rain – heavy – definition, s A.6.3i
freezing rain – light – definition, s A.6.3h
freezing rain – moderate – definition, s A.6.3H
frost – active – definition, s A.6.3a
frost – definition, s A.6.3e
frost – formation conditions – cloudless nights, low wind (radiation cooling), A.6.2.2
frost – formation conditions, s A.6.2.2
frost – local, s A.6.2.2
frost – on fuselage, s A.6.2.2
frost – on lower horizontal stabilizer surface, s A.6.2.2
frost – on lower wing surface, s A.6.2.2
frost – roughness, s A.6.2.2
Gulfstream IV dimensions, s B.2.2.5.22
Gulfstream spray area diagram, s B.1.49
hail, small – definition, s A.6.3g
handedness, aircraft, s B.2.1.4
Hawker 800 XP dimensions, s B.2.2.5.23
Hawker Horizon dimensions, s B.2.2.5.24
Hawker Siddeley HS 748 spray area diagram, s B.1.16
hazard – definition, s A.15.2
hazard, identified, s A.15.2
hazards of ice, snow and frost, ss A.4–A.4.8, A.6.2.1
height overall, aircraft, s B.2.2.1.1–B.2.2.5.31
hoarfrost – definition, s A.6.3e
IAI 1125Astra SPX dimensions, s B.2.2.5.25
IAI Galaxy dimensions, s B.2.2.5.26
ice accretion, in-flight, s A.6.4.3
ice pellets – definition, s A.6.3g
Ilyushin IL-114 dimensions, s B.2.2.4.9
Ilyushin IL-62 dimensions, s B.2.2.4.5
Ilyushin IL-62 spray area diagram, s B.1.50
Ilyushin IL-76 dimensions, s B.2.2.4.6
Ilyushin IL-76 spray area diagram, s B.1.51
Ilyushin IL-86 dimensions, s B.2.2.4.8
Ilyushin IL-96 dimensions, s B.2.2.4.8
Ilyushin IL-96 spray area diagram, s B.1.52
Ilyushin IL-96M dimensions, s B.2.2.4.8
improvement, continual, s 3.2
leading edge – aerodynamically critical, s A.4.5
leading edge deicing boot. See boot, deicing
leading edge, heated, s B.2.1.5
Learjet 31A dimensions, s B.2.2.5.11
Learjet 45 dimensions, s B.2.2.5.9
Learjet 60 dimensions, s B.2.2.5.10
Learjet spray area diagram, s B.1.37
Let L410 dimensions, s B.2.2.4.10
Let L610G dimensions, s B.2.2.4.11
lift – definition, s A.3.2
Lockheed C-130 spray area diagram, s B.1.53
Lockheed Galaxy C5 dimensions, s B.2.2.3.18
Lockheed Hercules C-130J dimensions, s B.2.2.3.19
Lockheed L-1011 spray area diagram, s B.1.54
management team, senior – definition, s 2.3.1
McDonnell Douglas. See Boeing MD
METAR, s A.6.6.2
Mitsubishi MU-2 dimensions, s B.2.2.5.27
no-spray area. See spray, no
preflight check – aircraft icing protective system considerations, s B.2.1.5
preflight check – propellers, s B.2.1.5
propeller-brake, s B.2.1.4
quality management system – definition, s 2.3.1
quality management system, s 3.2
Raytheon Premier 1 dimensions, s B.2.2.5.28
responsible person – definition, s 2.3.1 sub verbo “winter program manager”
riime, s A.6.2.2
risk – definition, s A.15.2
risk assessment, s A.15.2
roughness, effect of, s A.6.6.2
SAAB 2000 dimensions, s B.2.2.3.21
SAAB 340 dimensions, s B.2.2.3.20
SAAB 340/2000 spray area diagram, s B.1.55
Shorts 330 dimensions, s B.2.2.5.29
Shorts 330 spray area diagram, s B.1.38
Shorts 330 spray area diagram, s B.1.38
Shorts 360 dimensions, s B.2.2.5.30
Shorts 360 spray area diagram, s B.1.38
Sino Swearinger SJ30-2 dimensions, s B.2.2.5.31
SMS – functional description, s A.15.2
snow – definition, s A.6.3J
snow grains – definition, s A.6.3k
snow pellets – definition, s A.6.3l
snow, blowing, s 3.4
spray, no, s B.2.1.2
stunt flyer, s A.3.3
surface area, aircraft, s B.2.2.1.1–B.2.2.5.31
surface area, horizontal stabilizer, ss B.2.2.1.1–B.2.2.5.31
surface area, one third fuselage, ss B2.2.1.1–B.2.2.5.31
surface area, wing, ss B2.2.1.1–B.2.2.5.31, Table B2
TAF, s A.6.6.3
thrust – definition, s A.3.2
trainer – qualification, s A.2.1, A.2.2
training – accident/incident analysis, s A.15.4
training – accident/incident reporting, s A.15.3.4
training – aerodynamic acceptance test, s A.9.5.3
training – aerodynamics – acceptance test, s A.9.5.3
training – aerodynamics – aerodynamic forces, s A.3.2
training – aerodynamics – angle of attack, critical, s A.3.4
training – aerodynamics – angle of attack, ss A.3.3, A.3.5
training – aerodynamics – contamination, effect of, ss A.4.1-A.4.6
training – aerodynamics – critical surfaces, s A.4.5
training – aerodynamics – downwash, s A.3.3
training – aerodynamics – flaps and slats, s A.4.5
training – aerodynamics – frost, effect of, ss A.4.5, A.4.6, A.4.7,
training – aerodynamics – fuselage, s A.4.5
training – aerodynamics – laminar and turbulent air flow, ss A.3.3, A.3.4, A.4.5
training – aerodynamics – lift coefficient, s A.3.4
training – aerodynamics – operating envelope, s A.3.5
training – aerodynamics – stall speed, s A.3.5
training – aerodynamics – stall, A.3.4
training – aerodynamics – upwash, s A.3.3
training – aerodynamics, s A.3
training – aircraft manufacturer recommendations, s 1.1
training – all clear signal, ss A.13.2, A.13.3. A.13.6
training – annual, ss 3.3.1, 4.3, 6.1, 6.6.3
training – anti-icing, ss A.7.2.2, A.7.5.1
training – asphyxiation hazard – combustion heater in confined spaces, s A.15.3.2
training – asphyxiation hazard – combustion heater in poorly ventilated areas, s A.15.3.2
training – certificate of analysis, s A.10.2
training – certificate, s 6.6.2
training – check, special, s A.7.4
training – check, tactile, s A.7.4
training – classroom vs practical, s 1.1
training – clean aircraft concept, ss 3.1, A.4.3, A.5.1, A.5.2
training – clear ice – conditions conducive to, ss A.6.4.1, A.6.4.2, A.14.3
training – clear ice – detection, ss A.7.4, A.14.3
training – clear ice – difficulty to detect, ss 2.2.2.2 sub verbo “cod-soak effect”, A.6.4.1, A.6.4.2
training – clear ice, ss A.6.4.1, A.14.3
training – cockpit windows, care of, s A.12.5
training – cold soaking – conditions conducive to – flight at high altitude, s A.6.4.2
training – cold soaking – conditions conducive to – fueling, s A.6.4.2
training – cold soaking – conditions conducive to, ss 2.2.2.2 sub verbois “cold-soak effect”, “cold soaked clear ice”, A.6.4.2
training – cold soaking – fuel caused, s A.6.4.2
training – cold soaking – functional description, s A.6.4.2
training – cold weather hazard, s A.15.3.3
training – communications with flightcrew – English language, s A.13.3
Table C1
Aircraft Deicing Documents – Issued by the SAE G-12 Training and Quality Control Committee

training – computer based – deicing simulators, ss 3.3.3, 6.7, Tables 6, 7, 8
training – computer based, ss 3.3.3, 9.5
training – contamination check, ss A.4.8, A.7.4
training – course content, s A.2.1
training – critical surface – air conditioning inlets/outlets, s A.14.2
training – critical surface – airstream direction detector probes, s A.14.2
training – critical surface – angle of attack sensors, s A.14.2
training – critical surface – engine fan blades, s A.14.2
training – critical surface – engine inlets, s A.14.2
training – critical surface – flaps, s A.14.2
training – critical surface – fuel tank vents, s A.14.2
training – critical surface – fuselage, s A.14.2
training – critical surface – landing gear doors, s A.14.2
training – critical surface – landing gear, s A.14.2
training – critical surface – outflow valves, s A.14.2
training – critical surface – pitot tubes, s A.14.2
training – critical surface – propellers, A.14.2
training – critical surface – static ports, s A.14.2
training – critical surface – stationary surfaces underneath moveable surfaces, s A.14.2
training – critical surface – wing, tail and control surfaces, s A.14.2
training – deicing operation, ss A.7.2.1, A.7.5.1, A.8.2, A.8.3, A.8.4
training – deicing unit – asphyxiation hazard – combustion heaters, s A.15..3.2
training – deicing unit – awareness of surroundings, A.11.3
training – deicing unit – basket layout, open, s A.11.10
training – deicing unit – boom description, s A.11.5
training – deicing unit – braking test, s A.11.2
training – deicing unit – cabin layout, enclosed, s A.11.10
training – deicing unit – communication system, s A.11.7
training – deicing unit – communications between driver and sprayer, ss A.11.2, A.11.4
training – deicing unit – communications monitoring, s A.11.3
training – deicing unit – components, basic, s A.11.10
training – deicing unit – deicing data collection, s A.11.9
training – deicing unit – description, s A.11.1
training – deicing unit – emergency lowering of boom, s A.11.4
training – deicing unit – emergency shut off, s A.11.4
training – deicing unit – emergency stop, s A.11.4
training – deicing unit – filling of, s A.11.2
training – deicing unit – filling station, s A.11.6
training – deicing unit – fire extinguisher, ss A.11.3, A.11.4
training – deicing unit – fluid concentration monitoring, s A.11.8
training – deicing unit – fluid flow rate, s A.11.8
training – deicing unit – fluid overfilling prevention system, s A.11.4
training – deicing unit – fluid pressure monitoring, ss A.11.4, A.11.4, A.11.8
training – deicing unit – fluid temperature monitoring, ss A.11.3, A.11.6
training – deicing unit – labeling, ss A.11.5, A.11.6
training – deicing unit – lifting device, s A.11.1
training – deicing unit – maximum speed when deicing, s A.11.5
training – deicing unit – maximum wind with boom elevated, s A.11.5
training – deicing unit – nozzle, use of, s A.11.8
training – deicing unit – readiness, ss A.11.3, A.11.5
training – deicing unit – safety precautions, s A.11.3
training – deicing unit – underwing spraying, s A.11.1
training – deicing unit – walk-around pre-operation check – basket/cabin, s A.11.13
training – deicing unit – walk-around pre-operation check – boom, s A.11.13
training – deicing unit – walk-around pre-operation check – emergency and safety equipment, s A.11.13
training – deicing unit – walk-around pre-operation check – engine, s A.11.13
training – deicing unit – walk-around pre-operation check – fuel, s A.11.2
training – deicing unit – walk-around pre-operation check – heater, s A.11.13
training – deicing unit – walk-around pre-operation check – nozzle, s A.11.13
training – deicing unit – walk-around pre-operation check – pump, s A.11.13
training – deicing unit – walk-around pre-operation check – windscreen washer fluid, s A.11.2
training – deicing unit hazards, s A.15.3.2
training – deicing v anti-icing, s A.7.5.1
training – deicing/anti-icing – purpose of, s A.5.7
training – deicing/anti-icing – restore operating envelope, s A.5.7
training – deicing/anti-icing decision, s A.7.4
training – deicing/anti-icing fluid hazard, s A.15.3.1
training – deicing/anti-icing fluid, no flammability hazard, s A.15.3.1
training – engine manufacturer recommendations, s 1.1
training – ethylene glycol – handling of, s A.15.3.1
training – evaluation – computer-based training, s A.3.3
training – evaluation – failed, s 6.6.2
training – evaluation – plagiarism, s 3.3.3
training – evaluation – practical, s 6.5
training – evaluation – theoretical, s 6.3
training – evaluation, ss 6.1, 6.3, 6.5, 9.5, 9.6, A.2.1
training – eye/face protection, use of, s A.11.12
training – fall hazard, s A.15.3.3
training – fall protection equipment, use of, s A.11.12
training – fall protection equipment, use of, s A.15.3.3
training – fatigue hazard, s A.15.3.3
training – flight control check, s A.14.4
training – flightcrew, s 4.12
training – fluid – thickened v unthickened, ss A.9.3, A.9.5.1
training – fluid acceptance, ss A.10.2
training – fluid application – air conditioning off, s B.2.1.3
training – fluid application – aircraft manufacturer requirements, ss A.8.3, A.8.4.2
training – fluid application – anti-icing – amount required, s B.2.4
training – fluid application – APU bleed air off, s B.2.1.3
training – fluid application – APU, s B.2.1.3
training – fluid application – cabin windows, s A.14.4
training – fluid application – exhausts, s A.14.4
training – fluid application – one-step, s A.7.5.2
training – fluid application – pitot tubes, s A.14.4
training – fluid application – propellers, s B.2.1.4
training – fluid application – re-deicing, s A.7.5.3
training – fluid application – static ports, s A.14.4
training – fluid application – symmetrical, ss A.8.3, A.8.4.2
training – fluid application – temperature, s A.8.4.2
training – fluid application – thrust reversers, s A.14.4
training – fluid application – two-step, ss A.7.5.3, A.9.4
training – fluid certificate of conformance, s A.10.2
training – fluid failure description, s A.12.6.2
training – fluid handling, s A.10.2–A.10.4
training – fluid heat degradation, s A.10.4
training – fluid heat hazard, s A.15.3.3
Aircraft Deicing Documents – Issued by the SAE G-12 Training and Quality Control Committee

training – fluid manufacturer recommendations – fluid handling system, s A.10.4
training – fluid manufacturer recommendations – fluid heating, s A.10.4
training – fluid manufacturer recommendations – storage temperature limits, s A.10.4
training – fluid pressurization hazard, s A.11.2
training – fluid recovery, s A.16.4
training – fluid shear degradation, ss A.9.5.2, A.10.4
training – fluid specification – AMS1424, s A.9.5.3
training – fluid specification – AMS1428, s A.9.5.3
training – fluid storage – drums, A.10.4
training – fluid storage – fluid manufacturer recommendations, s A.10.4
training – fluid storage – labeling, s A.10.3.2
training – fluid storage – tank inspection, s A.10.4
training – fluid storage – tank level, s A.10.3.2
training – fluid storage – totes, s A.10.4
training – fluid testing – brand name, s A.10.2
training – fluid testing – color, s A.10.3.2
training – fluid testing – contamination check, s A.10.3.2
training – fluid testing – pH, ss A.10.3.1, A.10.3.2
training – fluid testing – refraction, ss A.10.3.1, A.10.3.2
training – fluid testing – viscosity, A.10.3.2
training – fluid testing – viscosity, field test, s A.10.3.2
training – fluid transfer system – dedicated, s A.10.4
training – fluid transfer system – labels, s A.10.4
training – fluid transfer system, s A.10.4
training – fluid, Newtonian v non-Newtonian, ss A.9.5.2, A.9.5.3
training – foam confused as snow, s A.8.3
training – footwear, safety, use of, s A.11.12
training – fundamentals – case studies, s 9.4
training – fundamentals – demonstration, s 9.4
training – fundamentals – evaluations and evaluations, ss 9.3, 9.6
training – fundamentals – forgetfulness, s 9.2
training – fundamentals – human factors, s 9.4
training – fundamentals – learning process, ss 9.1, 9.2
training – fundamentals – lectures, s 9.4
training – fundamentals – misconceptions, s 9.4
training – fundamentals – motivation, ss 9.3, 9.4
training – fundamentals – professionalism, ss 9.1, 9.2
training – fundamentals – training aids, ss 9.4, 9.5
training – fundamentals – training material, s 9.4
training – fundamentals – training methods, s 9.4
training – fundamentals – training process, ss 9.1, 9.2
training – fundamentals – unsafe habits, s 9.1
training – fundamentals – what if scenarios, s 9.4
training – galvanic couples, s A.10.3.2
training – global deicing standards, s A.5.6
training – gloves, use of, ss A.11.12, A.15.3.3., Tables C1, 3
training – ground crew, ss 4.4–4.9
training – hazard v risk, s A.15.2
training – hazards of ice, snow and frost, s A.4–A.4.8
training – head of training, ss 4.2.2, 4.11
training – health and safety, s 1.3
training – heat loss, ss A.8.2, A.11.8
training – HHET, s A.9.31
training – HOT guidelines, s A.5.6
training – HOT, start of, s A.8.4.2
training – HOT, use of, Table 1
training – human error, s A.15.3.4
training – human factors, s A.15.3.4, Table C1
training – ICAO – alphabet, s Table A5
training – ICAO – language proficiency rating scale, s 7
training – in-flight icing, s A.4.4.2
training – initial, ss 3.3.1, 4.3, 6.1, 6.6.3
training – instructor. See training – trainer
training – jet blast hazard, s A.15.3.2
training – landing gear, deicing of, s 3.8
training – language proficiency rating scale, ICAO, s 7
training – language, English, ss 7, A.13.3
training – language, other, ss 9.3, 9.5, A.13.8
training – lessons learned, ss 6.1, 9.4
training – low visibility hazard, ss A.6.3, A.11.3, A.15.3.2
training – management plan, ss 3.3.1, 8.4, 8.4.1, 8.4.2, A.17.1, A.17.3
training – management, senior, s 4.1
training – manager, program, s 4.2.1
training – materials compatibility, s A.5.6
training – new equipment, ss 4.4, 4.5, 6.1
training – no-spray zones, ss 6.5, A.5.5, A.14.1, A.14.5, B.2.1.1, Tables 2, 5, 7, 8, C1
training – noise level hazard, s A.15.3.3
training – one-step deicing/anti-icing, s A.7.5.2
training – personal protective equipment, s A.11.12
training – personal protective equipment, s A.15.3.3
training – personnel trained and qualified, ss 3.3.2, 6.1, 6.6.3, A.5.5, A.8.3, A.12.5
training – plan, practical – centralized deicing, s 6.2
training – plan, practical – communications, s 6.2
training – plan, practical – competence demonstration, s 6.2
training – plan, practical – contamination check, s 6.2
training – plan, practical – deicing unit auxiliary engine operation, s 6.2
training – plan, practical – deicing unit basket operation, s 6.2
training – plan, practical – deicing unit control panel, s 6.2
training – plan, practical – deicing unit driving, s 6.2
training – plan, practical – deicing unit layout, s 6.2
training – plan, practical – deicing unit operation, s 6.2
training – plan, practical – deicing unit positioning, s 6.2
training – plan, practical – deicing unit safety around the aircraft, s 6.2
training – plan, practical – emergency situations, s 6.2
training – plan, practical – fluid checks, s 6.2
training – plan, practical – fluid heater operation, s 6.2
training – plan, practical – fluid spraying, s 6.2
training – plan, practical – gate deicing, s 6.2
training – plan, practical – ground hose operation, s 6.2
training – plan, practical – hot air use, s 6.2
training – plan, practical – multiple unit deicing, s 6.2
training – plan, practical – no-spray areas, s 6.2
training – plan, practical – nozzle setting, s 6.2
training – plan, practical – pre-spray checks, s 6.2
training – plan, practical – tactile check, s 6.2
training – plan, theoretical – anti-icing code, s 6.2
training – plan, theoretical – anti-icing fluids, s 6.2
training – plan, theoretical – audits, s 6.2
training – plan, theoretical – clean aircraft concept, s 6.2
training – plan, theoretical – clear ice, s 6.2
training – plan, theoretical – communications with flightcrew, s 6.2
training – plan, theoretical – contamination [frozen] – effect on aircraft performance, s 6.2
training – plan, theoretical – contamination [frozen] – removal with fluids, s 6.2
training – plan, theoretical – contamination [frozen] – removal, s 6.2
training – plan, theoretical – critical aircraft surfaces, s 6.2
training – plan, theoretical – deicing facility operations, s 6.2
training – plan, theoretical – deicing fluids, s 6.2
training – plan, theoretical – environmental impact, s 6.2
training – plan, theoretical – fluid handling, s 6.2
training – plan, theoretical – hazards, s 6.2
training – plan, theoretical – HOT, limitations of, s 6.2
training – plan, theoretical – HOT, use of, s 6.2
training – plan, theoretical – human factors, s 6.2
training – plan, theoretical – introduction, s 6.2
training – plan, theoretical – lessons learned, s 6.2
training – plan, theoretical – no-spray areas, s 6.2
training – plan, theoretical – quality control of fluids, s 6.2
training – plan, theoretical – regulations, s 6.2
training – plan, theoretical – rules and permits, local, s 6.2
training – plan, theoretical – SAE standards, compliance with, s 6.2
training – plan, theoretical – safety, aircraft, s 6.2
training – plan, theoretical – safety, personnel, s 6.2
training – plan, theoretical – safety, s 6.2
training – plan, theoretical – Type I/II/III/IV – color, s 6.2
training – plan, theoretical – Type I/II/III/IV, s 6.2
training – plan, theoretical – weather, s 6.2
training – poor visibility hazard, s A.15.3.2
training – post deicing/anti-icing check, ss 4.5, 4.6, 4.7, 6.5, A.13.5, A.14.2, B.1.1
training – preflight check, s A.14.2
training – pretakeoff contamination check, ss 8.4.1, A.14.2
training – professional attitude, ss 9.1, A.15.3.4
training – propeller hazard, s B.2.1.4
training – propylene glycol – handling of, s A.15.3.1
training – qualification level – cabin crew, ss 4.3, 4.13
training – qualification level – deicing coordinator, ss 4.3, 4.9
training – qualification level – deicing instructor, ss 4.3, 4.8
training – qualification level – deicing operator, ss 4.3, 4.5
training – qualification level – deicing supervisor, ss 4.3, 4.6
training – qualification level – deicing unit driver, ss 4.3, 4.4
training – qualification level – deicing vehicle driver. See training – qualification level – deicing unit driver
training – qualification level – dispatch personnel
training – qualification level – flightcrew, ss 4.3, 4.12
training – qualification level – fluid quality inspector, ss 4.3, 4.10

Section 4.3 appears to be missing a training qualification level for dispatch personnel, yet section 3.3.1 calls for training of dispatch personnel.
training – qualification level – head of deicing training, ss 4.2.1, 4.3, 4.11
training – qualification level – laboratory staff. See training – qualification level – fluid quality inspector
training – qualification level – pre/post-deicing inspector, ss 4.3, 4.7
training – radio communications, s A.11.17
training – records – date, s 6.6.2
training – records – evaluation results, s 6.6.2
training – records – failures, s 6.6.2
training – records – proof of qualification, as, s 6.6.2
training – records – qualification level, s 6.6.2
training – records – qualification restrictions, s 6.6.2
training – records – retrievability, ss 6.6.2, 6.6.3
training – records – subject matter, s 6.6.3
training – records – trainer name, s 6.6.2
training – recycling, s A.16.4
training – refractometer, use of, s A.10.3.2
training – regulators, role of, s A.5.3
training – respiratory protection, use of, s A.11.12
training – risk v hazard, s A.15.2
training – SAE G-12, role of, s A.5.2
training – SAE standards, ss A.5.5, A.5.6
training – safety equipment, use of, s A.11.12
training – safety harness, s A.11.12
training – safety lanyard, s A.11.12
training – schedule, s A.2.1
training – seat belt, use of, s A.11.12
training – slipperiness hazard, ss A.11.3, A.14.4, A.15.3.1
training – snow, foam confused as, s A.8.3
training – standards, use of latest edition, s 6.6.3
training – storage tank corrosion, s A.10.3
training – storage tank inspection, s A.10.3.2
training – theoretical vs practical, ss 1.1, 6.1
training – timing, recommended, Table C1
training – trainer background, s A.2.1
training – trainer name, s A.2.1
training – two-step deicing/anti-icing, s A.7.5.3
training – Type I – color – orange, s A.9.3
training – Type I – quantity, minimum, s A.8.4.1
training – Type I – temperature, minimum, A.8.4.1
training – Type I, s A.9.5.2
training – Type I, use of s A.8.4.1
training – Type II – color – yellow, s A.9.3
training – Type II/III/IV – quantity, minimum, s A.8.4.2
training – Type II/III/IV – temperature, A.8.4.2
training – Type II/III/IV, ss A.9.5.1, A.9.5.2
training – Type II/III/IV, use of, s A.8.4.2
training – Type III – color – bright yellow, s A.9.3
training – Type IV – color – green, s A.9.3
training – weather, s A.6
training – weatherproof clothing, use of, s A.11.12
training – WSET, s A.9.5.3
training, head of deicing – definition, s 2.3.1 sub verbo “head of deicing training”
training, postholder – definition, s 2.3.1 sub verbo “postholder training”
Tupolev TU-134 dimensions, s B.2.2.4.12
AS6332 Aircraft Ground Deicing/Anti-icing Quality Management

Issued 2017-08-29 by SAE G-12 T.

This document sets the requirements for aircraft deicing/anti-icing quality management system. It comprises quality system, documentation, control of records, management responsibility, resource management, measurement and analysis of results, and process for continual improvement.

Keywords:
AS9100, s 4
audit – documented procedure, s 9.1
audit evidence – definition, s 3.2b.
audit results, s 9.3
audit, external, ss 6.4.2, 9.2
audit, internal, ss 6.4.2, 9.1
audit, s 6.4.2
auditor – impartiality, s 9.2
auditor – objectivity, s 9.2
auditor – shall not audit their own work, s 9.2
auditor, s 9.2
check, deicing unit walk around, s 7.2.2
clean aircraft concept – definition, Rationale at p 1, s 3.2b
clean aircraft concept, Rationale at p 1, ss 4, 6.1, 6.2, 6.3.2, 6.5, 7.1.1, 7.1.2, 7.3.1, 8, 9, A.2, A.7
conformity – definition, s 3.2b.
contamination [frozen] – definition, s 3.2b. sub verbo “contamination”
contamination check – definition, s 3.2b.
contamination inspection – definition, s 3.2b.
continual improvement. See improvement, continual
corrective action – definition, s 3.2b.
corrective action, s 6.4.2
critical component – definition, s 3.2b. sub verbo “critical surface”
critical surface – definition, s 3.2b.
definition – audit evidence, s 3.2b.
definition – clean aircraft concept, Rationale at p 1, s 3.2b.
definition – conformity, s 3.2b.
definition – contamination [frozen], s 3.2b. sub verbo “contamination”
definition – contamination check, s 3.2b.
definition – contamination inspection, s 3.2b. sub verbo “contamination check”
definition – corrective action, s 3.2b.
definition – critical component, s 3.2b. sub verbo “critical surface”
definition – finding, s 3.2b.
definition – ground icing conditions, s 3.2b.
definition – improvement, opportunity for, s 3.2b. sub verbo “observation/opportunity for improvement”
definition – management, senior, s 3.2b. sub verbo “senior management”
definition – nonconformity, s 3.2b.
definition – observation, s 3.2b.
definition – preventive action, s 3.2b.
definition – qualified personnel, s 3.2b.
definition – quality assurance, s 3.2b.
definition – quality control, s 3.2b.
definition – quality improvement, s 3.2b.
definition – quality management system, s 3.2b.
definition – quality management, Rationale at p 1
definition – quality manual, s 3.2b.
definition – quality system accountable executive, s 3.2b. sub verbo “program manager”
definition – quality system accountable person, s 3.2b. sub verbo “program manager”
definition – quality system program manager, s 3.2b. sub verbo “program manager”
definition – quality system responsible person, s 3.2b. sub verbo “program manager”
definition – root cause, s 3.2b.
definition – service provider, s 3.2b. sub verbo “deicing service provider”
definition – SMS, s 3.2b. sub verbo “quality management system”
definition – training, head of, s 3.2b. sub verbo “head of training”
definition – winter operations, s 3.2b.
deicing unit – walk around check, s 7.2.2
finding – definition, s 3.2b.
ground icing conditions – definition, s 3.2b.
improvement, continual, Rationale at p1, ss 4, 5.1, 6.4.2, 7, 9, 9.3, 9.4, A.8
improvement, opportunity for – definition, s 3.2b. sub verbo “observation”
ISO 9001, s 4
lockout procedure, s 7.2.2
management, senior – definition, s 3.2b. sub verbo “senior management”
master lock procedure. See tag-out procedure
nonconformity – definition, s 3.2b.
observation – definition, s 3.2b.
out-of-service procedure, s 7.2.2
preventive action – definition, s 3.2b.
predictive action, s 6.4.2
qualified personnel – definition, s 3.2b.
quality – management responsibilities – audits, s 6.4.2
quality – management responsibilities – continual improvement, s 6.4.3
quality – management responsibilities – documentation requirements, s 6.5
quality – management responsibilities – management commitments, s 6.1
quality – management responsibilities – management representative, s 6.3.2
quality – management responsibilities – management review, s 6.4
quality – management responsibilities – planning objectives, s 6.2
quality – management responsibilities – responsibility and authority, s 6.3.1
quality – management responsibilities – review input, s 6.4.2
quality – management responsibilities – review output, s 6.4.3
quality – management responsibilities – training, head of, s 6.3.3
quality – management responsibilities, s 6
quality – service provider responsibilities – aircraft requirement after deicing, s 8.3
quality – service provider responsibilities – approved locations for deicing, s 7.2.2
quality – service provider responsibilities – awareness, s 7.1.2
quality – service provider responsibilities – calibration, ss 7.2.1, 7.2.2, 7.3.2, A.5, A.6,
quality – service provider responsibilities – clean aircraft concept, ss 7.1.1, 7.1.2
quality – service provider responsibilities – communication systems, ss 7.2.1, 8.3
quality – service provider responsibilities – communications with flightcrews, s 8.3
quality – service provider responsibilities – competence of personnel, ss 7.1.1, 7.1.2
quality – service provider responsibilities – contamination check, s 8.3
quality – service provider responsibilities – continual improvement, s 7
quality – service provider responsibilities – deicing facilities documentation, s 7.2.2
quality – service provider responsibilities – deicing infrastructure, s 7.2.1
quality – service provider responsibilities – deicing procedures, s 8.3
quality – service provider responsibilities – deicing unit boom inspections, 7.2.2
quality – service provider responsibilities – deicing unit, ss 7.2.1, 8.2
quality – service provider responsibilities – education records, s 7.1.1
quality – service provider responsibilities – engines-on training, s 7.1.2
quality – service provider responsibilities – equipment walk around check, s7.2.2
quality – service provider responsibilities – experience records, s 7.1.1
quality – service provider responsibilities – fall protection systems, s 7.2.2
quality – service provider responsibilities – fire extinguishers, s 7.2.2
quality – service provider responsibilities – fire suppression systems, s7.2.2
quality – service provider responsibilities – fluid acceptance checks, s 7.3.2
quality – service provider responsibilities – fluid certificates of conformance with delivery, s 7.3.2
quality – service provider responsibilities – fluid field testing, s 7.3.2
quality – service provider responsibilities – fluid handling systems, s 7.2.1
quality – service provider responsibilities – fluid labeling, ss 7.2.2, 7.3.1
quality – service provider responsibilities – fluid manufacturer recommendations, abide by, ss 7.3.1, 7.3.2
quality – service provider responsibilities – fluid quality control checks, ss 7.3, 7.3.1, 7.3.2, 8.3
quality – service provider responsibilities – fluid sampling procedures, s 7.3.2
quality – service provider responsibilities – fluid storage, s 7.3.1
quality – service provider responsibilities – fluid testing equipment, s 8.2
quality – service provider responsibilities – fluid testing, laboratory, s 7.3.2
quality – service provider responsibilities – fluids, ss 8.2, 8.3
quality – service provider responsibilities – hazard labeling, s 7.2.2
quality – service provider responsibilities – information systems, s 7.2.1
quality – service provider responsibilities – inspection records, 7.2.2
quality – service provider responsibilities – lockout procedures, s 7.2.2
quality – service provider responsibilities – maintenance records, 7.2.2
quality – service provider responsibilities – out-of-service procedures, s 7.2.2
quality – service provider responsibilities – personal protective equipment, s 7.2.2
quality – service provider responsibilities – planning deicing operations, s 8.1
quality – service provider responsibilities – post deicing anti-icing check, s 8.3
quality – service provider responsibilities – qualification records, s 7.1.2
quality – service provider responsibilities – qualified personnel, s 8.2
quality – service provider responsibilities – tag-out procedures, s 7.2.2
quality – service provider responsibilities – trainer certification, s 7.1.2
quality – service provider responsibilities – training effectiveness, s 7.1.1
quality – service provider responsibilities – training examinations, s 7.1.2
quality – service provider responsibilities – training programs, s 7.1.2
quality – service provider responsibilities – training qualification requirements, s 7.1.2
quality – service provider responsibilities – training records, ss 7.1.1, 7.1.2
quality – service provider responsibilities – training, initial, s 7.1.1
quality – service provider responsibilities – training, recurrent, s 7.1.1
quality – service provider responsibilities – transport systems, s 7.2.1
quality – service provider responsibilities – work instructions, ss 8.2, 8.3
quality assurance – definition, s 3.2b.
quality control – definition, s 3.2b.
quality improvement – definition, s 3.2b.
quality management – definition, Rationale at p 1, s 3.2b.
quality management – system approach, Rationale at p 1, ss 4, 5
quality management system – aircraft size limits, s 5.5
quality management system – communications, s 5.5
quality management system – conformance to AS6285, s 5.5
quality management system – conformance to AS6286, s 5.5
quality management system – control of documents, s 5.4
quality management system – definition, s 3.2b.
quality management system – deicing location procedures, s 5.5
quality management system – document control, s 5.3
quality management system – documentation requirements, s 5.5
quality management system – emergency procedures, s 5.5
quality management system – engines-on procedures, s 5.5
quality management system – ground deicing program, s 5.5
quality management system – procedures, s 5.2
quality management system – process control documents, s 5.2
quality management system – quality manual, ss 5.2, 5.5
quality management system – quality objectives, s 5.2, 9.3
quality management system – quality policy, ss 5.2, 9.3
quality management system – records, s 5.2
quality management system – safety zones, s 5.5
quality management system – SMS, s 5.5
quality management system – winter operation documents, s 5.2
quality management system – winter planning documents, s 5.2
quality management system, ss 4, 5, A.1
quality management, s 4
quality manual – definition, s 3.2b.
quality manual – ground deicing program, comprised in, s 3.2b.
quality objectives, ss 5.2, 9.3
quality policy, ss 5.2, 9.3
quality system accountable executive – definition, s 3.2b. sub verbo “program manager”
quality system accountable person – definition, s 3.2b. sub verbo “program manager”
quality system program manager – definition, s 3.2b. sub verbo “program manager”
quality system responsible person – definition, s 3.2b. sub verbo “program manager”
root cause – definition, s 3.2b.
root cause, s 9.4, A.8
safety management system. See SMS
service provider – definition, s 3.2b. sub verbo “deicing service provider”
SMS – definition, s 3.2b.
tag-out procedure, s 7.2.2
training – clean aircraft concept, ss 7.1.1, 7.1.2
training – engines-on deicing, s 7.1.2
training – head of deicing – definition, s 3.2b.
training – head of deicing, s 6.3.3
training – initial, s 7.1.1
training – records, ss 7.1.1, 7.1.2
training – recurrent, s 7.1.1
winter operations – definition, s 3.2b.
Documents Issued by Regulators

The FAA and Transport Canada publish yearly holdover time guidelines, extensive guidance material, a list of fluids that have qualified themselves for anti-icing performance and aerodynamic acceptance and their respective lowest aerodynamic acceptance temperature. The FAA and Transport Canada do not verify that the fluids meet all the technical requirements of AMS1424 (latest version) and AMS1428 (latest version) other than anti-icing performance and aerodynamic acceptance. Users must verify if the fluids to be used meet all other technical requirements of AMS1424 (latest version), AMS1424/1, AMS1428 (latest version) and AMS1428/1.

EASA and ICAO also publish guidance material.

Documents Issued by the Federal Aviation Administration

FAA Notice N 8900.525 Revised FAA–Approved Deicing Program Updates, Winter 2019–2020

Effective date: 2019-10-07; cancellation date: 2020-10-07. Issued by the FAA. 70

Replaces FAA Notice N 8900.519 which had an effective date of 2019-08-06.

This notice is meant to provide FAA inspectors information on holdover time and guidance on various several operational issues related to aircraft ground deicing. It is revised every year is to be used in conjunction with the FAA Holdover Time Guidelines, also issued annually.

It provides information and guidance, not only to the FAA inspectors, but to airlines seeking FAA approval of ground deicing/anti-icing programs. 71

In the 2019-2020 there were further clarifications on the use of METAR codes GR, PL, SG, GS, and SHGS. Careful reading of section 8.f. is suggested.

70 Online: <https://www.faa.gov/documentLibrary/media/Notice/N_8900.525.pdf>

71 Regulators have different names for the programs that airlines and service providers must have in place to deal with ground icing. FAA calls it “FAA-Approved Deicing Program” in document N 8900.xxx and “Ground Deicing/Anti-Icing Program” in AC 120-60B, Transport Canada uses the terms “Approved Ground Icing Program” and “ground icing operations program”, ICAO calls it “ground de-icing/anti-icing programme”, and SAE refers to ground deicing program in AS6285. To facilitate indexing, these programs are indexed as ground deicing program, e.g. ground deicing program (FAA), ground deicing program (TC), etc.
There is a new guidance section (8.h.) on mixed precipitation conditions. A mixed precipitation condition occurs when multiple precipitation types are simultaneously reported. Section 8.h was further amended in this latest F 8900.525 with respect to METAR obscuration.

A section allowing takeoff under mixed precipitation within 5 minutes after a contamination check was deleted.

Keywords:
active frost. See frost – active
aerodynamic effect of fluids – fluid freezing in flight, residual, s 13.l.
aerodynamic effect of fluids – fluid presence at time of rotation, s 13.c.(1)
aerodynamic effect of fluids – on aircraft with non-powered flight controls – failure to rotate, s 13.c.(1)
aerodynamic effect of fluids – on elevator control force, s 13.c.(2)
aerodynamic effect of fluids – on elevator effectiveness, s 13.c.(2)
aerodynamic effect of fluids – on small corporate jet, small – failure to rotate, s 13.c.(1)
aerodynamic effect of fluids – on stick/column forces, s 13.c.(2)
aerodynamic effect of fluids – on tab effectiveness, s 13.c.(2)
aerodynamic effect of fluids – on tail surfaces, s 13.c.(2)
aerodynamic effect of fluids – on turbo-prop aircraft, slow rotation speed – failure to rotate, s 13.c.(1)
aircraft, turbo-prop high wing – inspection, s 13.g.
airplane. See aircraft.
alcohol based Type I – guidance (FAA), s 13.e.
alcohol based Type I – pretakeoff contamination check useless, s 8.e.(2)(a)
alcohol based Type I – purpose, ss 8.e.(1)(c), 8.e.(2)(a)
alcohol based Type I – temperature decreasing, s 8.e.(2)(c)8.
alcohol based Type I – temperatures stable, s 8.e.(2)(b)
alcohol based Type II – none, s 8.e.(2)(c)2.
alcohol based Type II – purpose, ss 8.e.(1)(c), 8.e.(2)(a)
alcohol based Type II – rotation speed, minimum, s 8.e.(2)(c)4.
alcohol based Type II – start of, s 8.e.(2)(b)1–3.
alcohol based Type II – temperature increasing, s 8.e.(2)(b)
allowance time – Type III neat, s 8.e.(2)(c)2.
allowance time – Type III unheated, s 8.e.(2)(c)3.
allowance time – Type IV neat, s 8.e.(2)(c)2.
allowance time – v HOT, ss 8.e.(1)(a–c)
ARP5485 – use by FAA to develop HOT, s 8.e.(1)(a)
ARP5945 – use by FAA to develop HOT, s 8.e.(1)(a)
blowing – descriptor [weather], s 8.h.(3)
Boeing B737-600/-700/-800/-900 – cold soaked fuel frost – exemption process (FAA), s 13.k.
Boeing wingtip devices. See wingtip devices
check time determination system, s 12.b.
check time, s 12.b.
check, pretakeoff contamination (FAA). See pretakeoff contamination check (FAA)
check, tactile – detection of clear ice in engine inlets, s 14.d.(3)
check, tactile – hard wing aircraft with aft-mounted jet engine, s 13.h.
check, tactile – in heavy snow – guidance (FAA), ss 8.d.(1), 8.d.(2)(c)
check, tactile – to distinguish individual ice pellets in fluid from slush, s 9.d.
check, tactile – to distinguish individual ice pellets in fluid from adhering ice pellets, s 9.d.
check, visual – in heavy snow – guidance (FAA), ss 8.d.(1), 8.d.(2)(c)
clear ice – detection – in engine inlets by ROGIDS, s 14.d.(3)
clear ice – detection – in engine inlets, s 14.d.(3)
clear ice – effect of, s 14.d.(3)
cold soaked fuel frost. See frost, cold soaked fuel
communication with flightcrew – absence of flightcrew at time of deicing, s 13.a.
CSFF. See frost, cold soaked fuel
CTSD, s 12.b.
definition – dewpoint, s 8.b.(4)
definition – freezing point buffer, s 7.a.(3)
definition – frost point, s 8.b.(4)
definition – frost, active, s 8.b.(3)
definition – hard wing, s 13.h.
definition – hoarfrost, s 8.b.
definition – LOUT, s 7.d.(1)
definition – slush, s 18
definition – Type I, s 7.a.
definition – Type II/III/IV, s 7.b.
deicing fluid v anti-icing fluid, s 7.c.(3)
deicing program. See ground deicing program
deicing/anti-icing – absence of flightcrew at the time of, s 13.a.
deicing/anti-icing – flightcrew awareness, s 13.a
descriptor [weather] – blowing, s 8.h.(3)
descriptor [weather] – freezing, s 8.h.(3)
descriptor [weather] – low drifting, s 8.h.(3)
descriptor [weather] – partial, s 8.h.(3)
descriptor [weather] – patches, s 8.h.(3)
descriptor [weather] – shallow, s 8.h.(3)
descriptor [weather] – showers, s 8.h.(3)
descriptor [weather] – thunderstorm, s 8.h.(3)
dewpoint – definition, s 8.b.(4)
dewpoint, ss 8.b.(2), 8.b.(4)
dry ice crystals – adhesion. See dry snow – adhesion
dry ice crystals – temperature generally below -10°C to -15°C, s 14.c.(1)(g)
dry snow – adhesion – effect of aircraft parking location, s 14.c.(1)(h)
dry snow – adhesion – effect of fuel tanks (heat releasing), s 14.c.(1)(h)
dry snow – adhesion – effect of fueling, ss 8.g.(2), 14.c.(1)(h)
dry snow – adhesion – effect of hydraulic fluid heat exchangers, s 14.c.(1)(h)
dry snow – adhesion – effect of OAT, s 14.c.(1)(h)
dry snow – adhesion – effect of weather, s 14.c.(1)(h)
dry snow – adhesion – effect of wing in the sun, s 14.c.(1)(h)
dry snow – adhesion – effect of wing temperature, s 14.c.(1)(h)
dry snow – adhesion – regulations (US), s 8.g.(2)
dry snow – temperature generally below -10°C to -15°C, s 14.c.(1)(g)
dry snow, ss 8.g.(2), 14.c.(1)(g)
dry-out, Type II/IV. See Type II/III/IV – residue; Type II/IV – residue
eHOT, s 12.c.
FAA Engine and Propeller Directorate – engine run-ups in heavy snow, s 8.a. second note
FAA Notice N 8900.525, Title at p 1
flightcrew absence during deicing/anti-icing, s 13.a.
flightcrew awareness – deicing/anti-icing, s 13.a.
fluid application – anti-icing – insufficient amount, ss 13.d.(1), 14.c.(1)(f)
fluid application – in a hangar of T-tail aircraft, ss 13.m.(3–4)
fluid application – in a hangar, s 13.m.
fluid application – issues – diluted fluid remaining on aircraft surface, s 14.c.(1)(e)
fluid application – issues – incomplete removal of contamination, s 14.c.(1)(a)
fluid application – issues – insufficient amount of Type II/IV, ss 13.d.(1), 13.e., 14.c.(1)(f)
fluid application – issues – insufficient freezing point buffer, s 14.c.(1)(a)
fluid application – issues – loss of fluid heat during application, s 14.c.(1)(c)
fluid application – issues – relying on fluid flow-back over contaminated areas, s 14.c.(1)(d)
fluid application – issues – reverse order – e.g. wing tip to wing root, s 14.c.(1)(a)
fluid application – issues – uneven application of Type II/III/IV, s 14.c.(1)(f)
fluid application – two-step – compatibility of Type I with Type II/III/IV, ss 13.d.(1–2), see footnote 33
fluid application – Type I – anti-icing – quantity ≥ 1 liter/m², s 7.a.(2)(b), 7.a.(3) note,7.b.(7)(b), 7.c.(2), 14.c.(1)(e) note
fluid compatibility – Type I with Type II/III/IV, ss 13.d.(1–2), see footnote 33
fluid dry-out. See Type II/III/IV – residue; Type II/IV – residue
fluid failure description – ice pellets in fluid adhering to aircraft surface, s 9.d.
fluid failure description – ice pellets in fluid forming a slushy consistency, s 9.d.
fluid failure description – ice pellets in fluid forming a slushy consistency v visible individual ice pellets in
fluid, s 9.d.
fluid failure description – no absorption of precipitation, s 8.e.(1)(a)
fluid failure recognition training for persons conducting pretakeoff contamination checks (FAA), s 9.e.(4)(b)
fluid failure recognition training for pilots (FAA), s 9.e.(4)(b)
fluid failure, first areas of – leading edge, s 14.c.(3)
fluid freezing in flight – residual fluid on trailing edge, s 13.1
fluid list (FAA) – guidance, s 7.d.(3)
fluid, residual – on trailing edge, s 13.1
fluids, list of. See fluid list
fog. See also snowfall intensity – overestimation due to obscuration
forced air – concerns – inadequate application of Type II/III/IV, s 12.a.(2)(b)
forced air – concerns – other, s 12.a.(3)
forced air – concerns – unduly aerated Type II/IV – frothy appearance, s 12.a.(2)(a)
forced air – concerns – unduly aerated Type II/IV – milky white appearances, s 12.a.(2)(a)
forced air – guidance (FAA), s 12
forced air – mandatory field test (FAA), s 12.a.(2)(c)
forced air – precautions, ss 12.a.(2), 12.a.(3)
forced air – with Type I, s 12.a.(1)
forced air – with Type II/II/IV, s 12.a.(1)
forced air – without fluid, s 12.a.(1)
freezing – descriptor [weather], s 8.h.(3)
freezing fog. See also HOT – precipitation rate
freezing point buffer – definition, s 7.a.(3)
freezing point buffer – reasons for – difference between OAT and aircraft surface temperature, s 7.a.(3)
freezing point buffer – reasons for – differences in aircraft surface materials, s 7.a.(3)
freezing point buffer – reasons for – inaccuracies in fluid/water mixture volumes, s 7.a.(3)
freezing point buffer – reasons for – OAT changes after fluid application, s 7.a.(3)
freezing point buffer – reasons for – refractometer measurement variability\(^{72}\), s 7.a.(3)
freezing point buffer – reasons for – solar radiation, s 7.a.(3)
freezing point buffer – reasons for – variability in temperature of applied fluid, s 7.a.(3)
freezing point buffer – Type I – 10°C, ss 7.a.(3), 7.d.(1)(a)
freezing point buffer – Type II/III/IV – 7°C, s 7.d.(1)(a)
freezing rain. See also HOT – precipitation rate
frost – active – definition, s 8.b.(3)
freezing point buffer – reasons for – difference between OAT and aircraft surface temperature, s 7.a.(3)
freezing point buffer – reasons for – differences in aircraft surface materials, s 7.a.(3)
freezing point buffer – reasons for – inaccuracies in fluid/water mixture volumes, s 7.a.(3)
freezing point buffer – reasons for – OAT changes after fluid application, s 7.a.(3)
freezing point buffer – reasons for – refractometer measurement variability\(^{72}\), s 7.a.(3)
freezing point buffer – reasons for – solar radiation, s 7.a.(3)
freezing point buffer – reasons for – variability in temperature of applied fluid, s 7.a.(3)
freezing point buffer – Type I – 10°C, ss 7.a.(3), 7.d.(1)(a)
freezing point buffer – Type II/III/IV – 7°C, s 7.d.(1)(a)
freezing rain. See also HOT – precipitation rate
frost – active – definition, s 8.b.(3)
frost – appearance – white deposit of fine crystalline structure, s 8.b
frost – deceptively dangerous – drag increase, s 8.b.(1)
frost – deceptively dangerous – lift degradation, s 8.b.(1)
frost – formation conditions – cloudless nights, low wind (radiation cooling), s 8.b.
frost – formation conditions – cold-soaked fuel (conductive cooling), s 8.b.
frost – formation conditions – surface below OAT and at or below frost point, s 8.b.(2)
frost – formation mechanism – conductive cooling, s 8.b.
frost – formation mechanism – radiation cooling, s 8.b.
frost – on lower wing surface, s 8.b.
frost – on upper wing surface, s 8.b.
frost – roughness, s 8.b.(1)
frost point – definition, s 8.b.(4)
frost point – higher than dewpoint at given humidity level, s 8.b.(4)
frost point – v dewpoint table, s 8.b.(4)
frost point – v dewpoint, s 8.b.(4)
frost, cold soaked fuel – exemption process (FAA), s 13.k
frost, cold soaked fuel – exemption, s 13.k.
frost, cold soaked fuel, s 13.k.
frost. See also HOT – frost; HOT – precipitation rate
fueling, effect of – adhesion of dry snow, ss 8.g.(2), 14.c.(1)(h)
GR. See METAR code GR
ground deicing program (FAA) – approved, Title at p 1, ss 2, 5
ground deicing program (FAA), Title at p 1
GS. See METAR code GS
hail – no allowance time, ss 8.f.(1), 8.g
hail – no HOT, ss 8.f.(1), 8.g
hail intensity, small v ice pellet intensity, s 8.f.(3)
hail, small – intensity, s 8.f.(3)
hail, small – operational guidance (FAA), s 8.e.(2)
hail, small. See also allowance time

\(^{72}\) Refractometer measurement error can be introduced, for instance, by the imperfect temperature compensation of analog temperature-compensated refractometers.
hangar, fluid application in – start of HOT, s 13.m.(2)
hangar, fluid application in – T-tail aircraft, ss 13.m.(3–4)
hangar, fluid application in, s 13.m.
hangar, use of, s 13.m.
hard wing – definition, s 13.h.
hard wing – tactile check and visual check after post deicing/anti-icing check, s 13.h.
hard wing – tactile check and visual check with pretakeoff contamination check when HOT exceeded, s 13.h.
hard wing – tactile check when temperature at or below 10°C and high humidity, s 13.h.
hard wing – tactile check with cold soaked wings, s 13.h.
haze. See snowfall intensity – overestimation due to obscuration
hoarfrost – definition, s 8.b.
hoarfrost, s 8.b.
hoarfrost. See also frost
HOT – 76% adjusted – flaps and slats deployed, ss 7.b.(8) second note, 13.b.(2)
HOT – effect of wind on freezing fog rate of deposition, s 8.c.
HOT – electronic hand-held devices. See eHOT
HOT – guidance (FAA), entire N 8900.525 document
HOT – notes and cautions – mandatory use of, 7.e.
HOT – precipitation categories – freezing drizzle, s 7.b.(1)
HOT – precipitation categories – freezing fog, ss 7.b.(1), 8.c.
HOT – precipitation categories – frost, ss 7.b.(1), 8.b.
HOT – precipitation categories – light freezing rain, s 7.b.(1)
HOT – precipitation categories – light snow mixed with light rain, s 8.h.(2)
HOT – precipitation categories – rain on cold soaked wing, ss 7.b.(1), 8.h.(3)(a) note
HOT – precipitation categories – snow, ss 7.b.(1), 8.a.(2)
HOT – precipitation categories – very light snow mixed with light rain, s 8.h.(2)
HOT – precipitation rate – freezing fog – ca 0.2–0.5 mm/h, 2–5 g/dm2/h, s 8.c.
HOT – precipitation rate – freezing rain, light – less or equal to 2.5 mm/h, s 8.a.
HOT – precipitation rate – freezing rain, light – or equal to 2.5 mm/h, 2–5 g/dm2/h, s 8.c.
HOT – precipitation rate – frost – low but not quantified, s 8.a.(3)
HOT – precipitation rate – snow, light – 0.4–1.0 mm/h, 4–10 g/dm2/h, ss 8.a., 8.a.(2)(b)
HOT – precipitation rate – snow, moderate – 1.0–2.5 mm/h [10–25 g/dm2/h], ss 8.a.
HOT – precipitation rate – snow, very light – 0.3–0.4 mm/h, 3–4 g/dm2/h, ss 8.a, 8.a.(2)(b)
HOT – precipitation, mixed – guidance (FAA), s 8.h.
HOT – precipitation, reported non-freezing – below 0°C, s 8.h.(4)
HOT – purpose, s 8.e.(1)(c)
HOT – reduction – flaps and slats deployed. See HOT – 76% adjusted – flaps and slats deployed
HOT – start of – for fluid application in a hangar, s 13.m.(2)
HOT – temperature limits, s 7.b.(4)
HOT – Type I – aluminum v composite surface – how to select, s 7.a.(1)
HOT – Type I – composite surface – shorter than aluminum, s 7.c.(2)
HOT – Type I – guidance (FAA), ss 7.a., 7.c.
HOT – Type I – metal surface, s 7.a.(1) note
HOT – Type I – titanium surface, s 7.a.(1) note
HOT – Type II generic – fluid-specific LOUT, mandatory use of, s 7.b.(8) first note
HOT – Type II generic – HOT minimum (worst case) values of all Type II, s 7.b.(8)
HOT – Type II/III/IV – non-standard dilutions, 7.b.(6)
HOT – Type II/III/IV – guidance, general, s 7.b.
HOT – Type II/IV – heated v unheated fluid, s 7.b.(7)
HOT – Type III generic – none73

73 There is no Type III generic HOT table. There was a mention to that effect in N 8900.326, but the note does not appear in subsequent N 8900 documents.
HOT – Type IV generic – fluid-specific LOUT, mandatory use of, s 7.b.(8) first note
HOT – Type IV generic – HOT minimum (worst case) values of all Type IV, s 7.b.(8)
HOT – v allowance time, ss 8.e.(1)(a–c)
HOT – variables – active meteorological condition, s 7.b.(1)
HOT – variables – fluid concentration, s 7.b.(1)
HOT – variables – OAT, s 7.b.(1)
HOT – variables – precipitation intensity, s 7.b.(1)
HOT – variables – precipitation type, s 7.b.(1)
HOT (FAA), development of – use of SAE ARP5485 and SAE ARP5945, s 8.e.(1)(a)
HOT, no – freezing rain, heavy, ss 8.a., 8.g.
HOT, no – freezing rain, moderate, ss 8.a., 8.g.
HOT, no – hail, small, ss 8.a. But see allowance time
HOT, no – hail, ss 8.a., 8.f.(1), 8.g.
HOT, no – ice pellets mixed with other precipitation, ss 8.a. But see allowance time
HOT, no – ice pellets, light, ss 8.a. But see allowance time
HOT, no – ice pellets, moderate, ss 8.a. But see allowance time
HOT, no – snow, heavy – takeoff under special dispatch procedures (FAA), ss 8.d.
HOT, no – Type I unheated, ss 7.a.(1)(b) note
HOT, no – Type I < 60°C, ss 7.a.(2)(b)
HOT, no – v no takeoff74, ss 8.a. first note
HOTDS, ss 12.b
ice crystals. See also dry ice crystals
ice pellet intensity v small hail intensity, ss 8.f.(3)
ice pellets – operational guidance (FAA), ss 8.e
ice pellets – visual fluid failure of HOT not applicable, ss 8.e.(1)(a)
ice pellets on cold dry aircraft, ss 8.g.(2)
ice pellets on cold dry aircraft. See also dry snow
ice pellets. See also allowance time
leading edge – aerodynamically critical, ss 13.1
LOUT – calculation examples, ss 7.d.(2)
LOUT – definition, ss 7.d.(1)
LOUT – freezing point buffer, ss 7.d.(1)(a)
LOUT – guidance (FAA), ss 7.d
LOUT – high speed aircraft v low speed aircraft, ss 7.d.(1)(b)
LOUT – list – data from fluid manufacturers, ss 7.d.(3)
LOUT – maximum concentration for Type I, ss 7.d.(3)(a)
LOUT – multiple – for Type II/III/IV, ss 7.d.(3)(b)
low drifting – descriptor [weather], ss 8.h.(3)
LWE system, ss 12.b

74 It may be useful for users under FAA jurisdiction to consider that FAA appears to make distinction between 4 kinds of conditions conducive to icing: 1) conditions with holdover time, e.g., freezing fog, ice crystals, very light snow, very light snow grains, very light snow pellets, light snow, light snow grains, light snow pellets, moderate snow, moderate snow grains, moderate snow pellets, freezing drizzle, light freezing rain, rain on cold soaked wing, very light snow mixed with light rain, light snow mixed with light rain, active frost, 2) conditions without holdover time but with an allowance time, e.g., light ice pellets, light ice pellets mixed with light snow, light ice pellets mixed with moderate snow, light ice pellets mixed with light or moderate freezing drizzle, light ice pellets mixed with light freezing rain, light ice pellets mixed with light rain, light ice pellets mixed with moderate rain, moderate ice pellets or small hail, moderate ice pellets or small hail mixed with moderate freezing drizzle, moderate ice pellets or small hail mixed with moderate rain, and 3) conditions without holdover time but where, with special dispatch procedures, takeoff can occur, e.g., heavy snow and 4) conditions without holdover time, e.g. moderate freezing rain, heavy freezing rain, hail, heavy ice pellets.
METAR code GR – in Canada – hail, s 8.f.(2)
METAR code GR – in Canada – no HOT, no allowance time, s 8.f.(2)
METAR code GR – in rest of world – hail, s 8.f.(2)
METAR code GR – in rest of world – not HOT, no allowance time, s 8.f.(2)
METAR code GR with remarks ¼ or greater – in US – no HOT, no allowance time, s 8.f.(2)
METAR code GR with remarks less than ¼ – in US – small hail, s 8.f.(2)
METAR code GS – in Canada – not reported in isolation, s 8.f.(2)
METAR code GS – in US – snow pellets, s 8.f.(2)
METAR code GS – in US – use snow HOT, s 8.f.(2)
METAR code GS or SHGS – in rest of world – snow pellets or small hail, s 8.f.(2)
METAR code GS or SHGS – in rest of world – use ice pellets (and small hail) allowance time 75, s 8.f.(2)
METAR code PL – in Canada – ice pellets, s 8.f.(2)
METAR code PL – in Canada – use ice pellets (and small hail) allowance time, s 8.f.(2)
METAR code PL – in rest of world – ice pellets, s 8.f.(2)
METAR code PL – in rest of world – use ice pellets (and small hail) allowance time, s 8.f.(2)
METAR code PL – in US – ice pellets, s 8.f.(2)
METAR code PL – in US – use ice pellets (and small hail) allowance time, s 8.f.(2)
METAR code SG – in Canada – snow grains, s 8.f.(2)
METAR code SG – in Canada – use snow HOT, s 8.f.(2)
METAR code SG – in rest of world – snow grains, s 8.f.(2)
METAR code SG – in rest of world – use snow HOT, s 8.f.(2)
METAR code SG – in US – snow grains, s 8.f.(2)
METAR code SG – in US – use snow HOT, s 8.f.(2)
METAR code SHGS – in US – snow pellets showers, s 8.f.(2)
METAR code SHGS – in US – use snow HOT, s 8.f.(2)
METAR code SHGS with remarks stating diameter of hail – in Canada – small hail, s 8.f.(2)
METAR code SHGS with remarks stating diameter of hail – in Canada – use ice pellet (and small hail) allowance times, s 8.f.(2)
METAR code SHGS without remarks – in Canada – snow pellets showers, s 8.f.(2)
METAR code SHGS without remarks – in Canada – use snow HOT, s 8.f.(2)
METAR code TSGS with remarks stating diameter of hail – in Canada – use ice pellets (and small hail) allowance time, s 8.f.(2)
METAR code TSGS without remarks – in Canada – snow pellets with a thunderstorm, s 8.f.(2)
METAR code TSGS without remarks – in Canada – use snow HOT, s 8.f.(2)
no HOT. See HOT, no
non-glycol based Type I – guidance (FAA), s 13.e.
Notice N 8900.519 – cancellation, s 4.
Notice N 8900.525, Title at p 1
obscuration – dust, s 8.h.(3)(a), 9.e.(3)
obscuration – fog, ss 8.h.(3)(a), 9.e.(3)
obscuration – freezing fog – HOT, s 8.h.(3)(a) note
obscuration – freezing fog, s 8.h.(3)(a) note, 9.e.(3)
obscuration – haze, s 8.h.(3)(a), 9.e.(3)
obscuration – mist, s 8.h.(3)(a), 9.e.(3)
obscuration – sand, s 8.h.(3)(a), 9.e.(3)
obscuration – smoke, s 8.h.(3)(a), 9.e.(3)
obscuration – volcanic ash, s 8.h.(3)(a), 9.e.(3)
obscuration, snowfall intensity overestimation due to. See snowfall intensity – overestimation due to
obscuration
partial – descriptor [weather], s 8.h.(3)

75 “If additional information provided with the METAR makes clear that the weather condition is snow pellets and not
small hail then snow holdover times can be used”.

138
patches – descriptor [weather], s 8.h.(3)
pilot assessment of precipitation intensity – company (airline) coordination (FAA), s 9.c.
pilot assessment of precipitation intensity – company (airline) reporting after the fact (FAA), s 9.c.
pilot assessment of precipitation intensity – mandatory pretakeoff contamination check (FAA), s 9.d.
pilot assessment of precipitation intensity – pilot intensity assessment greater than reported (FAA), s 9.a.
pilot assessment of precipitation intensity – pilot intensity assessment less than reported (FAA), s 9.e.
pilot assessment of precipitation intensity – pilot intensity assessment grossly different than reported (FAA), s 9.a.
pilot assessment of precipitation intensity – snowfall visibility table, s 9.e.
pilot assessment of precipitation intensity – training requirement (FAA), s 9.e.(4)
PL. See METAR code PL
POI – aircraft, turbo-prop high wing – inspection, s 13.g.
POI – approval of deicing program (FAA), s 2
POI – distribution of HOT, s 14.a.
POI – operations during light freezing rain/freezing drizzle, s 14.d.
POI – program tracking and reporting, s 15.
POI – SAS reporting, ss 16., 17.
prediceing/anti-icing check, ss 13.h.(2), 14.c.(2) (b–c)
precipitation intensity assessment by pilot. See pilot assessment of precipitation intensity
precipitation, mixed – guidance (FAA), s 8.h.
pretakeoff check – factor in selection of categories of snow precipitation, s 8.a.(2)(b)
pretakeoff check – single engine high wing turboprop, s 13.g.
pretakeoff check – wing tip devices, ss 13.j.(1–3)
pretakeoff contamination check (FAA) – 5 minutes rule, ss 9.d., 13.h.(3)
pretakeoff contamination check (FAA) – fluid failure recognition training for pilots, s 9.e.(4)(b)
pretakeoff contamination check (FAA) – fluid failure recognition training for persons conducting the
pretakeoff contamination check, s 9.e.(4)(b)
pretakeoff contamination check (FAA) – for allowance time, not, s 8.e.(1)(c)
pretakeoff contamination check (FAA) – for HOT, s 8.e.(1)(c)
pretakeoff contamination check (FAA) – hard wing aircraft with aft mounted engines, s 13.h
pretakeoff contamination check (FAA) – operations in heavy snow, s 8.d.(1)
pretakeoff contamination check (FAA) – when HOT exceeded, s 9.d.
pretakeoff contamination check (FAA) – wingtip devices, of, s 13.j.(3)
pretakeoff contamination check (FAA), external – light freezing rain and freezing drizzle, s 14.d.(2)
pretakeoff contamination check (FAA). See also pilot assessment of precipitation intensity
refueling, effect of. See fueling, effect of
regulations, US – guidance (FAA), s 8.g.(2)
regulations, US, s 8.g.(2)
representative surface – fluid failure, indication of first, s 14.c.(3)
representative surface – for wingtip devices, ss 13.j.(1), 13.j.(2), 14.c.(4)
representative surface – inclusion of wing leading edge, s 14.c.(3)
representative surface – visibility from within the aircraft, s 14.c.(3)
residual fluid – on trailing edge in flight, s 13.1
SAS (FAA), ss 16, 17
SAS reporting (FAA), s 17
scimitar, split. See wingtip devices
scimitar. See wingtip devices
SG. See METAR code SG
shallow – descriptor [weather], s 8.h.(3)
sharklets. See wingtip devices
SHGS. See METAR code SHGS
showers – descriptor [weather], s 8.h.(3)
slats. See flaps and slats
smoke. See snowfall intensity – overestimation due to obscuration
snow occurrence, s 8.a.(2)(a)
snow pellets on cold dry aircraft, s 8.g.(2)
snow pellets on cold dry aircraft. See also dry snow
snow, cold dry. See dry snow
snow, dry. See dry snow
snow, heavy – aircraft flight instrument sensing device limitations, s 8.d.(2)(d)
snow, heavy – engine anti-icing system limitations, s 8.d.(2)(d) note
snow, heavy – engine power run-ups, s 8.a. second note
snow, heavy – operational guidance (FAA), s 8.d.
showers – precipitation rate greater than 2.5 mm/h [25 g/dm2], s 8.a.
snow, heavy – takeoff – guidance (FAA), s 8.d.(2)
snow, light. See also HOT – precipitation rate
snow, moderate. See also HOT – precipitation rate
snow, very light. See also HOT – precipitation rate
snow. See also HOT – precipitation categories; HOT – precipitation rate
snowfall intensity – overestimation due to obscuration – fog, s 9.e.(3)
snowfall intensity – overestimation due to obscuration – haze, s 9.e.(3)
snowfall intensity – overestimation due to obscuration – other obscuration, s 9.e.(3)
snowfall intensity – overestimation due to obscuration – smoke, s 9.e.(3)
snowfall intensity. See also HOT – precipitation rate
snowfall visibility table – guidance (FAA), s 9.e.(3)
snowfall visibility table – use of prevailing visibility, s 9.e.(3)
strakes. See wingtip devices
tactile inspection. See check, tactile
takeoff, no – freezing rain, heavy – guidance (FAA), s 8.a first note
takeoff, no – freezing rain, moderate – guidance (FAA), s 8.a first note
takeoff, no – hail – guidance (FAA), s 8.a. first note
takeoff, no – ice pellets, heavy – guidance (FAA), s 8.a fist note
thunderstorm – descriptor [weather], s 8.h.(3)
trailing edge, residual frozen fluid on, s 13.1
training – fluid failure recognition – for persons conducting pretakeoff contamination checks (FAA), s 9.e.(4)(b)
training – fluid failure recognition – for pilots (FAA), s 9.e.(4)(b)
training – pilot assessment of precipitation intensity (FAA) s 9.e.(4)(a)
TSGS. See METAR code TSGS
Type I – anti-icing. See fluid application – Type I – anti-icing
Type I – compatibility with Type II/III/IV, s 13.d.(1–2), see footnote 33
Type I – definition, s 7.a.
Type I – degradation – chemical contamination, s 10.c.
Type I – degradation, thermal – glycol concentration increase, evaporative, s 10.b.
Type I – degradation, thermal – oxidation
Type I – degradation, thermal – water loss, s 10.b.
Type I – failure at leading edge, s 7.a.(1)(b)

76 Heating Type I is necessary but will result in some water loss and corresponding increase in glycol concentration. One must take care not to exceed the highest glycol concentration that was tested and passed aerodynamic acceptance. If Type I is repeatedly or continuously heated without replenishment of fresh material or heated at extreme temperatures, there can be oxidation of the glycol, usually the color will fade and pH will decrease below the its accepted specification range.
Type I – failure at structurally thin areas, s 7.a.(1)(b)
Type I – failure at trailing edge, s 7.a.(1)(b)
Type I – failure at wing tips, s 7.a.(1)(b)
Type I – heat contribution to HOT, ss 7.a.(1)(a), 7.c.(2)
Type I – heating requirements, s 7.a.(2)(a–b)
Type I – Non-glycol based – effect on Type II/III/IV, s 13.e.
Type I – protection for airborne aircraft, no, s 14.d.(1)
Type I – quality control – appearance: contamination, separation77, s 10
Type I – quality control – pH, s 10
Type I – quality control – refractive index, s 10
Type I – unheated – HOT, no, s 7.a.(1)(b) note
Type II/III/IV – compatibility with Type I, s 13.d.(1–2), see footnote 33
Type II/III/IV – concentration, s 7.b.(2)
Type II/III/IV – contamination by RDP on aircraft – during taxi, s 13.f.(2)
Type II/III/IV – contamination by RDP on aircraft – jet blast from other aircraft, s 13.f.(2)
Type II/III/IV – contamination by RDP on aircraft – while landing, s 13.f.(2)
Type II/III/IV – contamination by RDP on aircraft, s 13.f.(1–2)
Type II/III/IV – definition, s 7.b.
Type II/III/IV – degradation – contamination78, s 10.c.
Type II/III/IV – degradation – excessive shearing – control valves, s 10.c.
Type II/III/IV – degradation – excessive shearing – pumps, s 10.c.
Type II/III/IV – degradation – excessive shearing – sharp bends in piping, s 10.c.
Type II/III/IV – degradation – exposure to alkali organic salts, s 13.e.
Type II/III/IV – degradation – exposure to RDP, s 13.f.
Type II/III/IV – degradation, thermal – oxidation79 10.b.
Type II/III/IV – degradation, thermal – water loss 10.b.
Type II/III/IV – fluid concentration80, s 7.b.(2)
Type II/III/IV – forced air application – conditions to use HOT – appropriate thickness, s 12.a
Type II/III/IV – forced air application – conditions to use HOT – even coverage, s 12.a.(2)(b)
Type II/III/IV – forced air application – conditions to use HOT – field tested equipment, s 12.a.(2)(c)
Type II/III/IV – forced air application – conditions to use HOT – fluid above LOWV, s 12.a.(2)(c–d)
Type II/III/IV – LOWV, s 10.a.

77 Color should be looked at when checking for appearance. Suspended matter is a form of contamination. It is virtually impossible to exclude all suspended matter. Small amounts of iron particles (not rust) are generally thought to be acceptable. The criterion of acceptability is sometimes formulated as “substantially free from suspended matter”.

78 For example, contamination with other fluids, silicone oil, rust, RDP, jet fuel, diesel fuel, rain water, melted snow, etc.

79 Repeated or prolonged heating of Type II/III/IV can lead to a) water evaporation causing significant viscosity reduction or increase and b) thermal oxidation of the thickener system resulting in viscosity loss.

80 Neat fluid. The user of a Type II, III or IV HOT guideline needs to know the concentration of the fluid. Guidance material found in section 7.b.(2) of FAA Notice N 8900.525 reads as follows: “For Types II, III, and IV fluids, the fluid concentration (percent mixture) is the amount of undiluted (neat) fluid in water. Therefore, a 75/25 mixture is 75 percent FPD fluid and 25 percent water.” The following may be less prone to misinterpretation: “For Types II, III, and IV fluids, the fluid concentration is expressed as the volume ratio of neat (undiluted) fluid to water. Therefore, a 75/25 fluid concentration is a mixture by volume of 75 parts neat fluid and 25 parts water.”

More examples: “100/0 fluid concentration” means neat fluid; a “50/50 fluid concentration” means a mixture by volume of 50 parts neat fluid and 50 parts water. “Neat” means as-delivered by the fluid manufacturer, without added water by the user. Type II/III/IV fluids, as-delivered by the manufacturer, always contain a freezing point depressant and water. The 100 in “100/0” and the 75 in “75/25” do not refer to the weight or volume concentration of the freezing point depressant in the fluid. By analogy, when a drinker says, “I drink my Scotch neat”. It means she wants her Scotch served without added water. It does not mean that there is 100% alcohol (the freezing point depressant) in the Scotch.
Guide to Aircraft Ground Deicing – Issue 12

Type II/III/IV – neat, s 7.b.(2)
Type II/III/IV – nozzle sample procedure, ss 10.a.(1–3)
Type II/III/IV – protection for airborne aircraft, no, s14.d.(1)
Type II/III/IV – quality control – appearance: contamination, separation, s 10
Type II/III/IV – quality control – pH, s 10
Type II/III/IV – quality control – refractive index, s 10
Type II/III/IV – quality control – viscosity, s 10.a
Type II/III/IV – residual fluid – on trailing edge in flight, s 13.l.
Type II/III/IV – residue – guidance (FAA), s 13.i.(1–5)
Type II/III/IV – sampling procedure, s 10.a.(1–3)
Type II/IV – aerodynamic effect on tail surfaces. See aerodynamic effect of fluids
Type II/IV – heated – no reduction in HOT, s 7.b.(7)(b)
Type II/IV – residue – dried, s 13.i (2)
Type II/IV – residue – effect on non-powered control surfaces, s 13.i.(2)
Type II/IV – residue – frozen, s 13.i (2)
Type II/IV – residue – guidance (FAA), s 13.i.(1–5)
Type II/IV – residue – in aerodynamically quiet areas, s 13.i.(4)
Type II/IV – residue – in and around gaps between stabilizers, elevators, tabs, hinges, s 13.i.(2)
Type II/IV – residue – in crevices, s 13.i.(4)
Type II/IV – residue – lubrication of areas affected by, s 13.i.(5)
Type II/IV – residue – rehydrated, s 13.i (2, 4),
Type II/IV – residue – restricted control surface movement, s 13.i.(1)
Type II/IV – residue cleaning – with aircraft manufacturer recommended cleaning agent, s 13.i.(5)
Type II/IV – residue cleaning – with hot Type I, s 13.i.(5)
Type II/IV – residue cleaning, s 13.i.(5)
Type II/IV – residue detection, s 13.i.(4)
Type II/IV – residue formation – diluted Type II/IV v neat Type II/IV, s 13.i.(1)
Type II/IV – residue formation – European practices conducive to, ss 13.i.(1), 13.i.(3)
Type II/IV – residue formation – North American practices preventing, ss 13.i.(1), 13.i.(3)
Type II/IV – residue formation – Type II v Type IV, s 13.i.(1) note
Type II/IV – residue formation – Type II/IV without hot water or Type I, s 13.i.(2)
Type II/IV – residue formation. See also Type II/III/IV – residue formation
Type II/IV – residue inspection – actuators, s 13.i.(5)
Type II/IV – residue inspection – flight control bays, s 13.i.(5)
Type II/IV – residue inspection – frequency, s 13.i.(5)
Type II/IV – residue inspection, ss 13.i.(4–5)

visibility – METAR, s 9.e.(3) second note
visibility – prevailing – snowfall intensity as a function of. See snowfall visibility table
visibility – prevailing, ss 9.e., 9.e.(3)
visibility – RVR, s 9.e.(3) first note
visibility – surface v tower, s 9.e.(3) second note
visibility – surface, s 9.e.(3) second note
visibility – tower, s 9.e.(3) second note
wiglets. See wingtip devices
wingtip devices – Boeing B737, s 13.j.(3)
wingtip devices – Boeing B747, s 13.j.(3)
wingtip devices – Boeing B757, s 13.j.(3)
wingtip devices – Boeing B767, s 13.j.(3)

81 See footnote 80
82 Color should be looked at when checking for appearance. Suspended matter is a form of contamination. It is virtually impossible to exclude all suspended matter. Small amounts of black iron particles (not rust) are generally thought to be acceptable. The criterion of acceptability is sometimes formulated as “substantially free from suspended matter”.

142
Aircraft Deicing Documents – Issued by the FAA

wingtip devices – Boeing MD11, s 13.j.(3)
wingtip devices – raked wingtips, s 13.j.
wingtip devices – scimitar, s 13.j.
wingtip devices – scimitar, split, s 13.j.
wingtip devices – sharklets, s 13.j.
wingtip devices – strakes, s 13.j.
wingtip devices – winglets, s 13.j.
winter operations – guidance (FAA), ss 1 to 18

FAA Holdover Time Guidelines Winter 2019-2020, Revision 1.0: August 19, 2019

Issued 2019-08-19 by the FAA.\(^\text{83}\)

This document provides the holdover time guidelines and allowance times for generic and specific fluids. It is considered by the FAA to be official guidance on the use of the holdover time guidelines and allowance times. It includes a list of fluid tested for anti-icing performance and aerodynamic acceptance. It is designed to be used with FAA N 8900.525 Revised FAA-Approved Deicing Program Updates, Winter 2019-2020.

Keywords:
aerodynamic acceptance test – results – high speed ramp, Tables 44–47
aerodynamic acceptance test – results – low speed ramp, Tables 44, 46
allowance time – 76% adjusted – flaps and slats deployed, Tables ADJ-41, ADJ-42
allowance time – EG v PG Type IV based fluids, Table 42
allowance time – precipitation – ice pellets, light – mixed with snow, Tables 41–42
allowance time – precipitation – ice pellets, light – mixed with freezing drizzle, Tables 41–42
allowance time – precipitation – ice pellets, light – mixed with freezing rain, Tables 41–42
allowance time – precipitation – ice pellets, light – mixed with rain, Tables 41–42
allowance time – precipitation – ice pellets, light, Tables 41–42
allowance time – precipitation – ice pellets, moderate, Tables 41–42
allowance time – precipitation – small hail, light, Tables 41–42
allowance time – precipitation – small hail, moderate – mixed with freezing drizzle, Table 42
allowance time – precipitation – small hail, moderate – mixed with rain, Table 42
allowance time – precipitation – small hail, moderate, Tables 41–42
allowance time – precipitation stops, when, Tables 41–42
allowance time – rotation speed 100 knots minimum – Type III fluids, Table 41
allowance time – rotation speed 100 knots minimum – Type IV EG fluids, Table 42
allowance time – rotation speed 115 knots minimum – Type IV PG fluids, Table 42 at note 3
allowance time – rotation speed 115 knots minimum – Type IV glycol unknown, Table 42 at note 3
allowance time – temperature decreasing, Tables 41–42
allowance time – Type III neat, Table 41
allowance time – Type III unheated, Table 41
allowance time – Type IV neat, Table 42
AMIL, p 60 at “Cautions”, p B-2,
APS Aviation, p B-2

\(^{83}\)Online: <https://www.faa.gov/other_visit/aviation_industry/airline_operators/airline_safety/media/FAA_2019-20_HoldoverTables_Rev1.pdf>
Guide to Aircraft Ground Deicing – Issue 12

definition – LOUT, p. 60 at note 3
EG v PG Type IV based fluids – allowance time. See allowance time – EG v PG based fluids
fluid application – anti-icing – clean aircraft, on, Tables 49–50
fluid application – anti-icing – insufficient amount, Tables 49–50
fluid application – deicing – temperature (desirable) at nozzle ≥ 60°C Tables 48–50
fluid application – guidelines, Tables 48–50
fluid application – one-step, Tables 48–50
fluid application – Type I – anti-icing – quantity ≥ 1 liter/m², Table 48
fluid application – Type I – anti-icing – temperature ≥ 60°C, Table 48
fluid application – temperature limits, Tables 48–50
fluid application – two-step, Tables 48–50
fluid application – wing skin temperature lower than OAT, Tables 48–50
fluid failure, early – flaps and slats deployed. See flaps and slats deployed
fluid list (FAA), Tables 44–47
fluid manufacturer documentation – aerodynamic acceptance data, p 60 at “Cautions”
fluid manufacturer documentation – freezing point v dilution data, p 60 at note 4
fluid manufacturer documentation – LOUT, p 60 at note 3
fluid manufacturer documentation – materials compatibility data, p 60 at “Cautions”
fuel manufacturer documentation – toxicity data, p 60 at “Cautions”
HOT – 76% adjusted – flaps and slats deployed, Tables ADJ-1 to ADJ-40
HOT – flaps and slats deployed. See HOT – 76% adjusted – flaps and slats deployed
HOT – frost, Table 1
HOT – guidance (FAA), Subtitle at p 1
HOT – Type I – aluminum surface, Table 2
HOT – Type I – composite surface, Table 3
HOT – Type I/II/III/IV frost, Table 1
HOT – Type II fluid-specific, Tables 5–17
HOT – Type II generic, Table 4
HOT – Type III fluid-specific – heated – no HOT, Tables 18–19
HOT – Type III fluid-specific – unheated, Tables 18–19
HOT – Type III generic – none
HOT – Type IV fluid-specific, Tables 21–40
HOT – Type IV generic, Table 20
HOT (FAA) – changes for winter 2019-2020, p 5
HOT (FAA), Title at p 1
HOT, no – Type I < 60°C, Table 48
laboratories, testing – Anti-icing Materials International Laboratory (AMIL), p B-2
laboratories, testing – APS Aviation, p B-2
laboratories, testing – Scientific Material International (SMI), p B-2
LOUT – definition, p 60 at note 3, Tables 48–50
LOUT – list, Tables 44–47
LOWV – list, Tables 45–47
Scientific Material International (SMI), p B-2
snowfall intensity – category – heavy, Table 43
snowfall intensity – category – light, Table 43
snowfall intensity – category – moderate, Table 43
snowfall intensity – category – very light, Table 43
snowfall intensity – overestimation due to obscuration – fog, Table 43
snowfall intensity – overestimation due to obscuration – haze, Table 43

84 None published.
snowfall intensity – overestimation due to obscuration – other, Table 43
snowfall intensity – overestimation due to obscuration – smoke, Table 43
snowfall intensity – v snowfall rate
snowfall intensity visibility table. See snowfall visibility table
snowfall intensity – ASOS reported (FAA), Table 43
snowfall intensity – weather observer reported, Table 43
snowfall intensity. See also HOT – precipitation rate
snowfall visibility table, Table 43
three-minute rule, Tables 48–50
Type I – application rate, minimum (1 liter/m²), Table 48
Type I – temperature, minimum application, Table 48
Type II/III/IV – viscosity, fluid manufacturer methods, Table 45–48
viscosity measurement method – fluid manufacturer, p 60 at note 8
viscosity measurement method – precedence of fluid manufacturer method over AS9968, p 60 at note 8
visibility – prevailing, Table 43
visibility – rounding of, Table 43 at note 5
visibility – RVR, Table 43 at note 3
visibility – surface v tower, Table 43 at note 4
visibility – surface, Table 43 at note 4
visibility – tower, Table 43 at note 4
visibility – rounding of, Table 43 at note 5

Issued 2019-08-06 by the FAA.86

This document, updated every year, provides the regression coefficients to calculate holdover times under various weather conditions.

Typically, real-time weather data is fed to a holdover time determination system (HOTDS) which uses the real time weather data and best-fit power law curves with the appropriate regression coefficients to calculate holdover times.

A similar document is issued by the Transport Canada:

Keywords:
check time determination system87, pp 6-7
HOT – 76% adjusted – regression calculations, p 6
HOT – regression information – changes in 2019-2020, p 5
HOT – regression limitations – caution outside precipitation rate limits, p 7–8

85 *Snowfall intensity v snowfall rate.* Snowfall intensity is expressed as very light snow, light snow, moderate snow and heavy snow whereas snowfall rates are expressed in g/dm²/h or liquid water equivalent rates in mm/h or in/h.
86 Online: <https://www.faa.gov/other_visit/aviation_industry/airline_operators/airline_safety/media/FAA_2018-19_Regression_Information.pdf>
87 The Transport Canada HOT Regression Information document does not mention check time determination systems.
HOT – regression limitations – no allowance times, p 8
HOT – regression limitations – no interpolation for Type II/III/IV non-standard dilutions, p 7
HOT – regression limitations – no regression coefficients for frost, p 8
HOT – regression limitations – use at > 0°C, p 7
HOT – regression limitations – use of LUPR, p 7
HOT – regression limitations – use of snow precipitation rate ≤ 50 g/dm²/h, p 8
HOT – regression limitations – use with CTDS/HOTDS conforming to Advisory Circular (FAA), p 6
HOT – regression limitations, pp 7–8
HOT – Type I generic – regression calculations, p 6
HOT – Type I generic – regression coefficients, Tables 1-1, 1-2
HOT – Type II fluid-specific – regression calculations, pp 6–7
HOT – Type II fluid-specific – regression coefficients, Tables 2-2 to 2-13
HOT – Type II generic – HOT minimum (worst case) values of all Type II, p 7
HOT – Type II generic – regression calculations, pp 6–7
HOT – Type II generic – regression coefficients, Table 2-14
HOT – Type III fluid-specific – regression calculations, p 6
HOT – Type III fluid-specific – regression coefficients, Tables 3-1 to 3-2
HOT – Type IV fluid-specific – regression calculations, p 7
HOT – Type IV fluid-specific – regression coefficients, Tables 4-1 to 4-20
HOT – Type IV generic – HOT minimum (worst case) values of all Type IV, p 7
HOT – Type IV generic – regression calculations, pp 6–7
HOT – Type IV generic – regression coefficients, Table 4-21
HOTDS, pp 6–8
HUPR, snow, p 6, Table 6
LUPR, snow, p 6, Table 5
regression coefficient tables, interpretation of, p 6
regression coefficients – best fit power law, p 7

FAA Advisory Circular AC 120-60B Ground Deicing and Anti-icing Program

Issued 2004-12-20 by the FAA. 88

This document provides guidance to obtain FAA approval of ground deicing/anti-icing programs in accordance to Title 14 of the Code of (US) Federal Regulations (14 CFR) part 12, section 121.629.

Keywords:
14 CFR § 121.629, s 1
AC 120-60B, Title at p 1
anti-icing – definition, s 3.a.
anti-icing fluid – definition ss 3.a.(1–5)

Aircraft Deicing Documents – Issued by the FAA

check, icing. See preflight check; post deicing/anti-icing check; pretakeoff check; pretakeoff contamination check. See post deicing/anti-icing check; post deicing anti-icing check; pretakeoff contamination check (FAA). See pretakeoff contamination check (FAA). communications – flightcrew and ground crew, s 6.f.
communications. See also anti-icing code; phraseology anti-icing code, s 6.f.(3)
critical aircraft surfaces. See critical surface critical surface – aircraft manufacturer defined, s 6.d.(1)
critical surface – control surface, s 6.d.(a)
critical surface – empennage, s 6.d.(a)
critical surface – engine inlets, s 6.d.(a)
critical surface – fuel vents, s 6.d.(a)
critical surface – fuselage on aircraft with center mounted engine, s 6.d.(a)
critical surface – instrument sensor pick up points, s 6.d.(a)
critical surface – pitot tubes, s 6.d.(a)
critical surface – ram-air intakes, s 6.d.(a)
critical surface – static ports, s 6.d.(a)
critical surface – wings, s 6.d.(a)
definition – anti-icing, s 3.a.
definition – anti-icing fluid, ss 3.a.(1–5)
definition – deicing fluid, ss 3.b.(1–6)
definition – deicing, s 3.b.
definition – frozen contaminants, s 3.c.
definition – hard wing, s 6.e.(2)(a)
definition – HOT range, s 6.c.(3)
definition – HOT, s 3.d.
definition – post deicing/anti-icing check (FAA), ss 3.g., 6.e.(3)
definition – pretakeoff check (FAA), s 3.e.
definition – pretakeoff contamination check (FAA), s 3.f.
decing – definition, s 3.b.
decing fluid – definition, s 3.b.(1–6)
FAA AC 120-60, Title at p 1
frost – on lower wing surface – acceptable amount (FAA), s 6.d.
frozen contaminants – definition, s 3.c.
contamination [frozen] – effect on (rapid) pitch up and roll-off during rotation, s 6.g.(2)(a)
contamination [frozen] – effect on control, s 6.g.(2)(a)
contamination [frozen] – effect on drag, s 6.g.(2)(a)
contamination [frozen] – effect on engine foreign object damage, s 6.g.
contamination [frozen] – effect on instrument pick up points, s 6.g.(2)(a)
contamination [frozen] – effect on lift, s 6.g.(2)(a)
contamination [frozen] – effect on buffet or stall before activation of stall warning, s 6.g.(2)(a)
contamination [frozen] – effect on hard wing aircraft (without leading edge device), s 6.g.(2)(a)
contamination [frozen] – effect on ram air intakes, s 6.g.(2)(a)
contamination [frozen] – effect on stall at lower-than-normal angle of attack, s 6.g.(2)(a)
contamination [frozen] – effect on weight, s 6.g.(2)(a)
contamination [frozen] – effect on winglets s 6.g.(2)(a)

89 The appears to be four kinds of icing checks: 1) preflight check (aka contamination check) performed by the flightcrew or ground crew to establish the need to deicing/anti-icing), 2) post deicing/anti-icing check (aka post deicing check, post application check), an integral part of the deicing/anti-icing process, 3) pretakeoff check performed within the holdover time and 4) the pretakeoff contamination check performed after the holdover time has expired.
Guide to Aircraft Ground Deicing – Issue 12

ground deicing/anti-icing program (FAA). See ground deicing program (FAA)
ground deicing program (FAA) – approval, ss 1., 5.
ground deicing program (FAA) – approved operations in lieu of, s 7.
ground deicing program (FAA) – program elements, s 6.
hard wing – definition, s 6.e.(2)(a)
HOT – definition, s 3.d.
HOT – end, s 6.e.(3)
HOT – range – definition, s 6.e.(3)
HOT – start of, s 6.e.(3)
HOT – variables affecting, s 6.e.
ice accretion, in-flight, s 6.g.(2)(b)
phraseology, use of standard s 6.f.
post deicing check. See post deicing/anti-icing check
post deicing/anti-icing check (FAA) – integral part of deicing/anti-icing process, ss 6.e., 6.e.(3)
post deicing/anti-icing check (FAA) – recordkeeping mandatory, s 6.f.(3)D
post deicing/anti-icing check (FAA)90 – definition, s 3.g., 6.e.(3)
program, ground deicing/anti-icing (FAA). See ground deicing program (FAA)
pretakeoff check (FAA) – by flightcrew, s 6.e.(1)
pretakeoff check (FAA) – definition, s 3.e.
pretakeoff check (FAA) – flightcrew situational awareness, s 6.e.(1)
pretakeoff check (FAA) – guidance, s 6.e.(1)
pretakeoff check (FAA) – regulation 14 CFR § 121.629(c)(3), s 6.e.(1)
pretakeoff check (FAA) – within HOT, ss 3.e., 6.e.(1)
pretakeoff contamination check (FAA) – definition, s 3.f.
pretakeoff contamination check (FAA) – guidance ss 3.f., 6.e.(2)
pretakeoff contamination check (FAA) – regulation 14 CFR § 121.629(c)(3)(i), ss 3.f., 6.e.(2)
pretakeoff contamination check (FAA) – when HOT exceeded, ss 3.f., 6.e.(2)
pretakeoff contamination check (FAA) – within 5 minutes of takeoff, ss 3.f., 6.e.(2)
representative surface, ss 3.e., 6.d.
training – FAA requirements s 6.g.

FAA Advisory Circular AC 120-112 Use of Liquid Water Equivalent System to Determine Holdover Times or Check times of Anti-icing Fluids

Issued 2015-07-14 by the FAA.91

Although the FAA does not certify or approve specific liquid water equivalent system (LWES),
some US aircraft operators (§ 121.629(c) category) may be required by US law to seek FAA
authorization to rely on the use of LWES. This document provides the FAA minimum standard
for use of LWES and guidance to those proposing to design, procure, construct, install, activate or
maintain LWES. An LEWS is an automated system that measures the liquid water equivalent rate

90 AC 120-60 appears to use different terms for the check that is an integral part of the deicing/anti-icing process: “post deicing check” s 3.g., “post deicing/anti-icing check” s 6.e.(3), 6.f.(3)D, “post application check” s 6.f.(3)D.
SAE documents usually call it “post deicing/anti-icing check” such as, AS6285C s 7.3 and AS6286 A.13.5, although
for short it is sometimes called “post deicing check”.
91 Online: <
of freezing or frozen precipitation. The LEWS system, using the measured LEW rate and endurance time regression equations, calculates holdover time (HOT) or check time (CT).

Keywords:
anti-icing fluid – definition, Appendix 2a.
check time – definition, Appendix 2b.
check time determination system – guidance (FAA), s 1-1
check time determination system – subset of LWES, s 1-1
definition – anti-icing fluid, Appendix 2a.
definition – check time, Appendix 2b.
definition – deicing fluid, Appendix 2c.
definition – endurance time regression analysis, Appendix 2e.
definition – endurance time, Appendix 2d.
definition – glycol pan measurement, Appendix 2f.
definition – HOT tables, Appendix 2h.
definition – HOT, Appendix 2g.
definition – LWE rate, Appendix 2i.
definition – LWE sampling time, Appendix 2k.
definition – LWES, s 1-1, Appendix 2k.
definition – regression analysis, endurance time, Appendix 2e.
deicing fluid – definition, Appendix 2c.
edurance time – definition, Appendix 2d.
edurance time – regression analysis – definition, Appendix 2e.
edurance time – regression equations, s 1-1
freezing drizzle – subset of supercooled large droplets, s 3-11
freezing rain – subset of supercooled large droplets, s 3-11
glycol pan measurement – definition, Appendix 2f.
holdover time determination system. See HOTDS
HOT – definition, Appendix 2g.
HOT – end, Appendix 2g.
HOT – start of, Appendix 2g.
HOT – tables – definition, Appendix 2h.
HOTDS – guidance (FAA), s 1-1
HOTDS – subset of LWES, s 1-1
LWE – rate – definition, Appendix 2i.
LWE – sampling time – definition, Appendix 2k.
LWES – activation – guidance (FAA), s 1-1
LWES – authorization for freezing drizzle (FAA), s 3-9
LWES – authorization for freezing rain (FAA), s 3-9
LWES – authorization for snow (FAA), s 3-8
LWES – authorization for supercooled large droplets (FAA), s 3-9
LWES – authorization process (FAA), s 2
LWES – check time, s 1-1
LWES – construction – guidance (FAA), s 1-1
LWES – definition, s 1-1, Appendix 2k.
LWES – design – guidance (FAA), s 1-1
LWES – endurance time regression equation, use of, s 1-1
LWES – guidance (FAA), s 1-1
LWES – HOT, s 1-1
LWES – installation – guidance (FAA), ss 1-1, 2-7
LWES – maintenance – guidance (FAA), ss 1-1, 2-8
LWES – maintenance log – guidance (FAA), s 2-6
This document provides guidance and recommendations of the designing of deicing facilities. It covers the sizing, siting, environmental considerations and operational requirements to maximize deicing capacity while maintaining safety and efficiency. There is emphasis on centralized deicing facilities and the issues associated with such facilities. Design considerations for infrared deicing facilities are discussed.

Keywords:
14 CFR § 139, s 2. at p i, s 4.b. at p i
AC 150/5300-14C, Title at p i
aircraft deicing facility. See deicing facility
aircraft parking area length, s 3.1a.(2)
aircraft parking area width, s 3.1a.(1)

FAA Advisory Circular AC 150/5300-14C Design of Aircraft Deicing Facilities

Revised 2013-08-07 by the FAA.

Infrared deicing facilities were built at JFK airport in NY, Buffalo NY, Newark NJ, Rhinelander NY, and Oslo, Norway. Buffalo, Newark, and Oslo facilities were dismantled. JFK and Rhinelander are not operational. The builder of infrared facilities is no longer offering them for sale [FAA private communications. June 2016].

AC 150/5300-14C has an introductory section at pp i to iv that uses the same section numbering as the main document. When the referring to a section in the introductory part, the pages are indicated.
aircraft parking area, deicing pad – definition, s 1.2c.(1)
Airport Certification Manual (US), s 2. at p i
Airport Improvement Program (US), s 2. at p i
airport, certificated (FAA), s 2. at p i
CDF – air traffic control tower line-of-sight, s 2.2c.
CDF – aircraft access routes, s 4.
CDF – benefits – aircraft re-treatment near departure runway, s 2.1b.
CDF – benefits – avoiding changing weather along long taxiing routes, s 1.1b.(2)
CDF – benefits – improved airfield flow, s 2.1b.
CDF – benefits – reduced taxing time, s 1.1b.(2)
CDF – capacity, s 2.3
CDF – common deicing procedures – safety benefits, s 1.1
CDF – common deicing procedures for all users, s 1.1
CDF – components – bypass taxiing capability for aircraft not needing deicing, ss 2.1c., 2.8
CDF – components – control enter, s 2.1c.
CDF – components – crew shelter, s 2.1c.
CDF – components – deicing pads ss 2.1c., 2.9
CDF – components – deicing unit ss 2.1c., 2.5b.
CDF – components – environmental runoff mitigation ss 2.1c., 2.5e.
CDF – components – fluid storage and handling ss 2.1c., 2.6
CDF – components – lighting system ss 2.1c., 2.7
CDF – control center, ss 4.c. at p i, 2.1c.
CDF – definition, s 1.2b.
CDF – deicing pad, factors affecting number of – deicing procedure, s 2.4a.
CDF – deicing pad, factors affecting number of – peak hour departure rate, s 2.4
CDF – deicing pad, factors affecting number of – preflight inspection, s 2.4a.(1)
CDF – deicing pad, factors affecting number of – type of aircraft, s 2.4a.(3)
CDF – deicing pad, factors affecting number of – type of deicing units, s 2.4a.(4)
CDF – deicing pad, factors affecting number of – variation in meteorological conditions, s 2.4a.(2)
CDF – deicing pad, factors affecting number of, s 2.4
CDF – design, Title at p i
CDF – effluent mitigation – aerobic treatment, ss 6.2a, 6.7
CDF – effluent mitigation – anaerobic biochemical reactor, ss 6.2c, 6.7
CDF – effluent mitigation – biomass, ss 6.7
CDF – effluent mitigation – BOD, ss 6.1b.
CDF – effluent mitigation – COD, ss 6.1b.
CDF – effluent mitigation – diversion boxes, ss 6.2f.
CDF – effluent mitigation – effluent control at the source, ss 6.1a.
CDF – effluent mitigation – flow rate limits, ss 6.1b.
CDF – effluent mitigation – lifecycle cost, ss 6.2
CDF – effluent mitigation – mechanical aeration of detention basins, ss 6.2c., 6.7
CDF – effluent mitigation – metered discharge from detention basin, ss 6.2b.
CDF – effluent mitigation – oil and grease, ss 6.1b.
CDF – effluent mitigation – POTW (US) ss 6.1a., 6.1b., 6.3, 6.7
CDF – effluent mitigation – recycled water ss 6.6b.
CDF – effluent mitigation – recycling glycol, ss 6.2c., 6.6
CDF – effluent mitigation – recycling system, ss 6.2e., 6.6
CDF – effluent mitigation – spent deicing fluid detention basins, ss 6.4
CDF – effluent mitigation – spent deicing fluid storage tanks, ss 6.2d., 6.5
CDF – effluent mitigation – TOC, ss 6.1b.
CDF – effluent mitigation – total suspended solids, ss 6.1b.
CDF – effluent mitigation – urea algae blooms in detention basins, ss 6.4d.
CDF – effluent mitigation – wildlife management near detention basins, s 6.4c.
CDF – effluent mitigation, s 6
CDF – environmental considerations – receiving water aquatic communities quality, s 6.1
CDF – environmental considerations – receiving water quality, s 6.1
CDF – environmental considerations. See also CDF – runoff mitigation
CDF – holding bays, s 4.1a.
CDF – location and sizing, factors affecting – aircraft type fleet mix, s 2.5b.
CDF – location and sizing, factors affecting – airport layout, s 2.12
CDF – location and sizing, factors affecting – airport safety programs, s 2.5f
CDF – location and sizing, factors affecting – deicing queues, s 2.9
CDF – location and sizing, factors affecting – environmental considerations, s 2.5e
CDF – location and sizing, factors affecting – HOT and time to takeoff clearance time, s 2.5
CDF – location and sizing, factors affecting – lighting, s 2.7
CDF – location and sizing, factors affecting – restriction of type of deicing fluid, s 2.5a
CDF – location and sizing, factors affecting – taxing times and routes, ss 2.5d, 2.8
CDF – location and sizing, factors affecting – topography, s 2.10
CDF – location and sizing, factors affecting – type of deicing fluids used, s 2.5a
CDF – location and sizing, factors affecting – type of deicing unit, ss 2.4(4), 2.5b
CDF – location and sizing, factors affecting – utilities, s 2.11
CDF – location and sizing, factors affecting, s 2.5
CDF – multiple, s 2.4b.
CDF – operational issues, s 1.1
CDF – overview of, s 1.1
CDF – pavement requirements, s 3.6
CDF – role, s 1.1a.
CDF – runoff mitigation. See CDF – effluent mitigation
CDF – safety risk management mandatory before construction (FAA), s 1.5
CDF – separation standards, ss 2.2a.–b.
CDF – service provider, single, s 1.1
CDF – siting, s 1.1b.
CDF – snow desk, ss 4.c. at p i, 2.1c.
CDF – superset of remote deicing facility, s 4. at p i
CDF – vehicle safety zone, s 4.d. at p ii, 3.4c.
CDF – vehicle service roads, s 4.2
CDF. See also deicing facility
centralized aircraft deicing facility. See CDF
definition – aircraft parking area, deicing pad, s 1.2c.(1)
definition – CDF, s 1.2b.
definition – deicing facility, s 1.2a.
definition – deicing pad aircraft parking area, s 1.2c.(1)
definition – deicing pad maneuvering area for deicing units, s 1.2c.(2)
definition – deicing pad, s 1.2c.
definition – HOT, s 1.2d.
deicing facility – capacity, s 2.3
deicing facility – centralized aircraft. See CDF
deicing facility – definition, s 1.2a.
deicing facility – design, Title at p i
deicing facility – infrared. See infrared deicing facility
deicing facility – off-gate95 ss 1.1, 2.1
deicing facility – off-gate. See also CDF

95 AC 150/5300-14C defines all off-gate deicing facilities as centralized deicing facilities, see s 1.1.
deicing facility – on-gate excludes CDF ss 1.1, 2.1
deicing facility – remote aircraft. See CDF
deicing facility – remote – subset of CDF\(^{90}\), s 4 at p i
deicing facility – safety risk management mandatory before construction (FAA), s 1.5
deicing facility – safety risk management, s 1.5
deicing facility – stakeholders – air taxis, s 1.3a.
deicing facility – stakeholders – air traffic control, s 1.3a.
deicing facility – stakeholders – aircraft rescue and firefighting chief, s 1.3a.
deicing facility – stakeholders – airport environmental manager, s 1.3a.
deicing facility – stakeholders – airport operations chief, s 1.3a.
deicing facility – stakeholders – engineering design contractor, s 1.3a.
deicing facility – stakeholders – general aviation, s 1.3a.
deicing facility – stakeholders – ground deicing managers, s 1.3a.
deicing facility – stakeholders – other authorities, s 1.3b.
deicing facility – stakeholders – pilot organizations, s 1.3a.
deicing facility – stakeholders – regulator, s 1.3a.
deicing facility – stakeholders – station managers of air carriers, s 1.3a.
deicing facility – terminal gate – apron drainage, s 2.1a.
deicing facility – terminal gate – capacity, s 2.3
deicing facility – terminal gate – cost of glycol mitigation issues, s 2.1b.
deicing facility – terminal gate – environmental issues, ss 1.1b(1), 2.1a.
deicing facility – terminal gate – excludes CDF, ss 1.1, 2.1
deicing facility – terminal gate – gate delays issues, s 2.1b.
deicing facility – terminal gate – lack of gate for deicing issues, s 2.1b.
deicing facility – terminal gate – spent deicing fluid collection, s 2.1a.
deicing facility – terminal gate – taxing time issues, ss 1.1b(1), 2.1a., 2.1b.
deicing pad – aircraft parking area – definition, s 1.2c.(1)
deicing pad – composite, ss 3.4b.(2), 3.5a.(2)
deicing pad – definition, s 1.2c.
deicing pad – fixed deicing unit considerations, s 3.2
deicing pad – grouping, ss 3.4b.(2), 3.5a.(2)
deicing pad – layout, s 3.5
deicing pad – maneuvering area for deicing units – definition, s 1.2c.(2)
deicing pad – number of, s 2.4
deicing pad – orientation – high winds, s 3.5b.
deicing pad – orientation – jet blast, s 3.5c.
deicing pad – orientation – prevailing wind, s 3.5b.
deicing pad – orientation – visibility, s 3.5b.
deicing pad – orientation – with respect to taxiway, s 3.5b.
deicing pad – safety risk management mandatory before construction (FAA), s 1.5
deicing pad – separation standards, s 3.2, Table 3-1
deicing pad – surface markings – boundary markings, s 3.4b.
deicing pad – surface markings – pad grouping marking, s 3.4b.(2)
deicing pad – surface markings – taxiway centerline, ss 3.2, 3.4a.
deicing pad – surface markings – taxiway holding position marking, s 3.4b.(1)
deicing pad – surface markings – vehicle safety zone marking, s 3.4c.
deicing pad – surface markings, s 3.4

deicing pad – taxiway centerline requirement, s 3.2
deicing pad – vehicle safety zone, s 3.2, 3.4c.

\(^{90}\) In AC 150/5300-14C, the term “centralized aircraft deicing facility” includes “remote aircraft deicing facility” and the expression “remote deicing facility” was dropped from the definition (s 4a at p i). In the Guide, we abbreviate centralized deicing facility as CDF.
deicing unit – fixed – gantry, s 2.5b.(2)
deicing unit – fixed – telescopic boom, s 2.5b.(2)
deicing unit – fixed, s 3.3
FAA-approved Snow and Ice Control Plan, s 4b. at p i
fluid manufacturer documentation – fluid storage requirements, s 2.6b
fluid manufacturer documentation – fluid transfer system requirements, s 2.6a
gantry, s 2.5b.(2)
HOT – definition, s 1.2d.
HOT – end, s 1.2d.
HOT – start of, s 1.2d.
HOT – \(\nu \) taxiing time, s 2.1a.
HOT – \(\nu \) time from start of last step to takeoff clearance, s 2.5
ice detection camera. See ROGIDS
infrared deicing facilities, list of. See footnote 93
infrared deicing facility – design of, ss 5.1–5.18
infrared deicing facility – ROGIDS recommended, s 4e. at p ii, s 5.9
maneuvering area for deicing units – vehicle lane width, s 3.1b.
maneuvering area for deicing units, s 1.2c.(2)
message boards – use at CDF, s 3.6
passenger facility charges (US), s 2. at p i
POTW (US), ss 6.1b., 6.3, 6.7
RDP – spent deicing fluid as, s 6.6a.
remote aircraft deicing facility. See CDF; DDF
ROGIDS – infrared deicing facility, for, s 4.e. at p ii
Snow and Ice Control Plan, FAA-approved, s 4.b. at p i
snow desk, s 2.1c.(4)
spent deicing fluid – use as RDP, s 6.6a.
spent deicing fluid. See also CDF runoff mitigation – spent deicing fluid; deicing facility – terminal gate – spent deicing fluid collection
takeoff clearance \(\nu \) HOT, s 2.5
taxiing time \(\nu \) HOT, ss 2.1a., 2.5
taxiing time, acceptable, ss 2.1a.
taxiing time, slower in winter-contaminated conditions, s 2.5
telescopic boom, fixed, d 2.5b.(2)
vehicle safety zone, s 4.d. at p ii, s 5.9

FAA Policy Statement: Type Certification Policy for Approval of Use of Type II, III, and IV Deicing/Anti-icing Fluids on Airplanes Certificated Under 14 CFR Parts 23 and 25, Policy No: PS-ACE-23-05, PS-ANM-25-10.

Issued 2015-05-03 by the FAA.

This FAA policy describes the testing and approval process for aircraft manufacturer to enable the use of SAE Type II, III and IV on aircraft certificates under 14 CFR parts 23 and 25.

This document seeks to determine if using Type II, III or IV fluids will result in significant or unusual flight or ground handling characteristics. This is determined by flight tests or by showing similarity to previously tested models.
The policy addresses takeoff performance, lift loss determination, takeoff angle-of-attack margin tests, controllability, vibration and buffeting, post-flight inspections, effect on aircraft systems, and maintenance instructions, including cleaning, lubrication and how to deal with fluid residues and rehydrated residues.

A less detailed similar document was published by Transport Canada entitled *Guidelines for Aeroplane Testing Following Deicing/Anti-icing Fluid Application*, Working Note No. 38, Initial Issue.

Keywords:
- aerodynamic effect of fluids – aircraft certification, FAA, s Title
- aerodynamic effect of fluids – not addressed by AS5900 – control surface effectiveness, p 4 par 2
- aerodynamic effect of fluids – not addressed by AS5900 – control forces, p 4 par 2
- aerodynamic effect of fluids – on aircraft responsiveness to pitch control input, s 2
- aerodynamic effect of fluids – on low takeoff speed aircraft, p 4 par 5
- aerodynamic effect of fluids – on unpowered longitudinal flight control, p 4 par 4-5
- aerodynamic effect of fluids – operational limitations – delayed response to pilot pitch control input, p 5 par 1
- aerodynamic effect of fluids – operational limitations – higher than normal control column back pressure, p 4 par 4
- aerodynamic effect of fluids – operational limitations – increased rotation speed, p 4 par 3
- aerodynamic effect of fluids – operational limitations – pilot force to initiate rotation, p 4 par 3
- aerodynamic effect of fluids – operational limitations – takeoff flap setting limitations, p 4 par 3
- aircraft certification – Type II/III/IV – AFM – aircraft specific limitations, s 8.a
- aircraft certification – Type II/III/IV – AFM – list of approved Types of fluid, s 8.a
- aircraft certification – Type II/III/IV – AFM – list of prohibited fluids, s 8.a
- aircraft certification – Type II/III/IV – AFM – LOUT limitations, s 8.a
- aircraft certification – Type II/III/IV – AFM – takeoff speed increase, s 8.a
- aircraft certification – Type II/III/IV – AFM, p 13
- aircraft certification – Type II/III/IV – buffeting, s 3
- aircraft certification – Type II/III/IV – controllability, s 2
- aircraft certification – Type II/III/IV – effect of heated surfaces, s 6.b
- aircraft certification – Type II/III/IV – effect of ice protection systems, s 6.b
- aircraft certification – Type II/III/IV – effect on air data probes, s 6.b
- aircraft certification – Type II/III/IV – effect on APU, s 6.a
- aircraft certification – Type II/III/IV – effect on environmental control system, s 6.a
- aircraft certification – Type II/III/IV – effect on fluid baking, s 6.b
- aircraft certification – Type II/III/IV – effect on vent blocking, s 6.a
- aircraft certification – Type II/III/IV – flight tests, p 6 par 3, p 13
- aircraft certification – Type II/III/IV – fluid application, s 5.b
- aircraft certification – Type II/III/IV – fluids to be tested, s 5.a
- aircraft certification – Type II/III/IV – handling qualities, s 7.a
- aircraft certification – Type II/III/IV – ICA, p 13
- aircraft certification – Type II/III/IV – lift loss determination, s 1.a
- aircraft certification – Type II/III/IV – maintenance instructions – drain hole inspections, s 9.a
- aircraft certification – Type II/III/IV – maintenance instructions – control balance bay inspections, s 9.a
- aircraft certification – Type II/III/IV – maintenance instructions – aerodynamically quiet area inspections, s 9.a
aircraft certification – Type II/III/IV – maintenance instructions – internal control system component inspection, s 9.a
aircraft certification – Type II/III/IV – maintenance instructions – residue removal, ss 9.b, 9.c
aircraft certification – Type II/III/IV – maintenance instructions – lubrication, s 9.b
aircraft certification – Type II/III/IV – maintenance instructions – residue detection, s 9.c
aircraft certification – Type II/III/IV – maintenance instructions – residue check frequency, s 9.c
aircraft certification – Type II/III/IV – maintenance instructions – residue monitoring, s 9.c
aircraft certification – Type II/III/IV – maintenance instructions – drain hole inspections, s 9.a
aircraft certification – Type II/III/IV – measurement of elevator/horizontal stabilizer gap, s 7.b
aircraft certification – Type II/III/IV – pilot application of longitudinal control forces, s 2
aircraft certification – Type II/III/IV – regulatory requirements, pp 1-3
aircraft certification – Type II/III/IV – required for aircraft brake release to $V_R < 30$ s, p 12
aircraft certification – Type II/III/IV – required for aircraft with $V_R < 100$ KACS, p 12
aircraft certification – Type II/III/IV – required for aircraft with reversible longitudinal flight controls, p 12
aircraft certification – Type II/III/IV – residue – inspection, s 4
aircraft certification – Type II/III/IV – residue – maintenance instructions, s 4
aircraft certification – Type II/III/IV – responsiveness to pitch control input, s 2
aircraft certification – Type II/III/IV – similarity to previously tested aircraft model, p 6 par 3
aircraft certification – Type II/III/IV – takeoff angle-of-attack margin tests, s 1.b
aircraft certification – Type II/III/IV – takeoff performance, ss 1, 1.c
aircraft certification – Type II/III/IV – test day temperature, s 5.c
aircraft certification – Type II/III/IV – training, p 13
aircraft certification – Type II/III/IV – vibration, s 3
aircraft certification – Type II/III/IV – viscosity measurement, s 5.d
aircraft certification, s Title
certification, aircraft. See aircraft certification
Type II/III/IV – residue – along control surface hinge lines, p 5 par 3
Type II/III/IV – residue – control force changes, p 5 par 5
Type II/III/IV – residue – control surface buffeting, p 5 par 5
Type II/III/IV – residue – control surface vibrations, p 5 par 5
Type II/III/IV – residue – dried, s 9.c
Type II/III/IV – residue – effect on powered flight control systems, p 5 par 3
Type II/III/IV – residue – effect on unpowered flight control systems, p 5 par 3
Type II/III/IV – residue – elevator limitations, p 5 par 5
Type II/III/IV – residue – elevator vibration, p 5 par 5
Type II/III/IV – residue – flight control restrictions, p 5 par 4
Type II/III/IV – residue – frozen, p 1 Summary, p 5 par 1
Type II/III/IV – residue – in aerodynamically quiet areas, p 5 par 3
Type II/III/IV – residue – in balance bays, p 5 par 5
Type II/III/IV – residue – in control surface balance bays, p 5 par 4
Type II/III/IV – residue – in gaps between stabilizers, elevators, tabs and hinge areas, p 5 par 4
Type II/III/IV – residue – in gaps, p 5 par 4
Type II/III/IV – residue – on cables, p 5 par 4
Type II/III/IV – residue – on flight control actuators, p 5 par 4
Type II/III/IV – residue – on pulleys, p 5 par 4
Type II/III/IV – residue – periodic inspection, s 4
Type II/III/IV – residue – rehydrated, p 5 par 1-2, s 9.c
Type II/III/IV – residue – unbalanced control surfaces, p 5 par 5
Type II/III/IV – residue formation – inadequate drainage, p 5 pas 5
Type II/III/IV – residue formation – one-step application of Type II/III/IV, p 5 par 4
Type II/III/IV – residue formation – Type II/III/IV without hot water or Type I, p 5 par 4
Documents Issued by Transport Canada

Transport Canada Holdover Time Guidelines Winter 2019-2020, Original Issue:
August 6, 2019

Issued 2019-08-07 by Transport Canada.\(^97\)

This document, updated every year, provides the holdover time guidelines as published by Transport Canada. The Transport Canada Holdover Time Guidelines are meant to be used in conjunction with Guidelines for Aircraft Ground Icing Operations, TP 14052E (fourth edition, August 2019) where additional guidance on aircraft ground deicing can be found.

Keywords:
- aerodynamic acceptance test – results – high speed ramp, Tables 44–47
- aerodynamic acceptance test – results – low speed ramp, Tables 44, 46
- allowance time – 76% adjusted – flaps and slats deployed, Tables ADJ-41, ADJ-42
- allowance time – EG v PG Type IV based fluids, Table 42
- allowance time – precipitation – ice pellets, light – mixed with snow, Tables 41–42
- allowance time – precipitation – ice pellets, light – mixed with freezing drizzle, Tables 41–42
- allowance time – precipitation – ice pellets, light – mixed with freezing rain, Tables 41–42
- allowance time – precipitation – ice pellets, light – mixed with rain, Tables 41–42
- allowance time – precipitation – ice pellets, moderate, Tables 41–42
- allowance time – precipitation – small hail, light, Tables 41–42
- allowance time – precipitation – small hail, moderate – mixed with freezing drizzle, Table 42
- allowance time – precipitation – small hail, moderate – mixed with rain, Table 42
- allowance time – precipitation – small hail, moderate, Tables 41–42
- allowance time – precipitation stops, when, Tables 41–42
- allowance time – rotation speed 100 knots minimum – Type III fluids, Table 41
- allowance time – rotation speed 100 knots minimum – Type IV EG fluids, Table 42
- allowance time – rotation speed 115 knots minimum – Type IV glycol unknown, Table 42 note 3
- allowance time – rotation speed 115 knots minimum – Type IV PG fluids, Table 42 note 3
- allowance time – temperature decreasing, Tables 41–42
- allowance time – Type III neat, Table 41
- allowance time – Type III unheated, Table 41
- allowance time – Type IV neat, Table 42
- AMIL, p 60 at “Cautions”, p B-2,
- APS Aviation, p B-2
- definition – LOUT, p. 60 at note 3
- EG v PG Type IV based fluids – allowance time. See allowance time – EG v PG based fluids
- fluid application – anti-icing – clean aircraft, on, Tables 49–50
- fluid application – anti-icing – insufficient amount, Tables 49–50
- fluid application – deicing – temperature (desirable) at nozzle $\geq 60^\circ C$, Tables 48–50
- fluid application – guidelines, Tables 48–50
- fluid application – one-step, Tables 48–50
- fluid application – temperature limits, Tables 48–50

fluid application – two-step, Tables 48–50
fluid application – Type I – anti-icing – quantity ≥ 1 liter/m², Table 48
fluid application – Type I – anti-icing – temperature ≥ 60°C, Table 48
fluid application – wing skin temperature lower than OAT, Tables 48–50
fluid failure, early – flaps and slats deployed. See flaps and slats deployed
fluid list (TC), Tables 44–47
fluid manufacturer documentation – aerodynamic acceptance data, p 60 at “Cautions”
fluid manufacturer documentation – freezing point v dilution data, p 60 at note 4
fluid manufacturer documentation – LOUT, p 60 at note 3
fluid manufacturer documentation – materials compatibility data, p 60 at “Cautions”
fluid manufacturer documentation – toxicity data, p 60 at “Cautions”
HOT – 76% adjusted – flaps and slats deployed, Tables ADJ-1 to ADJ-40
HOT – flaps and slats deployed. See HOT – 76% adjusted – flaps and slats deployed
HOT – frost, Table 1
HOT – Type I – aluminum surface, Table 2
HOT – Type I – composite surface, Table 3
HOT – Type I/II/III/IV frost, Table 1
HOT – Type II fluid-specific, Tables 5–17
HOT – Type II generic, Table 4
HOT – Type III fluid-specific – heated – no HOT, Tables 18–19
HOT – Type III fluid-specific – unheated, Tables 18–19
HOT – Type III fluid-specific, Tables 18–19
HOT – Type III generic – none
HOT – Type IV fluid-specific, Tables 21–40
HOT – Type IV generic, Table 20
HOT (TC) – changes for winter 2019-2020, p 5
HOT (TC), Title at p 1
HOT, no – Type I < 60°C, Table 48
laboratories, testing – Anti-icing Materials International Laboratory (AMIL), p B-2
laboratories, testing – APS Aviation, p B-2
laboratories, testing – Scientific Material International (SMI), p B-2
LOUT – definition, p 60 at note 3, Tables 48–50
LOUT – list, Tables 45–47
LOWV – list, Tables 45–47
Scientific Material International (SMI), p B-2
snowfall intensity – category – heavy, Table 43
snowfall intensity – category – light, Table 43
snowfall intensity – category – moderate, Table 43
snowfall intensity – category – very light, Table 43
snowfall intensity – overestimation due to obscuration – fog, Table 43
snowfall intensity – overestimation due to obscuration – haze, Table 43
snowfall intensity – overestimation due to obscuration – other, Table 43
snowfall intensity – overestimation due to obscuration – smoke, Table 43
snowfall intensity – v snowfall rate
snowfall intensity – weather observer reported, Table 43
snowfall intensity visibility table. See snowfall visibility table
snowfall intensity. See also HOT – precipitation rate

98 None published.
99 Snowfall intensity v snowfall rate. Snowfall intensity is expressed as very light snow, light snow, moderate snow and heavy snow whereas snowfall rates are expressed in g/dm²/h or liquid water equivalent rates in mm/h or in/h.
snowfall visibility table100, Table 43
three-minute rule, Tables 48–50
Type I – \(\geq 1\) liter/m\(^2\), Table 48
Type I – \(\geq 60^\circ\text{C}\), Table 48
Type II/III/IV – viscosity, fluid manufacturer methods, Table 45–48
viscosity measurement method – fluid manufacturer, p 60 at note 8
viscosity measurement method – precedence of fluid manufacturer method over AS9968, p 60 at note 8
visibility – flightcrew observed, Table 43
visibility – METAR/SPECI, Table 43
visibility – prevailing, Table 43

\textbf{Transport Canada Holdover Time (HOT) Guidelines Regression Information Winter 2019-2020 Issue: August 6, 2019}

Issued 2019-08-06 by Transport Canada.

This document, updated every year, provides the regression coefficients to calculate holdover times under various weather conditions.

Typically, real-time weather data is fed to a holdover time determination system (HOTDS) which uses the real time weather data and best-fit power law curves with the appropriate regression coefficients to calculate holdover times.

A similar document is issued by the FAA.

Keywords:
HOT – 76\% adjusted – regression calculations, p 6
HOT – regression information – changes in 2019-2020, p 5
HOT – regression limitations – caution outside precipitation rate limits, p 7–8
HOT – regression limitations – no allowance times, p 8
HOT – regression limitations – no interpolation for Type II/III/IV non-standard dilutions, p 7
HOT – regression limitations – no regression coefficients for frost, p 8
HOT – regression limitations – use at \(> 0^\circ\text{C}\), p 7
HOT – regression limitations – use of LUPR, p 7
HOT – regression limitations – use of snow precipitation rate \(\leq 50\) g/dm\(^2\)/h, p 8
HOT – regression limitations – use with CTDS/HOTDS conforming to Advisory Circular (FAA), p 6
HOT – regression limitations – use with HOTDS conforming to regulations (TC), p 6
HOT – regression limitations, pp 7–8
HOT – Type I generic – regression calculations, p 6
HOT – Type I generic – regression coefficients, Tables 1-1, 1-2
HOT – Type II fluid-specific – regression calculations, pp 6–7
HOT – Type II fluid-specific – regression coefficients, Tables 2-2 to 2-13
HOT – Type II generic – HOT minimum (worst case) values of all Type II, p 7

100 Although the FAA and Transport Canada harmonize most of the information contained in their respective Holdover Time Guidelines, the Snowfall Intensity as a Function of Prevailing Visibility tables are different. See the FAQ at p 227.
This document clarifies the use of Type I fluid as a deicing fluid and as an anti-icing fluid.

Keywords:
communication with flightcrew – HOT, start of, p 2
fluid application – Type I – anti-icing, pp 1-3
fluid application – Type I – deicing v anti-icing, pp 1–3
fluid application – Type I – deicing, pp 1-3
holdover start time. See HOT – start of
HOT – guidance (TC), pp 1-3
HOT – start of, p 2
HOT – Type I – guidance (TC), pp 1-3
HOT, no – Type I – no HOT start time, p 2
HOT, no – Type I unheated, p 2
pilot-in-command – responsibility to communicate deicing/anti-icing treatment required, p 2

Transport Canada Advisory Circular AC 700-030 Electronic Holdover Time (eHOT) Applications

Issued 2014-11-18 by Transport Canada.102

This document provides guidance regarding 1) the implementation and use of eHOT applications in electronic flight bags, 2) the process to obtain authorization from Transport Canada to incorporate eHOT in deicing and anti-icing programs and 3) recommendations to principal

operations inspectors and civil aviation safety inspectors when reviewing submission for incorporation of eHOT apps.

Keywords:
definition – EFB, s 3.0 (1)
EFB – definition, s 3.0 (1)
eHOT app – acceptance process (TC), s 5.0
eHOT app – authorization (TC), 6.0
eHOT app – definition, s 3.0 (1)
eHOT app – demonstration of equivalence or superiority to HOT paper version, s 6.0 (2)
eHOT app – guidance (TC), ss 1.1, 4.0,
eHOT app – MOPS (TC), Appendix A
eHOT app – testing and evaluation requirements (TC), Appendix B
eHOT app – training, s 4.0 (6)
eHOT app – type – fixed presentation, ss 3.0 (3), 4.0 (1) (a)
eHOT app – type – interactive – HOTDS input, ss 3.0 (4), 4.0 (1) (c)
eHOT app – type – interactive – manual input, ss 3.0 (4), 4.0 (1) (b)
eHOT app, Title at p 1
training – eHOT app, s 4.0 (6)

Revised 2019-08 by Transport Canada.103

This document provides guidance to those who are involved in aircraft ground deicing. It is meant to be used in conjunction with the Transport Canada Holdover Time Guidelines which are issued every year.

Keywords:
aerodynamic acceptance test – definition, s 18
aerodynamic effect of asymmetric contamination, s 12.6.8
aerodynamic effect of contamination – guidance (TC), s 12.6.8
aerodynamic effect of contamination. See also contamination [frozen] – effect on aerodynamic effect of leading-edge roughness, s 12.6.8
aerodynamic effect of roughness, s 12.6.8
air heaters. See contamination [frozen] – removal with air heaters
air operator (TC) – definition, s 18
air operator certificate (TC) – definition, s 18
aircraft deicing configuration. See configuration, aircraft deicing
aircraft deicing facility. See deicing facility
aircraft manufacturer documentation – fluid pressure, maximum, s 8.1.7
alkali organic salt based Type I – guidance (TC), s 10.8.1
allowance time – end of, s 11.1.16
allowance time – extension time, ss 11.1.15, 11.1.1 b), 11.1.16 e)

allowance time – extension with pretakeoff contamination inspection – none, ss 11.1.16 a), 11.1.16 (c) 6
allowance time – guidance (TC), ss 10.4, 11.1.2, 11.1.8, 11.1.15, 11.1.16, 12.1.2, 12.1.9, 12.1.10, 12.3
allowance time – METAR code GS. See METAR code GS
allowance time – METAR code SHGS. See METAR code SHGS
allowance time – precipitation – ice pellets, light – mixed with freezing drizzle, s 11.1.16
allowance time – precipitation – ice pellets, light – mixed with freezing rain, s 11.1.16
allowance time – precipitation – ice pellets, light – mixed with rain, s 11.1.16
allowance time – precipitation – ice pellets, light, s 11.1.6
allowance time – precipitation – ice pellets, moderate, s 11.1.16
allowance time – precipitation – small hail, s 11.1.16 c) 9)
allowance time – precipitation stops, when, ss 11.1.15, 11.1.16 b)
allowance time – rotation speed 100 knots minimum – Type III fluids, s 11.1.16 c) 4
allowance time – rotation speed 100 knots minimum – Type IV EG fluids, 11.1.16 c) 4
allowance time – rotation speed 115 knots minimum – Type IV PG fluids, 11.1.16 c) 4
allowance time – start of, s 11.1.16
allowance time – temperature decreasing, s 11.1.16 c) 8
allowance time – temperature increasing, ss 11.1.16 b), 11.1.16 b) 2, 11.1.16 c) 5
allowance time – temperature stable, ss 11.1.16 b), 11.1.16 b) 2, 11.1.16 c) 5
allowance time – Type I – none, s 11.1.16 c) 2
allowance time – Type II – none, s 11.1.16 c) 2
allowance time – Type III neat, s 11.1.16 c) 2
allowance time – Type III unheated, s 11.1.16 c) 2
allowance time – Type IV neat, s 11.1.16 (c) 2
allowance time – v HOT, s 11.1.5
AMS1424 – recognition – TC, ss 8.1.3, 11.1.9
AMS1428 – recognition – TC, ss 8.1.3, 11.1.9
anti-icing – definition, ss 8.1.1, 18
anti-icing fluid – definition, ss 8.1.2
anti-icing fluid – protection time, limited, s 8.1.2
apron – definition, s 18
APU fluid ingestion, ss 12.4, 12.6.11
APU, running – fluid ingestion – catastrophic failure, s 12.4
APU, running – fluid ingestion – flame out, s 12.4
AS6285, ss 5.1.2, 8.1.6.6, 8.1.7, 10.3, 10.4, 10.4.2, 10.6.2, 18 sub verbo “fluid deicing/anti-icing methods”, 19.5.2 h),
AS6286, ss 5.1.2, 8.1.6.6, 8.1.7, 8.1.7.1, 8.1.9, 19.5.2 c)
audit – self, s 4.1.5
audit – TC, by, s 4.1.5
audit checklist (TC) , s 4.1.5
biodegradation, effects of, s 13.5.1
BOD, s 13.5.1
Brix, ss 5.2.3.4, 8.1.6.1 b)
brooms. See contamination [frozen] – removal with brooms
brushes. See contamination [frozen] – removal with brushes
cabin windows. See windows, cabin
Canada Labour Code – mandatory compliance, ss 6.1, 6.1.2.1, 19.2
Canadian Aviation Regulations – aerial work, s 1.4.2
Canadian Aviation Regulations – air taxi operations, s 1.4.3
Canadian Aviation Regulations – airlines operations, 1.4.5
Canadian Aviation Regulations – commuter operations, s 1.4.4
Canadian Aviation Regulations – General Operating Flight Rules, s 1.4.1
Canadian Aviation Regulations, list of, s 1.4
CANUTEC, s 8.1.10
Aircraft Deicing Documents – Issued by Transport Canada

CCME, s 13.2.2
CDF – approval (TC), ss 14.1, 14.2.2.2
CDF – definition, ss 14.2.1, 18
CDF – program (TC), s 14.2.3
CDF – requirements (TC), s 14.2.2
CEPA guidelines, ss 13.2.1, 13.4
CEPA reporting, s 13.4
certificate of conformance – AMS1424, s 8.1.3
certificate of conformance – AMS1428, s 8.1.3
check, tactile – clear ice detection, s 11.2.3.4 b)
check, tactile – mandatory (TC) – hard wing aircraft, s 11.2.1
check, tactile – mandatory (TC) – removal of frozen contamination with brooms, s 10.12.1
check, tactile – symmetrical, s 11.2.3.4 b)
check, tactile – tactile wand, with, s 11.2.3.4 c)
clean aircraft concept – definition, s 18
clean aircraft concept, ss 11.2.3.1, 12.6.7, 12.7.1
clear ice – conditions conducive to, ss 1.3, 10.6.2.4, 12.1.8.1
clear ice – definition, ss 1.3, 18
clear ice – detection – ground ice detection system, s 1.3
clear ice – detection – tactile check, ss 1.3, 11.2.3.4 b)
clear ice – detection – tactile wand, s 11.2.3.4 c)
clear ice – difficulty to detect, ss 1.3, 10.6.2.4, 10.13.5, 11.2.3.4 a), 12.1.8.1, 18
clear ice – effect of, s 1.3
cold soaking – conditions conducive to – conductive cooling s 12.1.7.4
cold soaking – conditions conducive to – fueling, s 12.1.7.4
cold soaking – definition, ss, 1.3 18
cold soaking – effect on LOUT, s 12.1.7.4
cold soaking – underwing frost as indicator of, s 12.1.7.4
cold soaking, ss 1.3, 10.4, 12.1.7.4
collision with aircraft, deicing unit, s 12.6.11
Commercial Air Service Standards (TC), list of, s 1.4.2
communication – emergency procedures, s 7.14
communication – ineffective, s 7.15 b)
communication – limits, s 7.15 b)
communication – service provider management responsibilities, s 7.10
communication from passengers, s 7.11
communication plan, ss 7.2, 7.7.1
communication training, ss 7.5, 7.8–7.9
communication with apron control, s 7.15 d)
communication with cabin crew – communication from passengers, s 7.11
communication with cabin crew – communication to passengers, s 7.11
communication with flight operations, s 7.15 d)
communication with flightcrew – all clear signal, ss 7.4.1, 7.7.2, 7.7.3 a), 7.7.3 c)
communication with flightcrew – backup communication strategy, 7.3
communication with flightcrew – before starting deicing/anti-icing, s 12.6.1
communication with flightcrew – cabin crew responsibilities, s 7.12
communication with flightcrew – communication from passengers, s 7.11
communication with flightcrew – communication to passengers, ss 7.11, 12.6.9
communication with flightcrew – deicing facility and ATC control transfer, ss 7.5 d), 12.6.5
communication with flightcrew – deicing service provider, ss 7, 7.4.2, 7.5, 12.6.1
communication with flightcrew – direct link, s 7.3, 12.6.4
communication with flightcrew – emergency, ss 7.3, 12.6.5, 12.6.11
communication with flightcrew – engine start authorization, ss 7.7.3 b), 12.6.13.2
communication with flightcrew – hand signals, ss 7.3, 7.7.1, 12.6.3, 12.6.4, 12.6.5, 12.6.13.2
communication with flightcrew – importance of, s 7.1
communication with flightcrew – in-pavement lights, s 7.7.1, 12.6.3
communication with flightcrew – message boards, ss 7.3, 7.7.1, 7.7.2, 7.13.1, 12.6.3
communication with flightcrew – pushback instructions and requirements for deicing services, s 7.5
communication with flightcrew – radio link, ss 7.3, 12.6.4
communication with flightcrew – routing to deicing area, ss 7.5, 12.6.3
communication with flightcrew – taxi instructions, ss 7.7.1, 7.7.3, 12.6.2
communication with flightcrew – training requirements, s 7.5 e)
communication with passengers – decision to deice (TC), s 12.6.9
communication with passengers, ss 7.11, 12.6.9
configuration, aircraft deicing – flaps and slats s 12.3
configuration, aircraft deicing, s 12.3
contamination [frozen] – definition, s 18
contamination [frozen] – effect on aircraft handling quality, s 12.6.8
contamination [frozen] – effect on airfoil performance, s 12.6.8
contamination [frozen] – effect on drag, ss 1.3, 12.6.8
contamination [frozen] – effect on lateral controllability, s 12.6.8
contamination [frozen] – effect on lift, asymmetric, s 12.6.8
contamination [frozen] – effect on lift, ss 1.3, 12.6.8
contamination [frozen] – effect on pilot’s perception of hazard, s 12.6.8
contamination [frozen] – effect on power requirement, s 12.6.8
contamination [frozen] – effect on propeller balance, s 12.6.8
contamination [frozen] – effect on propeller efficiency, s 12.6.8
contamination [frozen] – effect on stall angle, s 12.6.8
contamination [frozen] – effect on stall characteristics, s 12.6.8
contamination [frozen] – effect on stall pusher system, s 12.6.8
contamination [frozen] – effect on stall speed, s 12.6.8
contamination [frozen] – effect on stall warning system, s 12.6.8
contamination [frozen] – effect on weight, s 1.3
contamination [frozen] – removal by manual means, s 10.12
contamination [frozen] – removal from radome, s 10.12.1
contamination [frozen] – removal from windows, s 10.12.1
contamination [frozen] – removal with air heaters, s 10.12.5
contamination [frozen] – removal with brooms – mandatory tactile check (TC), s 10.12.1
contamination [frozen] – removal with brooms, ss 10.12, 10.12.1
contamination [frozen] – removal with brushes, s 10.12
contamination [frozen] – removal with forced air and fluid, s 10.13.4.3
contamination [frozen] – removal with forced air, ss 10.13.4.1 to 10.13.4.2.5
contamination [frozen] – removal with heat, s 10.12.5
contamination [frozen] – removal with hot water, ss 10.13.3, 10.13.3.1
contamination [frozen] – removal with infrared, s 10.13.2
contamination [frozen] – removal with mops, s 10.12
contamination [frozen] – removal with ropes, ss 10.12, 10.12.2
contamination [frozen] – removal with scrapers, ss 10.12, 10.12.3
contamination [frozen] – removal with squeegees, s 10.12.3
contamination, frozen. See contamination [frozen]
critical surface – aircraft manufacturer defined, s 18 sub verbo “critical surface”
critical surface – control surface, s 18 sub verbo “critical surface”
critical surface – definition, s 18 sub verbo “critical surface”
critical surface – defined in CARs (TC), s 18 sub verbo “critical surface”
critical surface – fuselage on aircraft with center mounted engine, s 18 sub verbo “critical surface”
critical surface – horizontal stabilizer, s 18 sub verbo “critical surface”
critical surface – inspection (TC) – definition, s 18 sub verbo “critical surface inspection”
critical surface – inspection report (TC) – definition, s 18 sub verbo “critical surface inspection report”
critical surface – propeller, s 12.6.8, 18 sub verbo “critical surface”
critical surface – rotors, s 18 sub verbo “critical surface”
critical surface – stabilizer, vertical, s 18 sub verbo “critical surface”
critical surface – stabilizing surface, s 18 sub verbo “critical surface”
critical surface – wings, s 18 sub verbo “critical surface”
definition – aerodynamic acceptance test, s 18
definition – air operator (TC), s 18
definition – air operator certificate (TC), s 18
definition – anti-icing fluid, s 8.1.2
definition – anti-icing with fluid, s 18
definition – anti-icing, ss 8.1.1, 18
definition – apron, s 18
definition – CDF, ss 14.2.1, 18 sub verbo “central deicing facility”
definition – central deicing facility, s 18
definition – clean aircraft concept, s 18
definition – clear ice, ss 1.3, 18
definition – cold soaking, ss 1.3, 18
definition – contamination [frozen], s 18
definition – critical surface inspection (TC), s 18
definition – critical surface inspection report (TC), s 18
definition – critical surface, s 18 sub verbo “critical surface”
definition – defrosting, s 18
definition – deicing facility, central, s 18 sub verbo “Central Deicing Facility”
definition – deicing facility, terminal, s 18 sub verbo “Terminal Deicing Facility”
definition – deicing facility, s 18 sub verbo “aircraft deicing facility”
definition – deicing fluid, s 8.1.2
definition – deicing pad, s 18 sub verbo “Aircraft Deicing Pad”
definition – deicing with fluid, s 18 sub verbo “Fluid Deicing/Anti-icing Method”
definition – deicing, ss 8.1.1, 18
definition – dewpoint, s 12.1.7.2
definition – due diligence, s 16.1
definition – employee, frontline (TC), s 18
definition – endurance time, s 18 sub verbo “Endurance Time”
definition – flight time, s 18
definition – fluid failure, s 18
definition – forced air, s 18 sub verbo “Forced Air Deicing Method”
definition – freezing point buffer, s 8.1.6.1 b)
definition – freezing point, s 18 sub verbo “Freezing Point of a Fluid”
definition – freezing rain, s 18
definition – frost point, s 12.1.7.2
definition – frost, active, s 12.1.7.1. 18 sub verbo ‘active frost”
definition – GIDS, s 18 sub verbo “Ground Ice Detection System”
definition – ground ice detection system, s 18
definition – ground icing conditions, s 18
definition – ground icing program (TC), s 18
definition – hail, s 18
definition – HHET, s 18 sub verbo “High Humidity Endurance Time”
definition – hoarfrost, s 18
definition – HOT guidelines, s 18 sub verbo “Holdover Time Guidelines”
definition – HOT tables, s 18 sub verbo “Holdover Time Guidelines”
definition – HOT, s 18 sub verbo “Holdover Time Guidelines”

definition – ice pellets, s 18

definition – ice, s 18

definition – icehouse, s 18

definition – infrared heat deicing method, s 18

definition – inspection, tactile (TC), s 18

definition – LOWV, s 18 sub verbo “Lowest On-Wing Viscosity”

definition – maneuvering area, s 18

definition – MOWV, s 18 sub verbo “Maximum On-Wing Viscosity”

definition – must, p 3

definition – operations bulletins, s 18

definition – pilot-in-command, s 18

definition – precipitation rate, s 18

definition – pretakeoff contamination inspection (TC), s 18

definition – pretakeoff contamination report (TC), s 18

definition – representative surface, s 18

definition – service provider, s 18

definition – shall (TC), p 3

definition – should (TC), p 3

definition – slush, s 18

definition – snow grains, s 18

definition – snow pellets, s 18

definition – specimen sheet (training), s 18

definition – staging bay, s 18

definition – strake, s 11.2.3.5 b)

definition – tactile inspection (TC), s 18

definition – taxiway, s 18

definition – terminal deicing facility, s 18

definition – WSET, s 18 sub verbo “Water Spray Endurance Time”

defrosting – definition, s 18

deicing – definition, ss 8.1.1, 18

deicing configuration. See configuration, aircraft deicing

deicing facility – definition, s 18 sub verbo “Aircraft Deicing Facility”

deicing facility – risk – aircraft collision with aircraft, s 7.7.1

deicing facility – risk – aircraft collision with deicing unit, ss 7.6.1, 7.6.2

deicing facility – risk – aircraft collision with personnel, ss 7.6.1, 7.6.2

deicing facility – risk – deicing unit collision with personnel, ss 7.6.1, 7.6.2

deicing facility – risk – loss of separation between aircraft, s 7.7.3

deicing facility, central – definition, s 18 sub verbo “Central Deicing Facility”

deicing facility, terminal – definition, s 18 sub verbo “Terminal Deicing Facility”

deicing fluid – definition, ss 8.1.2”

deicing pad – definition, s 18

deicing unit – collision with aircraft, s 12.6.11

deicing unit – design, ss 9.1.1, 9.1.2

deicing unit – inspection – after maintenance, s 8.1.6.6 h)

deicing unit – inspection – after modification, s 8.1.6.6 h)

deicing unit – inspection – annual, s 8.1.6.6 h)

deicing unit – inspection – hoses, s 8.1.6.6 h)

deicing unit – inspection – nozzles, s 8.1.6.6 h)

deicing unit – inspection – pumps, s 8.1.6.6 h)

deicing unit – maintenance, s 9.1.3

deicing unit – operation, s 9.1.4

deicing with fluid – definition, s 18 sub verbo “Fluid Deicing/Anti-icing Method”
dewpoint – definition, s 12.1.7.2
dry snow – accumulation on wing – removal required, s 12.1.6
dry snow – adhesion – effect of fuel tanks (heat releasing), s 12.1.6
dry snow – adhesion – effect of fueling, s 12.1.6
dry snow – adhesion – effect of weather, s 12.1.6
dry snow – adhesion – effect of wing temperature, s 12.1.6
dry snow – non-adhesion – non-use of fluids, s 12.1.6
due diligence – definition, s 16.1
due diligence – principle of, s 16
effluent collection, s 13.6
effluent containment, s 13.6
effluent disposal, s 13.6
emergency – bomb threat, ss 2.2.12, 15.13
emergency – collision aircraft and aircraft, s 2.2.12
emergency – collision deicing unit and aircraft, s 2.2.12
emergency – collision ground vehicle and aircraft, s 2.2.12
emergency – communication plan, ss 2.2.6, 2.2.12, 7.14, 15.3
emergency – co-ordination, s 15.4
emergency – evacuation, aircraft, s 2.2.12
emergency – exercises, s 15.6
emergency – fire, aircraft, ss 2.2.12, 12.6.5, 15.11
emergency – fire, deicing facility, ss 15.5, 15.12
emergency – fire, ground equipment, ss 2.2.12, 15.16
emergency – first response, equipment for, s 15.7
emergency – first response, s 15.7
emergency – hijacking, ss 2.2.12, 15.14
emergency – injury, s 2.2.12
emergency – medical, ss 2.2.12, 15.15
emergency – other, s 2.2.12
emergency – plan, ss 15.1–15.16
emergency – service provider role, ss 15.2, 15.8
emergency – spill, fluid, ss 2.2.12, 15.5, 15.9
emergency – spill, jet fuel, ss 15.5, 15.10
emergency exits, aircraft, s 12.2.2
emergency, ss 2.2.12, 15
employee, frontline (TC) – definition, s 18
endurance time – definition, s 18 sub verbo “Fluid Endurance Time”
engines, aft-mounted – effect of clear ice, s 1.3
engines-on deicing, s 10.13.6
eye protection, s 6.1.2.2
face protection, s 6.1.2.2
fall protection systems, s 6.1.2.2
first aid, s 6.1.2.8
first response, s 15.7
Fisheries Act (Canada), s 13.2.4
flaps and slats deployed – guidance (TC), ss 12.3, 12.6.8
flaps. See flaps and slats
flight time – definition, s 18
flightcrew – HOT re-evaluation in improving weather condition – guidance (TC), ss 11.1.4.1
flightcrew – HOT re-evaluation in worsening weather conditions – guidance (TC), ss 11.1.4.1
flightcrew – HOT re-evaluation. See also pilot assessment of precipitation intensity
fluid application – anti-icing – clean aircraft, on, ss 10.3, 10.4.1
fluid application – anti-icing – not on top of contamination, ss 10.3, 10.4.1
Guide to Aircraft Ground Deicing – Issue 12

fluid application – guidance (TC), s 10.3–10.11
fluid application – heat loss, s 10.6.2.3
fluid application – in a hangar of T-tail aircraft, s 10.11.1
fluid application – in a hangar, s 10.11.1
fluid application – one-step, ss 10.4.2, 10.8.2
fluid application – symmetrical, ss 10.4, 10.4.2, 12.6.7
fluid application – T-tail aircraft, s 10.6.2.4
fluid application – two-step, ss 10.4.2, 10.6.2.2, 10.8.2
fluid compatibility – compatibility of Type I with Type II/III/IV, ss 10.8, 10.8.1
fluid dry-out. See Type II/III/IV – residue; Type II/IV – residue
fluid environmental impact, s 13
fluid failure – definition, s 18
fluid failure description – loss of gloss, s 18 sub verbo “Fluid Failure”
fluid failure description – loss of shine, s 18 sub verbo “Fluid Failure”
fluid failure description – no absorption of precipitation, s 18 sub verbo “Fluid Failure”
fluid failure description – presence of frozen contamination on the fluid, s 18
fluid freezing in flight – residual fluid on trailing edge, s 12.9
fluid manufacturer documentation – acceptance field tests, s 8.1.6.6 a)
fluid manufacturer documentation – aerodynamic acceptance data, s 8.1.6.6 a)
fluid manufacturer documentation – aerodynamic acceptance data, s 11.1.9
fluid manufacturer documentation – certificate of conformance, s 8.1.3
fluid manufacturer documentation – color, s 8.1.6.6 a)
fluid manufacturer documentation – concentration limits, s 8.1.6.3
fluid manufacturer documentation – elastomer compatibility data, s 8.1.6.6 a)
fluid manufacturer documentation – filter requirements, s 8.1.6.6 d)
fluid manufacturer documentation – flash point, s 8.1.6.3
fluid manufacturer documentation – fluid application, s 8.1.5
fluid manufacturer documentation – fluid storage requirements, s 8.1.6.6
fluid manufacturer documentation – fluid temperature limits, s 8.1.6.6 e)
fluid manufacturer documentation – fluid testing, s 8.1.6.6
fluid manufacturer documentation – fluid transfer system requirements, ss 8.1.6.6 a), 8.1.6.6 d)
fluid manufacturer documentation – fluid, heating of, s 8.1.6.6 e)
fluid manufacturer documentation – forbidden mixtures, s 8.1.6.6 c)
fluid manufacturer documentation – freezing point data, s 8.1.6.3
fluid manufacturer documentation – freezing point v dilution data, ss 8.1.6.1 b), 10.9
fluid manufacturer documentation – hardness, maximum water, s 8.1.6.2
fluid manufacturer documentation – HHET, s 11.1.9
fluid manufacturer documentation – label test, s 8.1.6.6 a)
fluid manufacturer documentation – label, s 8.1.6.6 a)
fluid manufacturer documentation – materials compatibility data, ss 8.1.6.6 a), 11.1.9
fluid manufacturer documentation – pH limits, ss 8.1.6.3 a), 8.1.6.6 a), 8.1.6.6 e)
fluid manufacturer documentation – product information bulletin, s 8.1.7.1
fluid manufacturer documentation – pump requirements, s 8.1.6.6 d)
fluid manufacturer documentation – refractive index limits, ss 8.1.6.1 c), 8.1.6.6 e)
fluid manufacturer documentation – refractometer, use of, s 8.1.6.1 a)
fluid manufacturer documentation – safety data sheet, ss 8.1.7.1, 8.1.8
fluid manufacturer documentation – sampling guidelines, ss 8.1.6.6 a), 8.1.6.6 f)
fluid manufacturer documentation – shelf life, s 8.1.6.6 f)
fluid manufacturer documentation – specific gravity, s 8.1.6.3
fluid manufacturer documentation – specification, fluid, s 8.1.6.6 f)
fluid manufacturer documentation – storage tank requirements, ss 8.1.6.6 a), 8.1.6.6 d)
fluid manufacturer documentation – surface tension, s 8.1.6.3
fluid manufacturer documentation – suspended matter limit, s 8.1.6.6 a)
fluid manufacturer documentation – toxicity data, s 11.1.9
fluid manufacturer documentation – Type I/II/III/IV certificate of conformance, ss 8.1.3, 11.1.9
fluid manufacturer documentation – Type I/II/III/IV technical requirement data, s 11.1.9
fluid manufacturer documentation – UV light, effect of, s 8.1.6.6 a)
fluid manufacturer documentation – viscosity limits, ss 8.1.6.3, 8.1.6.6 a)
fluid manufacturer documentation – viscosity method, field, s 8.1.6.6 a)
fluid manufacturer documentation – water hardness requirements, s 8.1.6.2 b)
fluid manufacturer documentation – WSET, s 11.1.9
fluid shelf life, s 8.1.6.6 f)
fluid slipperiness, s 8.1.6.6 g)
fluid specifications, non-SAE – TC not recognized, s 8.1.3
fluid specifications, SAE – TC recognized, s 8.1.3
fluid spills – emergency contact in Canada: CANUTEC, s 8.1.10
fluid test frequency – bulk storage, s 8.1.6.6 a)
fluid test frequency – deicing unit after maintenance, s 8.1.6.6 h)
fluid test frequency – deicing unit after repair, s 8.1.6.6 h)
fluid test frequency – deicing unit daily and when refilled, s 8.1.6.6 a)
fluid test frequency – drums, s 8.1.6.6 a)
fluid test frequency – totes, s 8.1.6.6 a)
fluid test frequency – upon dilution, s 8.1.6.6 a)
fluid test frequency – upon transfer, s 8.1.6.6 a)
fluid, acceptability – guidance (TC), s 8.1.4
fluid, composition of, s 8.1.2
fluid, residual – on trailing edge, s 12.9
fluids – guidance (TC), s 8
footwear, s 6.1.2.2
forced air – approval by aircraft manufacturer, s 10.13.4.1
forced air – definition, s 18 sub verbo “Forced Air Deicing Method”
forced air – guidance (TC), s 10.13.4
forced air – modes – alone, s 10.13.4.3
forced air – modes – Type I fluid applied over air stream, s 10.13.4.3
forced air – modes – Type II/III/IV applied over air stream, s 13.13.4.3
forced air – personnel safety – noise, s 10.13.4.4
forced air – personnel safety – projectiles, s 10.13.4.4
forced air – projectile formation, s 10.13.4.4
forced air – with fluid, s 10.13.4.3
forced air – with heated fluid, s 10.13.4.3
forced air – without fluid, s 10.13.4.3
forced air, s 10.13.4
freezing drizzle – guidance (TC), s 12.1.5
freezing point – definition, s 18 sub verbo “Freezing Point of a Fluid”
freezing point buffer – definition, s 8.1.6.1 b)
freezing point buffer – origin, s 8.1.6.1 b)
freezing point buffer – reasons for – absorption of precipitation, s 8.1.6.1 b)
freezing point buffer – reasons for – difference between OAT and aircraft surface temperature, s 8.1.6.1 b)
freezing point buffer – reasons for – fluid application variation, s 8.1.6.1 b)
freezing point buffer – reasons for – OAT changes after fluid application, s 8.1.6.1 b)
freezing point buffer – reasons for – refractometer measurement variability104, 8.1.6.1 b)
freezing point buffer – reasons for – weather changes after fluid application, s 8.1.6.1 b)
freezing point depression, description of, s 8.1.6.1 a)

104 Refractometer measurement error can be introduced, for instance, by the imperfect temperature compensation of analog temperature-compensated refractometers.
freezing point determination – ASTM D 1177, s 8.1.6.1 a)
freezing point determination – first ice crystal formation, s 8.1.6.1 a)
freezing point determination – refraction in BRIX, s 8.1.6.1
freezing point determination – refraction, s 8.1.6.1 a)
freezing point measurement. See freezing point determination
freezing rain – definition, s 18
freezing rain – operations in – guidance (TC), s 12.1.1
freezing rain – safety considerations – guidance (TC), s 12.1.1
frost – active – definition, s 12.1.7.1, 18 sub verbo “active frost”
frost – active – deicing, s 12.1.7.6
frost – active – guidance (TC), s 12.1.7.1 to 12.1.7.9
frost – appearance, s 12.1.7
frost – deceptively dangerous – drag increase, s 12.1.7
frost – deceptively dangerous – lift degradation, s 12.1.7
frost – formation – effect of surface composition, s 12.1.7.3
frost – formation – effect of surface finish, s 12.1.7.3
frost – formation conditions – clear sky, s 12.1.7.3
frost – formation conditions – cloudless nights, low wind (radiation cooling), s 12.1.7.3
frost – formation conditions – cold-soaked fuel – risk of fluid below LOUT, s 12.1.7.4
frost – formation conditions – cold-soaked fuel (conductive cooling), ss 10.4, 12.1.7.4
frost – formation conditions – low light, shade, obscured sun, s 12.1.7.3
frost – formation conditions – surface below OAT and at or below frost point, s 12.1.7.1
frost – formation mechanism – conductive cooling, s 12.1.7.4
frost – formation mechanism – radiation cooling, s 12.1.7.3
frost – formation, ss 10.4, 12.1.7.1 to 12.1.7.6
frost – on fuselage, s 12.1.7.9
frost – on lower wing surface, ss 12.1.7, 12.1.7.8
frost – on upper wing surface, s 12.1.7
frost – polishing – unacceptable method, s 10.12.4
frost – roughness, s 12.1.7
frost point – definition, s 12.1.7.2
frost point – higher than dewpoint, s 12.1.7.2
frost point – v dewpoint table, s 12.1.7.2
frost point – v dewpoint, s 12.1.7.2
GIDS – definition, s 18 sub verbo “Ground Ice Detection System”
glycol discharge guidelines (Canada), s 13.2.1
glycol management plan, s 13.7
glycol mitigation, s 13.7
GR. See METAR code GR
ground deicing program (TC) – approval, ss 2.1, 3.1, 5.2.6, 18
ground deicing program (TC) – audits, ss 2.2.3.3, 3.2.1 u), 4.1.5
ground deicing program (TC) – communication plan, ss 2.2.6, 3.3.2.2, 7, 7.2
ground deicing program (TC) – definition, s 18
ground deicing program (TC) – deicing fluids, ss 2.2.3.3, 2.2.7.1
ground deicing program (TC) – deicing processes, s 2.2.7.3
ground deicing program (TC) – deicing/anti-icing fluid, ss 2.2.7, 8
ground deicing program (TC) – development of, ss 2.1, 3.2.1 a)
ground deicing program (TC) – emergency, ss 2.2.12, 15
ground deicing program (TC) – environmental responsibilities, s 2.2.10
ground deicing program (TC) – foreign air operator, s 2.1
ground deicing program (TC) – GOFR 622.11, s 2.2
ground deicing program (TC) – HOT, s 2.2.8
ground deicing program (TC) – management plan, ss 2.2.3.1, 4.1.2
Another risk factor would be the difficult weather in which often deicing is performed, coupled with poor visibility.
HOT – Type I – composite surface, s 11.1.12
HOT – Type II generic – HOT minimum (worst case) values of all Type II, s 11.1.1
HOT – Type II generic – use fluid-specific LOWV, s 11.1.1
HOT – Type II/III/IV non-standard dilutions, s 11.1.14
HOT – Type III generic – none106
HOT – Type IV generic – HOT minimum (worst case) values of all Type IV, s 11.1.1
HOT – Type IV generic – use fluid-specific LOWV, s 11.1.1
HOT – v allowance time, s 11.1.15
HOT – weather conditions, in improving, s 11.1.4 a)
HOT – weather conditions, in worsening, s 11.1.4 a)
HOT (TC) – mandatory use of TC application tables, s 10.4
HOT, no – freezing rain, heavy, ss 11.1.8, 12.1.1
HOT, no – freezing rain, moderate, ss 11.1.8, 12.1.1
HOT, no – hail, s 11.1.8
HOT, no – hail, small. \textit{But see} allowance time, ss 11.1.8, 12.1.2
HOT, no – ice pellets. \textit{But see} allowance time, ss 11.1.8, 12.1.2
HOT, no – mixed phase conditions, s 11.1.8
HOT, no – snow, heavy, s 11.1.8
ice – definition, s 18
ice detection pole. \textit{See} clear ice – detection – tactile wand
ice pellets – definition, s 18
ice pellets – equivalent to small hail, s 11.1.16 c) 9)
Ice pellets – operational guidance (TC), s 11.1.6
icehouse – definition, s 18
infrared heat deicing method – definition, s 18
infrared heat systems, s 10.13.2
inspection, tactile (TC) – definition, s 18
laboratories, testing, s 8.1.4.1
leading edge devices. \textit{See} flaps and slats
LOUT – calculation examples, s 8.1.6.1 c)
LOUT – effect of cold soaking, s 12.1.7.4
LOWV – definition, s 18 \textit{sub verbo} “Lowest On-Wing Viscosity”
LOWV – for Type II generic HOT, s 11.1.1
LOWV – for Type IV generic HOT, s 11.1.1
maneuvering area – definition, s 18
masks, s 6.1.2.2
message boards, ss 7.3, 7.7.1, 7.13.1
METAR code GR – in Canada – hail, s 12.1.10
METAR code GR – in Canada – no HOT, no allowance time, s 12.1.10
METAR code GR – in rest of world – hail, s 12.1.10
METAR code GR – in rest of world – not HOT, no allowance time, s 12.1.10
METAR code GR with remarks ¼ or greater – in US – no HOT, no allowance time, s 12.1.10
METAR code GR with remarks less than ¼ – in US – small hail, s 12.1.10
METAR code GS – in Canada – not reported in isolation, s 12.1.10
METAR code GS – in US – snow pellets, s 12.1.10
METAR code GS – in US – use snow HOT, s 12.1.10
METAR code GS or SHGS – in rest of world – snow pellets or small hail, s 12.1.10
METAR code GS or SHGS – in rest of world – use ice pellets (and small hail) allowance time, s 12.1.10
METAR code PL – in Canada – ice pellets, s 12.1.10

106 \textit{Transport Canada Holdover Time Guidelines Winter 2015-2016} spelled out clearly that there were no Type III generic HOT guidelines. There is no Type III generic HOT guideline in the 2019-2020 version, but it is not specified as such.
METAR code PL – in Canada – use ice pellets (and small hail) allowance time, s 12.1.10
METAR code PL – in rest of world – ice pellets, s 12.1.10
METAR code PL – in rest of world – use ice pellets (and small hail) allowance time, s 12.1.10
METAR code PL – in US – ice pellets, s 12.1.10
METAR code PL – in US – use ice pellets (and small hail) allowance time, s 12.1.10
METAR code SG – in Canada – snow grains, s 12.1.10
METAR code SG – in Canada – use snow HOT, s 12.1.10
METAR code SG – in rest of world – snow grains, s 12.1.10
METAR code SG – in rest of world – use snow HOT, s 12.1.10
METAR code SG – in US – snow grains, s 12.1.10
METAR code SG – in US – use snow HOT, s 12.1.10
METAR code SHGS – in US – snow pellets showers, s 12.1.10
METAR code SHGS – in US – use snow HOT, s 12.10.1
METAR code SHGS with remarks stating diameter of hail – in Canada – small hail, s 12.1.10
METAR code SHGS with remarks stating diameter of hail – in Canada – use ice pellet (and small hail) allowance times, s 12.1.10
METAR code SHGS without remarks – in Canada – snow pellets showers, s 12.1.10
METAR code SHGS without remarks – in Canada – use snow HOT, s 12.1.10
METAR code TSGS with remarks stating diameter of hail – in Canada – use ice pellets (and small hail) allowance time, s 12.1.10
METAR code TSGS without remarks – in Canada – snow pellets with a thunderstorm, s 12.1.10
MOWV – definition, s 18

MOWV – definition, p 3
non-glycol based Type I – guidance (TC), s 10.8.1
OAT, wing temperature lower than, s 10.4
occupational health and safety (Canada), s 6.1
operations bulletins – definition, s 18
passenger briefing, pre-deicing – TC regulation, s 12.6.9
personal protective equipment, s 6.1.2.2
pilot-in-command – definition, s 18
pilot-in-command – responsibility for clean aircraft, s 12.6
PL. See METAR code PL
post deicing/anti-icing check – elements of, s 11.2.3.2
post deicing/anti-icing inspection. See post deicing/anti-icing check
precipitation rate – definition, s 18
pretakeoff contamination check (TC). See pretakeoff contamination inspection (TC)
pretakeoff contamination inspection (TC) – cannot extend allowance times, ss 11.1.16 a) and c) 6.
pretakeoff contamination inspection (TC) – definition, s 18
pretakeoff contamination inspection (TC) – from inside, ss 11.1.6, 11.2.1, 11.2.4
pretakeoff contamination inspection (TC) – from outside107, ss 11.1.7, 11.2.1, 11.2.4
pretakeoff contamination inspection (TC) – ice pellet and small hail, not required in, s 11.1.16 a) and c)
pretakeoff contamination inspection (TC) – not with Type I, ss 11.1.7, 11.2.4.1
pretakeoff contamination inspection (TC) – not with Type II/III/IV with HOT < 20 minutes, ss 11.1.7, 11.2.4.1
pretakeoff contamination inspection (TC) – wingtip devices, s 11.2.3.5
pretakeoff contamination inspection (TC) – with approved ground deicing program, ss 11.1.7, 11.2.4
pretakeoff contamination inspection (TC) – within 5 minutes of takeoff ground roll, s 11.2.4.1
pretakeoff contamination inspection (TC), ss 11.1.7, 11.2.4

107 The note in s 11.2.4 states that the “pre-take-off contamination [inspection] must be conducted from outside if the aircraft if the Air Operator does not use the HOT guidelines”, yet s 11.4.2 says the “procedure should only be applied to Type II, III and IV anti-icing fluids and then only when the pertinent minimum holdover time exceeds 20 minutes.” If the air operator does not use HOT guidelines, how is the pilot to know what the holdover time is?
pretakeoff contamination inspection report (TC) – definition, s 18
propeller balance. See contamination [frozen] – effect on propeller balance
propeller efficiency. See contamination [frozen] – effect on propeller efficiency
quality assurance system (TC), s 4
rain on cold soaked wing – clear ice, difficulty to detect, s 12.1.8.1
RDP – effect on Type II/III/IV, s 10.8.2
record keeping (TC) – audit dates, results and actions, s 4.2.1
record keeping (TC) – deicing vehicle refill records, s 4.2.3.2
record keeping (TC) – equipment log sheets, s 4.2.1
record keeping (TC) – fluid acceptance records, ss 4.2.1, 4.2.3
record keeping (TC) – fluid application records, s 4.2.2
record keeping (TC) – fluid field test records, ss 4.2.1, 4.2.3.2, 4.2.3.3, 4.2.3.4
record keeping (TC) – fluid storage records, s 4.2.3.3
record keeping (TC) – fluid tests by manufacturers, s 4.2.3.3
record keeping (TC) – glycol mitigation plan, s 4.2.1
record keeping (TC) – minimum records, ss 2.2.3.3, 4.2.1
record keeping (TC) – refractometer calibration, ss 4.2.1, 4.2.3.5
record keeping (TC) – retention time, ss 4.2.1 b), 4.2.3.1–4.2.3.5
record keeping (TC) – test frequency, ss 4.2.1, 4.2.3.3
record keeping (TC) – training records, ss 3.3.2.1, 4.2.1
record keeping (TC), ss 2.2.3.3, 4
refractometer – Brix scale, ss 5.2.3.4, 8.1.6.1 c)
refractometer – calibration, ss 4.2.1 g), 4.2.3.5, 8.1.6.1
refractometer, ss 8.1.6.1, 8.1.6.1 a)
regulations, Canada – guidance (TC), s 12.8
representative surface – aircraft manufacturer recommendations, s 11.2.5.2
representative surface – definition, s 18
representative surface – purpose, s 11.2.5.1
representative surface – use of (TC) for wingtip devices, s 11.2.3.5
representative surface – use of (TC), ss 11.1.6, 11.2.5.3
residual fluid, in flight. See fluid, residual
respiratory protection, s 6.1.2.2
ROGIDS – guidance (TC), s 10.13.5
ropes. See contamination [frozen] – removal with ropes
rotorcraft – clean aircraft concept, s 12.7.1
rotorcraft – effect of contamination – decrease in main rotor thrust, s 12.7.2
rotorcraft – effect of contamination – decrease in tail rotor thrust, s 12.7.2
rotorcraft – effect of contamination – handling and control issues, s 12.7.2
rotorcraft – effect of contamination, s 12.7.2
rotorcraft – effect of deicing fluid, s 12.7.4
rotorcraft – issues, s 12.7
rotorcraft – methods to remove contamination, s 12.7.5
rotorcraft – SAE G-12 Rotorcraft Working Group, s 12.7.4.1
roughness, effect of, ss 1.3, 12.6.8
runway visual range – do not use with snowfall visibility table, s 11.1.4.1
SAE G-12 HOT, role of, s 11.1.1
safety – accident investigation, s 6.1.2.7
safety – aircraft movement, s 6.2.6
safety – aircraft positioning, s 6.2.7
safety – deicing unit movement, s 6.2.6
safety – employee, role of (Canada), s 6.1.1
safety – employer, role of (Canada), s 6.1.2
safety – engine inlets, s 6.2.2
safety – first aid, s 6.1.2.8
safety – hazardous substances, s 6.1.2.3
safety – jet blast, s 6.2.1
safety – job analysis, s 6.1.2.5
safety – personal protective equipment, s 6.1.2.2
safety – personnel, s 6
safety – procedures, s 6.2.8
safety – safety zones, s 6.2.3
safety – slipperiness, s 6.2.4
safety – visibility, s 6.2.5
safety – weather, s 6.2.5
safety – wind, s 6.2.5
safety – workplace inspections, s 6.1.2.6
safety data sheet requirements (Canada), s 8.1.8
safety management system. See SMS
scrapers. See contamination [frozen] – removal with scrapers
service provider – definition, s 18
service provider – management responsibilities – airline ground deicing program is followed, s 7.10 a)
service provider – management responsibilities – audit program, s 7.10 b)
service provider – management responsibilities – convey changes in local procedures to deicing personnel, s 7.10 c)
service provider – management responsibilities – training program, s 7.10 d)
SG. See METAR code SG
shall (TC) – definition, p 3
shelf life, fluid, s 8.1.6.6 f)
SHGS. See METAR code SHGS
should (TC) – definition, p 3
slats. See flaps and slats
slush – definition, s 18
SMS (TC), ss 2.2.3.2, 4.1.1
snow – guidance (TC), s 12.1.3
snow grains – definition, s 18
snow pellets – definition, s 18
snow, blowing – effect on aerodynamically quiet areas, s 12.1.4
snowfall intensity – overestimation due to obscuration – dust, s 11.1.4.1
snowfall intensity – overestimation due to obscuration – fog, s 11.1.4.1
snowfall intensity – overestimation due to obscuration – freezing fog, s 11.1.4.1
snowfall intensity – overestimation due to obscuration – haze, s 11.1.4.
snowfall intensity – overestimation due to obscuration – mist, s 11.1.4.1
snowfall intensity – overestimation due to obscuration – smoke, s 11.1.4.1
snowfall visibility table – guidance (TC), s 11.1.4.1
specimen sheet (training) – definition, s 18
spray directly, no – cabin windows, s 8.7.1.2 c)
spray pattern, s 10.6.1
spray pressure, s 10.6.1
spray, no – angle of attack sensors, s 8.1.7.2 g)
spray, no – APU inlets, ss 8.1.7.2 d), 10.5 b)
spray, no – areas specified by aircraft manufacturer, ss 8.1.7.1 h), 10.5 f)
spray, no – baggage compartment doors, open, s 8.1.7.1 f)
spray, no – brakes, s 10.5 c)
spray, no – cabin windows 108, s 10.5 f)

108 Section 10.5 f) calls cabin windows a no-spray zone whereas section 8.7.1.2 c) call for indirect spraying.
spray, no – cockpit windows, ss 8.1.7.2 a), 10.5 e)
spray, no – engine exhausts, s 10.5 c)
spray, no – engine inlets, s 10.5 a)
spray, no – engine openings, s 10.5 a)
spray, no – engine probes, s 8.1.7.2 g)
spray, no – engine, s 8.1.7.2 d)
spray, no – landing gear, s 8.1.7.2 b)
spray, no – passenger door handles, s 10.5 g)
spray, no – pitot tubes, ss 8.1.7.2 g), 10.5i)
spray, no – sensors, air data, s 10.5 j)
spray, no – static air ports, s 8.1.7.2 g), 10.5 i)
spray, no – vents, avionics, s 10.5 k)
spray, no – vents, open, s 8.1.7.2 e)
spray, no – wheels bays, s 8.1.7.2 b)
staging bay – definition s 18

stall, contamination [frozen] effect on. See contamination [frozen] – effect on stall
storage – CCME Environmental Code, s 13.8
storage – corrosion check, s 8.1.6.6 h)
storage – corrosion in vapor space, s 8.1.6.6 h)
storage – inspection, annual, s 8.1.6.6 h)

strake – definition, s 11.2.3.5 b)
tactile inspection (TC) – definition, s 18
tactile pole, s 11.2.3.4
tactile wand, s 11.2.3.4
taxiway – definition, s 18

TC regulations. See Canadian Aviation Regulations
terminal deicing facility – definition, s 18
testing laboratories, s 8.1.4.1

three-minute rule, s 10.4.2,
TP 14052E – scope, ss 1.1, 1.2
TP 14052E – use in conjunction with Holdover Time Guidelines, s 1.2

training – communications with flightcrew, s 7.8
training – communications with snow removal operators, s 7.9.1
training – engines-on deicing, s 10.13.6
training – TC, s 5

TSGS. See METAR code TSGS

Type I – alkali organic salt based – effect on Type II/III/IV, s 10.8.1
Type I – chemical contamination. See Type I – contamination

Type I – contamination – corrosion in storage vessel, s 8.1.6.6 c) iii.
Type I – contamination – galvanic corrosion in storage vessel, s 8.1.6.6 c) iii.

Type I – contamination – leaky tank covers, s 8.1.6.6 c) vii.
Type I – contamination – leaky truck covers, s 8.1.6.6 c) vii.
Type I – contamination – mislabeled equipment, s 8.1.6.6 c) iv.

Type I – contamination – uncleaned equipment, s 8.1.6.6 c) i.

Type I – contamination – uncleaned new equipment, s 8.1.6.6 c) v.
Type I – contamination – undedicated equipment, s 8.1.6.6 c) i.
Type I – contamination – unintended transfer, s 8.1.6.6 c) ii.

Type I – contamination – unlabeled equipment, s 8.1.6.6 c) iv.
Type I – contamination. See also Type I – degradation

Type I – coverage, s 10.6.2.1

Type I – degradation – shelf life, s 8.1.6.6 f)

Type I – degradation – UV light, s 8.1.6.6 c)
Type I – degradation, thermal – application temperature, excessive, s 8.1.6.6 e) ii.
Type I – degradation, thermal – discoloration, s 8.1.6.6 e) iv.
Type I – degradation, thermal – evaporation, s 8.1.6.6 e) iii.
Type I – degradation, thermal – oxidation, s 8.1.6.6 e) iv.
Type I – degradation, thermal – pH, low, s 8.1.6.6 e) iv.
Type I – degradation, thermal – standby heating, excessive, s 8.1.6.6 e) i.
Type I – degradation, thermal – water loss, s 8.1.6.6 e) iii.
Type I – degradation. See also Type I – contamination
Type I – heating issues. See Type I – degradation, thermal
Type I – Non-glycol based – effect on Type II/III/IV, s 10.8.1
Type I – shelf life, s 8.1.6.6 f)
Type I – thermal degradation. See Type I – degradation, thermal
Type I – unheated, s 12.5
Type I – use criteria (TC) – conformance to AMS1424, independent laboratory confirmation of, s 11.1.9
Type I – use criteria (TC) – conformance to AMS1424, s 11.1.9
Type I – use of dilution, s 10.9
Type II/III/IV – chemical contamination. See Type II/III/IV – contamination
Type II/III/IV – contamination – corrosion in storage vessel, s 8.1.6.6 c) iii.
Type II/III/IV – contamination – galvanic corrosion in storage vessel, s 8.1.6.6 c) iii.
Type II/III/IV – contamination – leaky tank covers, s 8.1.6.6 c) vii.
Type II/III/IV – contamination – leaky truck covers, s 8.1.6.6 c) vii.
Type II/III/IV – contamination – mislabeled equipment, s 8.1.6.6 c) iv.
Type II/III/IV – contamination – RDP, s 10.8.2
Type II/III/IV – contamination – runway deicing products, s 10.8.2
Type II/III/IV – contamination – uncleaned equipment, s 8.1.6.6 c) i.
Type II/III/IV – contamination – uncleaned new equipment, s 8.1.6.6 c) v.
Type II/III/IV – contamination – undedicated equipment, s 8.1.6.6 c) i.
Type II/III/IV – contamination – unintended transfer, s 8.1.6.6 c) ii.
Type II/III/IV – contamination – unlabeled equipment, s 8.1.6.6 c) iv.
Type II/III/IV – contamination. See also Type II/III/IV – degradation
Type II/III/IV – coverage, s 10.6.2.2
Type II/III/IV – degradation – excessive shearing – filters, s 8.1.6.6 d)
Type II/III/IV – degradation – excessive shearing – forced air, s 10.13.4.3
Type II/III/IV – degradation – excessive shearing – nozzles, s 8.1.6.6 h)
Type II/III/IV – degradation – excessive shearing – partially open valve, s 8.1.6.6 h)
Type II/III/IV – degradation – excessive shearing – pumps, ss 8.1.6.6 d), 8.1.6.6 h)
Type II/III/IV – degradation – shelf life, s 8.1.6.6 f)
Type II/III/IV – degradation – UV light, s 8.1.6.6 c)
Type II/III/IV – degradation, thermal – application temperature, excessive, s 8.1.6.6 e) ii.
Type II/III/IV – degradation, thermal – discoloration, s 8.1.6.6 e) iv.
Type II/III/IV – degradation, thermal – evaporation, s 8.1.6.6 e) iii.
Type II/III/IV – degradation, thermal – oxidation, ss 8.1.6.6 e) iv., 10.3
Type II/III/IV – degradation, thermal – pH, low, s 8.1.6.6 e) iv.
Type II/III/IV – degradation, thermal – standby heating, excessive s 8.1.6.6 e) i.
Type II/III/IV – degradation, thermal – water loss, s 8.1.6.6 e) iii.
Type II/III/IV – degradation. See also Type II/III/IV – contamination
Type II/III/IV – heating issues. See Type II/III/IV – degradation, thermal
Type II/III/IV – residual fluid – on trailing edge in flight, s 12.9
Type II/III/IV – residual fluid, s 12.9
Type II/III/IV – residue – guidance (TC), s 10.7
Type II/III/IV – shelf life, s 8.1.6.6 f)
Type II/III/IV – thermal degradation. See Type II/III/IV – degradation, thermal

177
Type II/III/IV – use criteria (TC) – conformance to AMS1428, independent laboratory confirmation of, s 11.1.9
Type II/III/IV – use criteria (TC) – conformance to AMS1428, s 11.1.9
Type II/IV – residue – dried, s 10.7
Type II/IV – residue – effect on non-powered control surfaces, s 10.7
Type II/IV – residue – effect on powered control surfaces, s 10.7
Type II/IV – residue – frozen, s 10.7
Type II/IV – residue – guidance (TC), s 10.7
Type II/IV – residue – in aerodynamically quiet areas, s 10.7
Type II/IV – residue – in and around gaps between stabilizers, elevators, tabs, hinges, s 10.7
Type II/IV – residue – in crevices, s 10.7
Type II/IV – residue – in drain holes, s 10.7
Type II/IV – residue – lubrication of areas affected by, s 10.7
Type II/IV – residue – rehydrated, s 10.7
Type II/IV – residue – restricted control surface movement, s 10.7
Type II/IV – residue cleaning – with high pressure washing, s 10.7
Type II/IV – residue cleaning, s 10.7
Type II/IV – residue formation – conditions conducive to, s 10.7
Type II/IV – residue formation – diluted Type II/IV v neat Type II/IV, s 10.7
Type II/IV – residue formation – European practices conducive to, s 10.7
Type II/IV – residue formation – hot Type I or hot water to alleviate, s 10.7
Type II/IV – residue formation – North American practices preventing, s 10.7
Type II/IV – residue formation – Type II/IV without hot water or Type I, s 10.7
Type II/IV – residue inspection – between flaps and wing, s 10.7
Type II/IV – residue inspection – drain holes, s 10.7
Type II/IV – residue inspection – flight control bays, s 10.7
Type II/IV – residue inspection – frequency, s 10.7
Type II/IV – residue inspection, s 10.7
Type III – degradation, thermal, s 10.3
Type III – residue – monitoring recommended, s 10.7
Type IV – thickness, s 10.6.2.2
visibility – flightcrew observed, s 11.1.4.1
visibility – MANOBS, s 11.1.4.1
visibility – METAR, s 11.1.4.1
visibility – METAR/SPECI, s 11.1.4.1
visibility – prevailing, s 11.1.4.1
visibility – reported, s 11.1.4.1
visibility – runway visual range, s 11.1.4.1
visibility – RVR, s 11.1.4.1
visibility table, snowfall, s 11.1.4.1
WHMIS, s 8.1.8
windows, cabin, ss 12.2.1, 12.6.11
wing covers, use of, s 10.2.2
wingtip devices – Boeing B737, s 11.2.3.5 c)
wingtip devices – Boeing B747, s 11.2.3.5 c)
wingtip devices – Boeing B757, s 11.2.3.5 c)
wingtip devices – Boeing B767, s 11.2.3.5 c)
wingtip devices – Boeing MD11, s 11.2.3.5 c)
wingtip devices – pretakeoff contamination inspection (TC), s 11.2.3.5
wingtip devices – raked wingtips, ss 10.2.2.4, 11.2.3.5
wingtip devices – representative surface, designation of by aircraft manufacturer (TC), s 11.2.3.5 b)
wingtip devices – representative surface, use of (TC), s 11.2.3.5
wingtip devices – scimitar, s 11.2.3.5

178
Aircraft Deicing Documents – Issued by Transport Canada

wingtip devices – scimitar, split, s 11.2.3.5
wingtip devices – sharklets, s 11.2.3.5
wingtip devices – strakes, s 11.2.3.5
wingtip devices – winglets, s 11.2.3.5
winter operations – guidance (TC), ss 1 to 19
WSET – definition, s 18 sub verbo “Water Spray Endurance Time”

Transport Canada Exemption from Sections 1.0, 3.0, 6.0, 6.2 and 7.111 of Standard 622.11 Ground Icing Operations Made Pursuant for Subsection 602.11(4) of the Canadian Aviation Regulations

Issued 2014-02-28 by Transport Canada.¹⁰⁹

This regulatory exemption authorizes air operators to use HOT generated by HOTDS using best-fit power law equations and regression coefficients as part of their ground icing operations program. The document sets the minimum standards for use of the HOTDS.

Keywords:
anti-icing fluid – definition, Appendix B
definition – anti-icing fluid, Appendix B
definition – deicing fluid, Appendix B
definition – glycol pan measurement, Appendix B
definition – HOT, Appendix B
definition – HOTDR, Appendix B
definition – HOTDS continuously integrated measurement system, Appendix B
definition – HOTDS discrete measurement system, Appendix B
definition – HOTDS, Appendix B
definition – regression analysis (TC), Appendix B
deicing fluid – definition, Appendix B
glycol pan measurement – definition, appendix B
HOT – definition, Appendix B
HOT – regression limitations – annual update, s 5.1.20
HOT – regression limitations – capping for freezing drizzle 2 h (TC), s 5.1.19
HOT – regression limitations – capping for freezing fog 4 h (TC), s 5.1.19
HOT – regression limitations – capping for freezing fog 4 h (TC), s 5.1.19
HOT – regression limitations – capping for light freezing rain 2 h (TC), s 5.1.19
HOT – regression limitations – capping for rain on cold soaked wing 2 h (TC), s 5.1.19
HOT – regression limitations – use at > 0°C, s 5.1.21
HOT – regression limitations – use of freezing drizzle precipitation rate ≤ 25 g/dm²/h, 5.1.16
HOT – regression limitations – use of freezing drizzle precipitation rate ≥ 5 g/dm²/h, 5.1.15
HOT – regression limitations – use of freezing fog precipitation rate ≤ 25 g/dm²/h, s 5.1.16
HOT – regression limitations – use of freezing rain precipitation rate ≤ 25 g/dm²/h, s 5.1.16
HOT – regression limitations – use of freezing rain precipitation rate ≥ 5 g/dm²/h, s 5.1.15
HOT – regression limitations – use of precipitation rate ≥ 2 g/dm²/h, 5.1.11

HOT – regression limitations – use of rain on cold soaked wing precipitation rate ≤ 75 g/dm2/h, s 5.1.18
HOT – regression limitations – use of regression coefficients equivalent to those published by TC, s 5.1.12.2
HOT – regression limitations – use of regression coefficients published by TC, s 5.1.12.1
HOT – regression limitations – use of snow precipitation rate ≤ 50 g/dm2/h, s 5.1.17
HOTDR – definition, Appendix B
HOTDR – content of, s 5.1.22
HOTDS – definition, Appendix B
HOTDS continuously integrated measurement system – definition, Appendix B
HOTDS discrete measurement system – definition, Appendix B
HOTDS – technical requirements (TC), s 5
regression analysis (TC) – definition, Appendix B

Barry B. Myers, Aircraft Anti-icing Fluid Endurance, Holdover, and Failure Times Under Winter Precipitations Conditions, Transportation Development Centre, Transport Canada, TP 13832, November 2001

This document is a glossary prepared by Mr. Barry Myers, an aerodynamicist and Transportation Development Centre (Transport Canada) subject matter expert on matters related to aircraft ground deicing. Mr. Myers, for a long time, headed research and development on aircraft ground deicing and anti-icing for Transport Canada.

This document (TP 13832) was his effort to clarify definitions related to the hazards of ice, snow and frost on aircraft surfaces and the use to anti-icing fluids to protect against frozen and freezing precipitation. His glossary is particularly interesting as it differentiates between visual, adhesion and aerodynamic failures.

Keywords:
aerodynamic effect of canard contamination, s 6.3
aerodynamic effect of clear-ice, s 6.2
aerodynamic effect of contamination, s 6
aerodynamically quiet area – *superset of* aerodynamically quiet cavities, s 6.7
aerodynamically quiet area – *superset of* aerodynamically quiet surface, s 6.7
contamination – *superset of* variation in manufacturing tolerance, s 6.1
definition – endurance time, s 4.2
definition – deicing, s 5.1
anti-icing – definition, s 5.2
definition – anti-icing, s 5.2
definition – deicing/anti-icing, s 5.3
definition – defrosting, s 5.4
aerodynamic effect of freezing fog, s 6.6
aerodynamic effect of frost, s 6.5
aerodynamic effect of fuselage contamination, s 6.4
aerodynamic effect of tail plane contamination, s 6.3
aerodynamic effect of wing contamination, s 6.1
aerodynamically quiet area – definition, s 6.7
angle of attack – flow separation at high, s 6.1
angle of attack – flow separation at low, s 6.1
contamination – superset of anti-icing fluid, s 6.1
contamination – superset of bird droppings, s 6.1
contamination – superset of dirt, s 6.1
contamination – superset of frost, s 6.1
contamination – superset of hydraulic oil, s 6.1
contamination – superset of ice, s 6.1
contamination – superset of minor mechanical damage, s 6.1
contamination – superset of paint chipping, s 6.1
contamination – superset of rain, s 6.1
contamination – superset of snow, s 6.1
contamination – superset of squashed bugs, s 6.1
contamination [frozen] – asymmetric – in crosswind, s 6.1
definition – aerodynamically quiet area, s 6.7
definition – contamination, visible, s 5.8
definition – aerodynamically quiet cavity, definition, 6.8
definition – aerodynamically quiet cavity – drainage issues, s 6.8
definition – aerodynamically quiet surface, definition, s 6.9
cold soaking – definition, s 6.10
cold soaking – reason for above freezing HOT, s 6.10
definition – cold soaking, s 6.10
definition – failure front, s 2.6
definition – failure, adherence, s 2.3
definition – failure, adhesion, s 2.3
definition – failure, entire plate, s 2.12
definition – failure, fifth cross hair, s 2.13
definition – failure, first, s 2.9
definition – failure, full, s 2.12
definition – failure, plate, s 2.11
definition – failure, top edge, s 2.7
definition – failure, total, s 2.12
definition – fluid adhesion, s 2.5
definition – fluid failure front, s 2.6
definition – fluid failure, top edge, s 2.7
definition – fluid, acceptable, s 1.1
definition – fluid, failed, s 2.8
definition – fluid, pristine, s 1.2
definition – holdover time guidelines. See definition – HOT guidelines
definition – holdover time. See definition – HOT
definition – HOT guidelines, s 4.4
definition – HOT, s 4.3
definition – ice, s 5.5
definition – nucleation site, s 3.3
definition – plate, frosticator, s 3.2
definition – plate, standard test, s 3.1
definition – precipitation rate for HOT tables, s 3.4
definition – precipitation rate, 10-minute average, s 3.6
definition – precipitation rate, 20-minute average, s 3.6
definition – precipitation rate, 40-minute average, s 3.6
definition – precipitation rate, 5-minute average, s 3.6
definition – precipitation rate, peak, s 3.5
definition – protection time, s 4.1
definition – slush, s 5.6
definition – snow, s 5.7
defrosting – definition, s 5.4
deicing – definition, s 5.1
deicing/anti-icing – definition, s 5.3
endurance time – definition, s 4.2
failure front – definition, s 2.6
failure, adherence – definition, s 2.3
failure, adhesion – definition, s 2.3
failure, entire plate – definition, s 2.12
failure, fifth cross hair – definition, s 2.13
failure, first – definition, s 2.9
failure, full – definition, s 2.12
failure, plate – definition, s 2.11
failure, standard plate, s 2.10
failure, top edge – definition, s 2.7
failure, total – definition, s 2.12
first icing event. See failure
flow – laminar v turbulent, s 6.1
fluid adhesion – definition, s 2.5
fluid failure front – definition, s 2.6
fluid failure, top edge – definition, s 2.7
fluid failure, type of – adhesion, ss 2.1, 2.3
fluid failure, type of – visual, ss 1.3, 2.1, 2.2, 2.10
fluid operational limit, s 1.3
fluid, acceptable – definition, s 1.1
fluid, failed – definition, s 2.8
fluid, pristine – definition, s 1.2
freezing fog v frozen fog, s 6.6
frost – deceptively dangerous – clean appearance of residual contaminated fluid, s 6.5
holdover time. See HOT
HOT – definition, s 4.3
HOT – guidelines – definition s, 4.4
HOT – less than protection time, s 4.3
ice – definition, s 5.5
lift loss, asymmetric, s 6.1
nucleation site – definition, s 3.3
nucleation site, s 2.4
plate, frosticicator – definition, s 3.2
plate, standard test – definition, s 3.1
precipitation rate for HOT tables – definition, s 3.4
precipitation rate, 10-minute average – definition, s 3.6
precipitation rate, 20-minute average – definition, s 3.6
precipitation rate, 40-minute average – definition, s 3.6
precipitation rate, 5-minute average – definition, s 3.6
precipitation rate, peak – definition, s 3.5
protection time – definition, s 4.1
roughness, effect of, s 6.1
In this document, Transport Canada considers that the aerodynamic acceptance test described in SAE AS5900 establishes a standard to ensure acceptable aerodynamic characteristics of aircraft deicing/anti-icing fluids during the takeoff ground roll and initial climb.

The aerodynamic acceptance test measures the boundary layer thickness over a flat plate covered with fluid during a simulated takeoff run. The premise is that the boundary layer thickness over the flat plate correlated to the boundary layer over a curved aerodynamic surface.

Transport Canada considers that aircraft configurations, airfoil sections and fluid continue to evolve and recommends limited flight tests on individual aircraft types. These flight tests, can be used 1) to establish system operation characteristics, 2) identify operational procedures and 3) maintenance procedures for deicing/anti-icing.

This document provides guidance for these aircraft tests.

The purpose of this document appears similar to the of FAA Policy Statement: Type Certification Policy for Approval of Use of Type II, III, and IV Deicing/Anti-icing Fluids on Airplanes Certificated Under 14 CFR Parts 23 and 25, Policy No: PS-ACE-23-05, PS-ANM-25-10.

Keywords:
aerodynamic effect of fluids – aircraft certification, ss 1.4, 1.5
aerodynamic effect of fluids – not addressed by AS5900 – handling issues during takeoff, ss 1.3, 2.2
aerodynamic effect of fluids – not addressed by AS5900 – performance issues during takeoff, ss 1.3, 2.2
aerodynamic effect of fluids – on aerodynamic balance of control surfaces, s 2.4
aerodynamic effect of fluids – on decrease of angle-of-attack for stall, s 2.1
aerodynamic effect of fluids – on drag, s 2.1
aerodynamic effect of fluids – on hinge moment, s 2.1
aerodynamic effect of fluids – on lift, s 2.1
aerodynamic effect of fluids – on loss of lift coefficient at normal angle-of-attack, s 2.2
aerodynamic effect of fluids – on low takeoff speed aircraft, ss 2.1, 2.3
aerodynamic effect of fluids – on mass balance of control surfaces, s 2.4
aerodynamic effect of fluids – on maximum lift coefficient decrease, s 2.2
aerodynamic effect of fluids – on pitching moment, s 2.1
aerodynamic effect of fluids – on stall speed increase, s 2.2
aerodynamic effect of fluids – on unpowered flight control, ss 2.1, 2.2
aerodynamic effect of fluids – wave roughness introduced by flow-off, s 2.1
aircraft certification – test aircraft, s 3.3
aircraft certification – Type II/III/IV – AFM – accelerate distance, s 4.1
aircraft certification – Type II/III/IV – AFM – aircraft specific limitations, ss 3.1, 4.1
aircraft certification – Type II/III/IV – AFM – non-normal operating procedures, ss 3.1, 4.1
aircraft certification – Type II/III/IV – AFM – normal operating procedures, ss 3.1, 4.1
aircraft certification – Type II/III/IV – AFM – performance adjustments, ss 3.1, 4.1
aircraft certification – Type II/III/IV – AFM – stop distance, s 4.1
aircraft certification – Type II/III/IV – AFM – takeoff distance, s 4.1
aircraft certification – Type II/III/IV – AFM – takeoff speed increase, s 4.1
aircraft certification – Type II/III/IV – buffeting, s 3.6.2
aircraft certification – Type II/III/IV – effect in visibility of windshield, s 3.7
aircraft certification – Type II/III/IV – effect of heated surfaces, s 2.5
aircraft certification – Type II/III/IV – effect on air data probes, s 3.7
aircraft certification – Type II/III/IV – effect on airspeed probe, s 3.7
aircraft certification – Type II/III/IV – effect on altitude probe, s 3.7
aircraft certification – Type II/III/IV – effect on angle-of-attack sensors, s 3.7
aircraft certification – Type II/III/IV – effect on APU, s 3.7
aircraft certification – Type II/III/IV – effect on engine anti-ice system, s 3.7
aircraft certification – Type II/III/IV – effect on environmental control system, s 3.7
aircraft certification – Type II/III/IV – effect on fluid baking, ss 2.5, 3.5.1
aircraft certification – Type II/III/IV – effect on temperature probe, s 3.7
aircraft certification – Type II/III/IV – Flight Crew Operating Manual – deicing/anti-icing procedures, s 3.3
aircraft certification – Type II/III/IV – Flight Crew Operating Manual – cleaning procedures, s 3.1
aircraft certification – Type II/III/IV – flight tests, s 3.5
aircraft certification – Type II/III/IV – fluid application, ss 3.4.2-3.4.6
aircraft certification – Type II/III/IV – fluids to be tested, s 3.4.1
aircraft certification – Type II/III/IV – maintenance instructions – residue removal, s 3.1
aircraft certification – Type II/III/IV – maintenance instructions – residue cleaning procedures, s 4.3
aircraft certification – Type II/III/IV – regulatory requirements110, ss 1.4, 1.5
aircraft certification – Type II/III/IV – residue – inspection, s 3.1
aircraft certification – Type II/III/IV – residue – maintenance instructions, s 3.1
aircraft certification – Type II/III/IV – takeoff angle-of-attack margin tests, s 3.5.3
aircraft certification – Type II/III/IV – takeoff at fixed pitch angle, s 3.5.2
aircraft certification – Type II/III/IV – takeoff performance, s 3.5.4
aircraft certification – Type II/III/IV – test day temperature, s 3.4.3
aircraft certification – Type II/III/IV – test deicing/anti-icing procedures, s 3.4.5
aircraft certification – Type II/III/IV – training, s 3.5.6
aircraft certification – Type II/III/IV – vibration, s 3.6.2
certification, aircraft. See aircraft certification
leading edge, heated. See Type II/III/IV – degradation, thermal – heated leading edge dry-out
Type II/III/IV – baking. See Type II/III/IV – degradation, thermal – heated leading edge dry-out
Type II/III/IV – degradation, thermal – heated leading edge dry-out, s 2.5
Type II/III/IV – residue – dried, s 2.4

110 This Transport Canada document refers to SAE Type I/II/II/IV. However, testing is recommended on Type III/IV fluids. Since the equivalent FAA document focuses more on the effects of Type II/III/IV, to simplify indexing, we index this document referring to Type II/III/IV.
Aircraft Deicing Documents – Issued by Transport Canada

Type II/III/IV – residue – effect on flight control systems, s 2.4
Type II/III/IV – residue – flight control restrictions, s 2.4
Type II/III/IV – residue – frozen, s 2.4
Type II/III/IV – residue – in aerodynamically quiet areas, s 2.4
Type II/III/IV – residue – rehydrated, s 2.4
Type II/III/IV – residue formation – one-step application of Type II/III/IV, s 3.4.5
Type II/III/IV – residue inspection – periodic, s 4.3
Type II/III/IV – residue reduction – aircraft design modifications, s 2.4
Type II/III/IV – residue reduction – cleaning procedures, s 4.3
Type II/III/IV – residue reduction – scheduled maintenance tasks, s 2.4
Type II/III/IV – residue reduction – specific deicing/anti-icing procedures, s 2.4

Transport Canada, Commercial and Business Aviation Inspection and Audit (Checklists) Manual, 1st ed, TP 13750E

Issued by 2000-10 by Transport Canada.¹¹¹

TP 13750E is a ground icing operations program checklist issues by Transport Canada.

Only the ground icing operations section is indexed.

Keywords:
audit checklist (TC) – aircraft deicing/anti-icing procedures, pp 88, 90
audit checklist (TC) – aircraft inspection and reporting procedures, pp 88, 90–91
audit checklist (TC) – aircraft specific procedures, p 89
audit checklist (TC) – communications with flightcrew, p 94
audit checklist (TC) – contamination [frozen], effects of, pp 93, 94
audit checklist (TC) – contamination [frozen], recognition of, pp 90, 93
audit checklist (TC) – coordination with airport authorities, p 88
audit checklist (TC) – coordination with ATC, p 88
audit checklist (TC) – critical surface identification, p 93
audit checklist (TC) – critical surface inspection report, p 91
audit checklist (TC) – critical surface inspection, p 91
audit checklist (TC) – dispatcher responsibilities, p 88
audit checklist (TC) – facilities, adequate, p 89
audit checklist (TC) – FOD, p 95
audit checklist (TC) – flightcrew responsibilities, p 88
audit checklist (TC) – fluids, composition of, p 93
audit checklist (TC) – fluids, effect on aircraft performance of, p 93
audit checklist (TC) – fluids, identification of, p 93
audit checklist (TC) – fluids, use of, p 95
audit checklist (TC) – ground icing operations, send of, pp 89–90
audit checklist (TC) – ground icing operations, start of, pp 89–90
audit checklist (TC) – ground icing program – activation, p 89
audit checklist (TC) – ground icing program – chain of command, p 89
audit checklist (TC) – ground icing program – dissemination, p 89
audit checklist (TC) – ground icing program – publication, p 89

¹¹¹ Online: <https://www.tc.gc.ca/eng/civilaviation/publications/tp13750-menu-2404.htm>
audit checklist (TC) – ground icing program – revisions, p 95
audit checklist (TC) – ground icing program – service provider’s v operator’s, p 96
audit checklist (TC) – HOT for decision making, p 94
audit checklist (TC) – HOT, approval of, p 90
audit checklist (TC) – HOT, end of, pp 90, 94
audit checklist (TC) – HOT, start of, pp 90, 94
audit checklist (TC) – HOT, use of, p 93
audit checklist (TC) – inspection reporting, p 92
audit checklist (TC) – management responsibilities, p 88
audit checklist (TC) – management supervision, p 88
audit checklist (TC) – operational procedures, p 88
audit checklist (TC) – operations v maintenance responsibilities, p 89
audit checklist (TC) – operator’s management plan, pp 88, 89
audit checklist (TC) – person responsible, p 89
audit checklist (TC) – personnel, sufficient, p 89
audit checklist (TC) – pretakeoff contamination inspection, p 91
audit checklist (TC) – representative surfaces, pp 91, 93
audit checklist (TC) – sensors, use of, p 91
audit checklist (TC) – service providers, supervision of, s 93
audit checklist (TC) – service providers, training of, p 96
audit checklist (TC) – tactile check, p 91
audit checklist (TC) – training and testing, pp 88, 92–96
audit checklist (TC) – training records, p 96
audit checklist (TC) – training – recurrent, p 93–96
audit checklist (TC) – training – initial, p 93–96
audit checklist (TC) – weather, p 90
Documents Issued by EASA

Issued 2015-12-16 by EASA.

Advisory information explaining the potentially deleterious effects of alkali metal organic salt salts (non-glycol based) as freezing point depressants in the formulation of Type I aircraft deicing fluids. These alkali salt based deicing fluids can have two adverse effects: 1) when used in the first step of a two-step deicing anti-icing, the organic slat based Type I fluid can interfere with the thickener system of Type II/II/IV fluids and reduce expected holdover time, with consequences affecting safety and 2) can facilitate galvanic corrosion of aircraft parts or the catalytic oxidation of aircraft carbon brakes.

Keywords:
alkali organic salt based Type I – guidance (EASA), pp 1–2
non-glycol based Type I – guidance (EASA), pp 1–2
Type I – Non-Glycol based – effect on Type II/III/IV, pp 1–2
Type I – Non-Glycol based – galvanic corrosion of metal parts, pp 1–2
Type I – Non-Glycol based – need for inspections, pp 1–2
Type I – Non-Glycol based – need for maintenance , pp 1–2

Issued 2017-11-14 by EASA.

As the AEA documents are no longer published, EASA Safety Information Buleting (SIB) 2017-11 recommends to European air operators the use the latest version of the global standards (SAE AS6285, AS6286, AS6286/1, AS686/2, AS6286/3, AS6286/4, AS6286/5, AS6285/6, AS6332, and AS6257), the FAA Holdover Time Guidelines and the FAA 8900.xxx documents to establish their ground deicing procedures.

Keywords:
AEA recommendations – publication discontinuation, p 2
EASA recommendation to use – FAA Holdover time Guidelines, pp 2–3
EASA recommendation to use – FAA Notice N 8900.xxx FAA-Approved Deicing program Updates, Winter 20xx-20yy, pp 2–3
EASA recommendation to use – global aircraft deicing standards, p 3
Guide to Aircraft Ground Deicing – Issue 12

FAA Holdover Time Guidelines – EASA recommendation to use, pp 2–3
FAA Notice N 8900.xxx FAA-Approved Deicing program Updates, Winter 20xx-20yy – EASA recommendation to use, pp 2–3
global aircraft deicing standards, pp 1–3
global aircraft deicing standards – EASA recommendation to use, p 3
global aircraft deicing standards – list, p 1
HOT (FAA) – recognition – EASA, p 2

EASA GM1 CAT.OP.MPA.250 Ice and Other Contaminants – Ground Procedures: Terminology

Issued 2012-10-25 by EASA.

Guidance Material (GM) issued by EASA consists of three sections labeled GM1, GM2 and GM3 of the Annex to Executive Director Decision ED 2012/018/R: Acceptable Means of compliance (AMC) and Guidance Material (GM) to Part-CAT.

Keywords:
aircraft icing, conditions conducive to, s (c) at 121
anti-icing code, s (m) at p 122
anti-icing fluid – definition, s (a) at p 121
check, contamination. See contamination check
check, post-treatment (EASA), s (j) at p 122
check, pretakeoff (EASA). gate departure check pretakeoff check (EASA)
check, pretakeoff contamination (EASA). See pretakeoff contamination check (EASA)
clear ice – definition, s (b) at p 121
clear ice – conditions conducive to, s (b) at p 121
contamination – definition, s (d) at p 121
contamination check – definition, s (a) at p 121
definition – anti-icing fluid, s (a) at p 121
definition – clear ice, s (b) at p 121
definition – contamination check, s (a) at p 121
definition – contamination [frozen], s (d) at p 121
definition – deicing fluid, s (f) at p 121–122
definition – deicing/anti-icing procedure, s (g) at p 122
definition – GIDS, s (h) at p 122
definition – LOUT, s (i) at p 122
definition – pretakeoff contamination check (EASA), s (l) at p 122
definition – ROGIDS, s (h) at p 122
deicing fluid – definition, s (f) at p 121–122
deicing/anti-icing procedure – definition, s (g) at p 122
GIDS – definition, s (h) at p 122
GIDS. See also ROGIDS
ground ice detection system. See also ROGIDS

112 EASA uses the term GIDS (ground ice detection system), SAE uses the term ROGIDS (remote on-ground ice detection system for what appears to be the same reality.
ground ice detection system. See GIDS
LOUT – definition, s (i) at p 122
pretakeoff check (EASA), s (k) at p 122
pretakeoff contamination check (EASA) – definition, s (l) at p 122
ROGIDS – definition, s (h) at p 122

EASA GM2 CAT.OP.MPA.250 Ice and Other Contaminants – Ground Procedures: De-icing/Anti-icing Procedures

Issued 2012-10-25 by EASA.

Keywords:
anti-icing code, s (d) at p 125
check, contamination. See contamination check
check, post-treatment (EASA), s (a) at p 123, s (b) at p 124
check, tactile, s (b) at p 124
clear ice – detection of, s (a) at p 123
commander. See pilot-in-command
contamination check, s (a) at p 123, s (b) at p 124
definition – deicing/anti-icing, one-step, s (b) at p 123
definition – deicing/anti-icing, two-step, s (b) at p 123
deficing/anti-icing, one-step – definition, s (b) at p 123
deficing/anti-icing, two-step – definition, s (b) at p 123
fluid application – guidance (EASA), pp 123–126
fluid application – interruption of, s (a) at p 123
fluid application – unsuccessful, s (a) at p 123
fluid manufacturer documentation – fluid application, s h at p 126
fluid manufacturer documentation – fluid transfer system requirements, s h at p 126
fluid manufacturer documentation – fluid storage requirements, s h at p 126
fluid manufacturer documentation – Type II/III/IV residues, s (h) at p 126
cold – on lower wing surface, s (a) at p 123
contamination [frozen] – removal by manual means, s (b) at p 123
contamination [frozen] – removal with forced air, s (b) at p 123
contamination [frozen] – removal with hot water, s (b) at p 123
contamination [frozen] – removal with infrared, s (b) at p 123
HOT – guidance (EASA), s (e) at p 125
pilot-in-command – situational awareness, s (8) at p 124
pretakeoff check (EASA), s (a) at p 123
pretakeoff contamination check (EASA), s (a) at p 123
record keeping (EASA) – deicing/anti-icing incidents, s (a) at p 123
three-minute rule, s (b) at p 123
training – EASA requirements, ss (f–g) at p 125
Type II/III/IV – aircraft operational considerations – aircraft attitude, s (c) at p 124
Type II/III/IV – aircraft operational considerations – flightcrew briefing, s (c) at p 124
Type II/III/IV – aircraft operational considerations – increased takeoff speed, s (c) at p 124
Type II/III/IV – aircraft operational considerations – mass decrease, s (c) at p 124

113 See footnote 112.
114 EASA uses “commander”. FAA and Transport Canada tend to use the expression pilot-in-command or captain. Here we use pilot, pilot-in-command or flightcrew, as appropriate. Section 5.8 of AS6285C states that pilot-in-command is a synonym of commander.
Guide to Aircraft Ground Deicing – Issue 12

Type II/III/IV – aircraft operational considerations – rotation speed and rate, s (c) at p 124
Type II/III/IV – aircraft operational considerations – stick force, s (c) at p 124
Type II/III/IV – aircraft operational considerations. See also aerodynamic effect of fluids – performance adjustments
Type II/III/IV – residue – aileron jamming, s (h) at p 126
Type II/III/IV – residue – drain hole clogging, s (h) at p 126
Type II/III/IV – residue – dried, s (h) at p 126
Type II/III/IV – residue – elevator jamming, s (h) at p 126
Type II/III/IV – residue – flap jamming, s (h) at p 126
Type II/III/IV – residue – flight control restrictions, s (h) at p 126
Type II/III/IV – residue – guidance (EASA), s (h) at pp 125–126
Type II/III/IV – residue – lift reduction, s (h) at p 126
Type II/III/IV – residue – rehydrated, s (h) at p 126
Type II/III/IV – residue – stall speed increase, s (h) at p 126
Type II/III/IV – residue formation, ss (b) at p 123, (c) at p 124
Type II/III/IV – residue, s (h) at pp 125–126
unthickened fluid. See Type I
wing temperature v OAT, s (2) at p 123

EASA GM3 CAT.OP.MPA.250 Ice and Other Contaminants – Ground Procedures: De-icing/Anti-icing Background Information

Issued 2012-10-25 by EASA.

Keywords:
AEA recommendations115, p 128
fluid effectiveness, loss of. See fluid failure
contamination [frozen] – effect on APU, s (a) at pp 126–127
contamination [frozen] – effect on control surfaces, s (a) at pp 126–127
contamination [frozen] – effect on drag, s (a) at pp 126–127
contamination [frozen] – effect on engine compressor, s (a) at pp 126–127
contamination [frozen] – effect on engine stall, s (a) at pp 126–127
contamination [frozen] – effect on engine, s (a) at pp 126–127
contamination [frozen] – effect on lift, s (a) at pp 126–127
contamination [frozen] – effect on propeller performance, s (a) at pp 126–127
fluid failure, s (c) at p 128
hazards of ice, snow and frost, s (a) at pp 126
HOT – end (EASA) – at fluid failure116, s (c) at p 128
HOT – end (EASA) – at the beginning of the takeoff roll (fluid shedding), s (c) at p 128
HOT – guidance (EASA), s (c) at p 128, see footnote 115
HOT – start of, s (c) at p 128
HOT, no (EASA) – freezing precipitation with high water content, s (a) at p 127
HOT, no (EASA) – freezing rain, s (a) at p 127
HOT, no (EASA) – hail, s (a) at p 127
HOT, no (EASA) – heavy snow, s (a) at p 127

115 AEA recommendations are no longer published (as of December 2016). EASA now recommends using the global aircraft deicing standards and FAA documentation. See EASA Safety Information Bulletin 2017-11.
116 The expression “loss of fluid effectiveness” and “fluid failure” appears to be used interchangeably; however, there is a distinction to be made between visual failure and aerodynamic failure.
HOT, no (EASA) – high wind velocity, s (a) at p 127
HOT, no (EASA) – ice pellets, s (a) at p 127
Aircraft Deicing Documents – Issued by ICAO

Documents Issued by ICAO

ICAO Doc 9640-AN/940 Manual of Aircraft Ground De-icing/Anti-icing Operations, 3 ed (advance unedited)

Revised 2018 by ICAO.

Doc 9640-AN/940 provides high level information on aircraft deicing/anti-icing. It summarizes the history of deicing, develops the notion of the clean aircraft concept, informs on deicing fluids, holdover time, on the various deicing checks to be done during deicing operations, distinguishes the responsibilities of the regulators and those of operators, discusses facility design, explains the necessity of air traffic control winter operations plan, summarizes deicing and anti-icing methods, and insists on the need for training and quality assurance. It recommends maintaining information updated and provides web links and bibliography to do such.

Keywords:
air operator – responsibility for compliance with clean aircraft concept, s III-1.6
air operator – responsibility for deicing/anti-icing process. s III-1.4
air operator – responsibility for ground deicing program, s III-1.7
air operator – responsibility for operation of the aircraft. s III-1.4
air operator – responsibility for quality assurance program, s III-1.8
air operator – responsibility for verification of deicing/anti-icing process, ss III-1.4, III-1.5
aircraft manufacturer documentation – compliance with, s Foreword at p iv
aircraft manufacturer recommendation – compliance with s Foreword at p iv
AMS1424 – recognition – ICAO, ss III-3.6, III-3.9 note
AMS1428 – recognition – ICAO, ss III-3.6, III-3.13 note
anti-icing – definition, p vii
anti-icing code, ss III-7.5–7.6, IV-1.3 n)
ARP4902 – recognition – ICAO, ss III-5.19 note
ARP6257 – recognition – ICAO, s III-7.8 note
AS6285 – recognition – ICAO, ss III-7.8 note, III-8.8
AS6286 – recognition – ICAO, s IV-1.5 note
AS6332 – recognition – ICAO, s II-2.2 note
ATC – winter operations plan – flow through rate, s III-5.17
ATC – winter operations plan – in controller’s manual, s III-5.19
ATC – winter operations plan – shortest taxi time, s III-5.19
ATC – winter operations plan, ss III-5.15–5.19
check, special – aircraft-specific check, ss III-6.1–6.2,
check, special – clear ice check, ss III-6.1, III-6.8
check, special – flight control check, s III-6.9
civil aviation authority. See regulator
clean aircraft concept, ss I-1.2, I-2.1–2.7
clear ice – definition, p vii
clear ice – difficulty to detect, s III-6.8
clear ice, ss II-1.2, III-6.8
cold soaking – conditions conducive to, s I-1.7
cold soaking – definition, p vii
contamination [frozen] – asymmetric, s II-1.5
contamination [frozen] – effect on airspeed information, s I-1.2
contamination [frozen] – effect on angle of attack information, s I-1.2
contamination [frozen] – effect on brakes, s I-1.2
contamination [frozen] – effect on control surfaces, s I-1.2
contamination [frozen] – effect on control, s I-1.2
contamination [frozen] – effect on drag, ss I-1.2, I-2.5
contamination [frozen] – effect on engine power information, s I-1.2
contamination [frozen] – effect on flap actuating mechanism, s I-2.5
contamination [frozen] – effect on FOD, s I-1.2
contamination [frozen] – effect on landing gear, s I-1.2
contamination [frozen] – effect on lift, ss I-1.2, I-1.5
contamination [frozen] – effect on pitot tubes, s I-1.2
contamination [frozen] – effect on radio communications, s I-1.2
contamination [frozen] – effect on stability, s I-1.2
contamination [frozen] – effect on stall speed, s I-1.2
contamination [frozen] – effect on stall warning system, s I-1.3
contamination [frozen] – effect on static ports, s I-1.2
contamination [frozen] – effect on thrust, s I-1.2
contamination [frozen] – effect on weight, I-1.2
contamination [frozen] – removal in hangar, s III-2.4
contamination [frozen] – removal with brushes, s III-2.3
contamination [frozen] – removal with fluids, ss III-3.1–3.13
contamination [frozen] – removal with forced air, s III-2.1, III-2.2
contamination [frozen] – removal with ropes, s III-2.3
contamination [frozen] – removal with scrapers, s III-2.3

critical surface – control surface, s I-2.3
critical surface – definition, p vii
critical surface – engine inlets, s I-2.3
critical surface – propeller, s I-2.3
critical surface – wings, s I-2.3
definition – anti-icing, p vii
definition – clear ice, p vii
definition – cold soak effect, p vii
definition – critical surface, p vii
definition – deicing, p 1
definition – deicing/anti-icing, one-step, p vii
definition – deicing/anti-icing, p vii
definition – deicing/anti-icing, two-step, p vii
definition – drizzle, p vii
definition – fog, ground, p vii
definition – fog, p vii
definition – freezing drizzle, p vii, s II-3.7
definition – freezing fog, p vii, s II-3.7
definition – freezing rain, p vii, s II-3.7
definition – freezing unknown, s II-3.7
definition – frost, active. p vii
definition – frost, p vii
definition – hail, s II-3.7
definition – hail, small, s II-3.7
definition – high humidity, p vii
definition – hoarfrost, p viii
definition – HOT, p viii, s III-4.2
definition – ice pellets, s II-3.7
definition – METAR, s II-3.6
definition – moisture, visible, p viii
definition – one-step deicing/anti-icing, p vii
definition – precipitation intensity, p viii
definition – rain, p viii
definition – rime, p viii
definition – shear force, p viii
definition – slush, p viii
definition – snow grains, s II-3.7
definition – snow, dry, p viii
definition – snow, p viii, s II-3.7
definition – snow, wet, p viii
definition – TAF, s II-3.6
definition – two-step deicing/anti-icing, p vii
deicing – aircraft configuration, s III-7.4
deicing – definition, p vii
deicing – flightcrew and ground crew communications, ss III-7.1–7.8
deicing facility – design, ss III-5.3–5.7
deicing facility – siting, ss III-5.9–5.11
deicing facility – sizing, ss III-5.8
deicing unit – basket/cabin capacity – two persons, s III-10.2
deicing unit – fluid mixing system – verification of, ss III-10.3–10.4
deicing unit – open basket v closed cabin, s III-10.2
deicing, re-. See fluid application – re-deicing
deicing/anti-icing – definition, p vii
deicing/anti-icing application information transmitted to flightcrew (ICAO) – part of aircraft airworthiness, s III-1.4
deicing/anti-icing code. See anti-icing code
deicing/anti-icing, ground (ICAO) – part of aircraft operations, s III-1.4
deicing/anti-icing, one-step – definition, p vii
deicing/anti-icing, two-step – definition, p vii
drizzle – definition, p vii
drizzle, freezing. See freezing drizzle
environmental regulations, compliance with, Foreword at p iv, s 4.10
equipment manufacturer recommendations, compliance with, Foreword at p iv
flightcrew knowledge of – critical areas, s I-1.8
flightcrew knowledge of – deicing anti-icing, factors affecting, s I-1.8
flightcrew knowledge of – deicing/anti-icing methods, limitations of, s I-1.8
flightcrew knowledge of – deicing/anti-icing methods, s I-1.8
flightcrew knowledge of – hazards of ice, snow and frost, s -1.8
fluid application – APU bleed air off, s III-8.2
fluid application – engines, s III-8.2
fluid application – fuselage, s III-8.2
fluid application – heat loss, s III-8.2
fluid application – horizontal stabilizer, s III-8.2
fluid application – instrument sensors, s III-8.2
fluid application – landing gear, s III-8.2
fluid application – one-step, p vii, s III-8.5
fluid application – re-deicing, s III-8.8
fluid application – symmetrical, s III-8.4
fluid application – two-step, p vii, s III-8.5
fluid application – vertical surface, s III-8.2
fluid application – wheel bays, s III-8.2
fluid application – wing, s III-8.2
fluid failure description – frozen fluid, s III-3.13
fluid failure description – presence of frozen contamination on the fluid, s III-3.13
fluid manufacturer documentation – compliance with, Foreword at p iv, s 4.10
fluid manufacturer recommendations – compliance with. See fluid manufacturer documentation – compliance with
fluid mixing system, verification of, s III-10.4
fluid sampling. See sampling,
fog – definition, p vii
fog, ground – definition, p vii
fog, supercooled, p vii
freezing drizzle – definition, p vii, s II-3.7
freezing fog – definition, p vii, s II-3.7
freezing rain – definition, p vii, s II-3.7
freezing unknown – definition, s II-3.7
frost – active – definition, p vii
frost – deceptively dangerous, s I-1.2
frost – definition, p vii
frost, cold soaked fuel, ss I-2.4, II-1.2, II-1.4
ground deicing program (ICAO) – aircraft specific procedures, s I-3.4
ground deicing program (ICAO) – clean aircraft concept, s I-3.6
ground deicing program (ICAO) – communication plan, I-3.8
ground deicing program (ICAO) – deicing processes, ss I-3.4, 3.10
ground deicing program (ICAO) – emergency response plan, s I-3.11
ground deicing program (ICAO) – HOT, I-3.5
ground deicing program (ICAO) – management plan, s I-3.3
ground deicing program (ICAO) – post deicing/anti-icing check, I-3.7
ground deicing program (ICAO) – pretakeoff check, I-3.7
ground deicing program (ICAO) – pretakeoff contamination check, s I-3.7
ground deicing program (ICAO) – quality assurance, I-3.9
ground deicing program (ICAO) – reporting system, I-3.12
ground deicing program (ICAO) – training for deicing crews, ss I-3.4, I-3.8
ground deicing program (ICAO) – training for flightcrew, I-3.9
ground deicing program (ICAO) – training for operations personnel, I-3.8
ground deicing/anti-icing program (ICAO). See ground deicing program (ICAO)
hail – definition, s II-3.7
hail, small – definition, s II-3.7
hangar, fluid application in – start of HOT, s III-2.4
hangar, fluid application in, s III-2.4
hangar, use of, s III-2.4
hazards of ice, snow and frost, s I-1.2
heat loss, s III-8.2
high humidity – definition, p vii
hoarfrost – definition, p viii
HOT – definition, p viii, s III-4.2
HOT – format by operator, s 5.3
HOT – guidance (ICAO), ss II-3.4, III-4.1–4.9
HOT – reduction of – heavy precipitation rates, s III-4.9
HOT – reduction of – high wind velocity, s III-4.9
HOT – reduction of – jet blast, s III-4.9
HOT – reduction of – wing skin temperature lower than OAT, s III-4.9
HOT – start of, s III-4.7
HOT – variables affecting, s III-4.3
HOT (FAA) – recognition – ICAO, ss III-4.8–4.9
Aircraft Deicing Documents – Issued by ICAO

HOT (TC) – recognition – ICAO, ss III-4.8–4.9
HOT, no (ICAO) – unspecified weather conditions, s III-4.9
ICAO – deicing/anti-icing bibliography, p x
ICAO – recognition of AMS1424 (latest version), ss III-3.6, III-3.9
ICAO – recognition of AMS1428 (latest version), ss III-3.6, III-3.13
ICAO – recognition of ARP4902 (latest version), s III-5.19
ICAO – recognition of ARP6257 (latest version), s III-7.8
ICAO – recognition of AS6285 (latest version), ss III-7.8, III-8.8
ICAO – recognition of AS6286 (latest version), s IV-1.5
ICAO – recognition of AS6332 (latest version), s IV-2.2
ICAO – recognition of HOT (FAA), ss III-4.8–4.9
ICAO – recognition of HOT (TC), ss III-4.8–4.9
ICAO Doc 9640-AN/940, history of, Foreword at p iv
ice detection system – aircraft mounted, ss II-2.1 to 2.7,
ice detection system – ground based. See ROGIDS
ice pellets – definition, s II-3.7
icing, ground, s I-1.2
icing, in-flight, s I-1.2
LWES, s II-3.8
METAR – definition, s II-3.6
moisture, visible – definition, p viii
one-step deicing/anti-icing – definition, p viii
one-step deicing/anti-icing, s III-8.5
operator program, compliance with, Foreword at p iv
pilot-in command – awareness of aircraft condition, s III-6.6
pilot-in-command – awareness of deicing/anti-icing fluid characteristics, s III-1.6
pilot-in-command – awareness of other relevant factors, s III-1.6
pilot-in-command – awareness of taxi times and conditions, s III-1.6
pilot-in-command – awareness of weather forecast, s III-1.6
pilot-in-command – awareness of weather, III-1.6
pilot-in-command – responsibility for accepting aircraft after deicing, ss III-1.6, III-1.10
pilot-in-command – responsibility for clean aircraft at takeoff, s III-1.6
pilot-in-command – responsibility for clean aircraft shared with ground crew, s III-1.6
pilot-in-command – responsibility for monitoring aircraft after deicing, s III-1.6
pilot-in-command – responsibility to estimate HOT, s III-4.5
post deicing/anti-icing check – by qualified personnel, s III-6.3
post deicing/anti-icing check, s III-6.3
precipitation intensity – definition, p viii
preflight check – by flightcrew, s III-6.2
preflight check – by ground crew, s III-6.2
preflight check – contamination check, s III-6.2
preflight check – walk-around, s III-6.2
pretakeoff check, ss I-1.8, III-6.4
pretakeoff contamination check, s III-6.5
quality assurance (ICAO), s IV-2
quality assurance program – auditing, s IV-2.2 a)
quality assurance program – deicing/anti-icing fluids quality control, s 15 g)
quality assurance program – documentation, s IV-2.2 f)
quality assurance program – equipment maintenance, s IV-2.2 g)
quality assurance program – methods, s IV-2.2 c)
quality assurance program – training records, s IV-2.2 d), IV-1.5
quality assurance program – training, s IV-2.2 b)
rain – definition, p viii
re-deicing. See fluid application – re-deicing
regulations, history of early, s I-1.1
regulations, justification for, s Foreword
regulator – responsibility for airport sequence reports, s III-1.3
regulator – responsibility for ATC winter operations plan, s III-5.15
regulator – responsibility for clean aircraft concept compliance by air operator, s III-1.2
regulator – responsibility for runway condition reports, s III-1.3
regulator – responsibility for taxiway condition reports, s III-1.3
regulator – responsibility for weather reports, s III-1.3
rime – definition, p viii
ROGIDS, ss II-2.1 to 2.3, II-2.5 to 2.7
SAE G-12 HOT, role of, s III-4.8
SAE ICAO IATA Council for Globalized Aircraft Deicing Standards, role of, s Foreword
sampling – nozzle, s III-10.5
sampling – procedure, s III-10.4
service provider – responsibility for deicing facilities, s III-1.9
service provider – responsibility for deicing/anti-icing process, s III-1.10
service provider – responsibility for deicing/anti-icing, s III-1.10
service provider – responsibility to follow air operator procedure, s III-1.9
shear force – definition, p viii
slush – definition, p viii
snow – definition, p viii, s II-3.7
snow grains – definition, s II-3.7
snow, dry – definition, p viii
snow, wet – definition, p viii
spray directly, no – air stream direction detectors, s III-8.2
spray directly, no – angle of attack sensors, s III-8.2
spray directly, no – brakes, s III-8.2
spray directly, no – cabin windows, s III-8.2
spray directly, no – exhausts, s III-8.2
spray directly, no – instrument sensors, s III-8.2
spray directly, no – landing gear bay, s III-8.2
spray directly, no – pitot tubes, s III-8.2
spray directly, no – static vents, s III-8.2
spray directly, no – thrust reversers, s III-8.2
spray directly, no – wheel bays, s III-8.2
TAF – definition, s II-3.6
training – accident prevention, s IV-1.3 j)
training – anti-icing code, s IV-1.3 n)
training – checks, s IV-1.3 f)
training – communication procedures, s IV-1.3 n)
training – contamination recognition, s IV-1.3 i)
training – critical surface – contamination recognition, s IV-1.3 i)
training – deicing unit, s IV-1.3 g)
training – deicing/anti-icing fluid handling. See training – fluid handling
training – deicing/anti-icing fluid storage. See training – fluid storage
training – deicing/anti-icing fluids, s IV-1.3 e)
training – deicing/anti-icing procedures with specific aircraft, s IV-1.3 e)
training – deicing/anti-icing procedures with specific fluids, s IV-1.3 e)
training – deicing/anti-icing procedures, ss IV-1.3 d–e), IV-1.3 l)
training – emergency procedures, s IV-1.3 k)
training – environmental consideration, s IV-1.3 p)
training – fluid handling, s IV-1.3 c)
training – fluid storage, s IV-1.3 c)
training – hazards of ice, snow and frost, s IV-1.3 b)
training – health effects, s IV-1.3 j)
training – HOT, limitations of, s IV-1.3 m)
training – HOT, use of, s IV-1.3 m)
training – ICAO – requirements, s IV-1.1–1.3
training – lessons learned, s IV-1.3 q)
training – new procedures, s IV-1.3 q)
training – personnel qualification, s IV-1.2
training – quality control procedures, s IV-1.2 h)
training – records – flightcrew, s IV-1.4
training – records – ground crew, s IV-1.4
training – records – initial training, s IV-1.4
training – records – recurrent training, s IV-1.4
training – records, s IV-1.4
training – safety precautions, s IV-1.3 j)
training – spill control, s IV-1.3 p)
training – spill reporting, s IV-1.3 p)
training – weather, s IV-1.3 a)
two-step deicing/anti-icing – definition, p vii
two-step deicing/anti-icing, s III-8.5
Type I – composition, s III-3.8
Type I – contamination – corrosion in storage vessel, s III-3.15
Type I – contamination – improper storage, s III-3.15
Type I – contamination, s III-3.15
Type I – degradation, thermal, s III-3.15
Type I – functional description, ss III-3.7–3.9
Type I – quality control, s III-3.16
Type II/III/IV – composition, s III-3.10
Type II/III/IV – degradation – contamination, chemical, s III-3.15
Type II/III/IV – degradation – excessive shearing, s III-3.15
Type II/III/IV – degradation – heating, s III-3.15
Type II/III/IV – degradation – improper storage, s III-3.15
Type II/III/IV – functional description, ss III-3.10–3.13
Type II/III/IV – quality control, s III-3.16
Type II/III/IV – residue – flight control restrictions, ss III-8.8 Caution, III-9.3, III-9.6
Type II/III/IV – residue – in aerodynamically quiet areas, ss III-8.8 Caution, III-9.1–9.6
Type II/III/IV – residue – rotation issues, s III-9.6
Type II/III/IV – residue check, ss III-8.8 Caution, III-9.4
Type II/III/IV – residue formation – Type II/IV without hot water or Type I, ss III-8.8 Caution, III-9.1–9.6
Type II/III/IV – shear thinning, s III-3.10
winter operations – guidance (ICAO), ss I to IV

Revised 2016-11-10 by ICAO.
This document has a short section117 that describes the standard phraseology to be used by flightcrew and ground crew in deicing/anti-icing operations. Only the section (12.7.2) dealing with deicing/anti-icing operations was indexed in the \textit{Guide}.

Keywords:
anti-icing code, s. 12.7.2.2
communication with flightcrew – aircraft configuration confirmation, s 12.7.2.1
communication with flightcrew – all clear signal, s 12.7.2.2
communication with flightcrew – anti-icing code, s 12.7.2.2
communication with flightcrew – before starting deicing/anti-icing, s 12.7.2.1
communication with flightcrew – deicing unit proximity sensor activation s 12.7.2.3
communication with flightcrew – emergency, s 12.7.2.3
communication with flightcrew – interrupted operations, s 12.7.2.3
communication with flightcrew – post deicing/anti-icing check completion, s 12.7.2.2
communication with flightcrew – proximity sensor activation s 12.7.2.3
communication with flightcrew – HOT, start of, s 12.7.2.2
communication with flightcrew – fluid Type, s 12.7.2.2
emergency – communications, s 12.7.2.3
PANS-ATM – deicing/anti-icing phraseology, s 12.7.2
phraseology, deicing/anti-icing, s 12.7.2

Documents Issued by Boeing

Haruiko Oda et al, Safe Winter Operations

Issued 2010-10 by Boeing.

Provides airline engineering, maintenance, flight personnel and service providers with procedures and tips for safe winter operations.

Keywords:
alkali organic salts – corrosion of electrical connectors, p 7
alkali organic salts – corrosion of hydraulic system components, p 7
alkali organic salts – effect on carbon brakes, p 7
carbon brake contamination – effect – decreased service life, p 7
clean aircraft concept – aerodynamically clean aircraft, p 5
clean aircraft concept – derived from FAR 121.629, p 5
clean aircraft concept, p 5
clean condition – air conditioning exits, p 12
clean condition – air conditioning inlets, p 12
clean condition – APU air inlets, p 12
clean condition – brake assemblies, p 12
clean condition – cockpit windows, p 11
clean condition – control surfaces, p 12
clean condition – engine inlets, p 12
clean condition – fuel tank vents, p 12
clean condition – girt bar area (before closing door), p 11
clean condition – landing gear doors, p 12
clean condition – landing gear truck beam, p 12
clean condition – leading edge devices, p 12
clean condition – main gear, p 11
clean condition – nose gear, p 11
clean condition – passenger doors, p 11
clean condition – pitot tubes, p 12
clean condition – static ports, p 12
clean condition – tail, horizontal, p 12
clean condition – tail, vertical, p 12
clean condition – wing upper surface, p 12
contamination [frozen] – effect on air flow, p 6
contamination [frozen] – effect on drag, p 6
contamination [frozen] – effect on lift, asymmetric, p 6
contamination [frozen] – effect on lift, p 6
contamination [frozen] – effect on pitch, p 6
contamination [frozen] – effect on roll, p 6
contamination [frozen] – effect on stall speed, p 6

contamination [frozen] – removal from windows, p 11
definition – HOT, p 9
definition – ice, ground accumulated, p 11
definition – ice, operational, p 11
definition – icing conditions, AFM, p 7
definition – HOT, p 9
definition – ice, ground accumulated, p 11
definition – ice, operational, p 11
definition – icing conditions, AFM, p 7
engine run-ups – ice removal, pp 11–12
fluid application – fuselage from nose to aft, p 11
fluid application – fuselage top centerline to outboard, p 11
fluid application – leading edge to trailing edge, p 11
fluid application – one-step, p 10
fluid application – outboard to inboard, p 11
fluid application – symmetrical – elevator, p 11
fluid application – symmetrical – stabilizer, horizontal, p 11
fluid application – symmetrical – stabilizer, vertical, p 11
fluid application – symmetrical – wing, p 11
fluid application – symmetrical, p 11
fluid application – two-step, p 10
fluid application. See also spray, no; spray directly, no
frost – on lower wing surface, p 6
HOT – definition, p 9
ice shedding, engine. See engine run-ups; ice, operational
ice, ground-accumulated – definition, pp 11, 12
ice, ground-accumulated – removal before engine start-up, pp 11–12
ice, operational – definition, pp 11, 12
ice, operational – removal by engine run-ups, pp 11–12
icing conditions, AFM – definition, p 7
icing conditions, AFM – ice, snow or slush on ramps, taxiways or runways, p 7
icing conditions, AFM – visible moisture with visibility of one statute mile or less, p 7,
icing conditions, AFM ground – OAT \(\leq 10^\circ C\), p 7
icing conditions, AFM in flight – total air temperature \(\leq 10^\circ C\), p 7
MIL-A-8283D specification – not updated, p 7
spray directly, no – APU, p 11
spray directly, no – brakes, p 11
spray directly, no – engine inlets, p 11
spray directly, no – exhausts, p 11
spray directly, no – pitot tubes, p 11
spray directly, no – static ports, p 11
spray directly, no – TAT probes, p 11
spray directly, no – wheels, p 11
spray directly, no – windows, p 11
Type II/III/IV – contamination – corrosion in storage vessel, p 11
Type II/III/IV – contamination by RDP on aircraft – activation of thrust reversers, p 6
Type II/III/IV – contamination by RDP on aircraft – jet blast from other aircraft, p 6
Type II/III/IV – contamination by RDP on aircraft – spray from nose gear, p 6
Type II/III/IV – degradation – excessive shearing, p 11
Type II/III/IV – degradation – exposure to alkali organic salt RDP, p 6
Type II/III/IV – degradation – exposure to alkali organic salts, p 6
Type II/III/IV – degradation – heating, p 11
Type II/III/IV – dry-out, heated leading edge, p 12
Type II/III/IV – removal from cockpit windows, p 11
Type II/III/IV – residue – flight control restrictions, p 6
Type II/III/IV – residue – guidance (Boeing), p 6
Type II/III/IV – residue cleaning – application of corrosion inhibitors to areas cleaned, p 6
Type II/III/IV – residue cleaning – lubrication of areas cleaned, p 6
Type II/III/IV – residue cleaning, p 6
Type II/III/IV – residue formation – role of RDP alkali organic salts, p 6
Type II/III/IV – residue formation – Type I to alleviate, pp 6, 10
Type II/III/IV – residue formation – use of Type II/III/IV without Type I, p 10
Type II/III/IV – residue formation, pp 6, 10
Type II/III/IV – residue inspection – according to AMM, p 6
Type II/III/IV – residue inspection – auxiliary power unit bay, p 6
Type II/III/IV – residue inspection – bilge area of the tail cone, p 6
Type II/III/IV – residue inspection – control linkages, p 6
Type II/III/IV – residue inspection – control tabs, p 6
Type II/III/IV – residue inspection – stabilizer rear spar, horizontal, p 6
Type II/III/IV – residue inspection – stabilizer, vertical, p 6
Type II/III/IV – residue inspection – wing leading edge devices, p 6
Type II/III/IV – residue – dried, p 6
Type II/III/IV – residue – rehydrated, p 6
Type II/III/IV – residue inspection – wing rear spar, p 6
Type II/III/IV – residue inspection, p 6
Type II/III/IV – residue, p 6
Type II/III/IV – wing anti-ice system OFF on ground, p 12
Wing anti-ice system – not a substitute for ground deicing, p 12
Winter operations – guidance (Boeing) – for flightcrews, pp 12–13
Winter operations – guidance (Boeing) – for maintenance crews, p 11
Winter operations – guidance (Boeing), pp 5–13
PART TWO: THE RUNWAY DEICING DOCUMENTS

A chart of the runway deicing documents can be found in Figure 2 at p 234.

Documents Issued by the SAE G-12 Runway Deicing Products Committee

AMS1431E Solid Runway Deicing/Anti-icing Product

Revised 2018-10-24 by SAE G-12 RDP.

AMS1431E sets the technical requirements for runway deicing and anti-icing products in the form of a solid. Runway deicing products (RDP) are used typically at airports on aircraft maneuvering areas, such as aprons, runways, and taxiways, for the prevention and removal of frozen deposits of snow, frost, and ice.

Keywords:
aircraft maneuvering area deicing product. See RDP
airfield deicing fluid. See RDP
apron deicing product. See RDP
definition – RDP, solid – lot, s 4.3
RDP, solid – acceptance tests – chloride content, s 4.2.1
RDP, solid – acceptance tests – flash point, s 4.2.1
RDP, solid – acceptance tests – total water content, s 4.2.1
RDP, solid – AIR6130 reporting, s 3.2.9.3.1
RDP, solid – airfield use label, s 5.1.2
RDP, solid – appearance, s 3.1.5
RDP, solid – approval by purchaser, s 4.4
RDP, solid – aquatic toxicity, s 3.1.1.4
RDP, solid – asphalt concrete degradation resistance, s 3.8.2.2
RDP, solid – biodegradation, s 3.1.1.3
RDP, solid – BOD, s 3.1.1.1
RDP, solid – brining, s 1.3.1.1
RDP, solid – cadmium as contaminant, s 3.1.2
RDP, solid – cadmium corrosion, s 3.2.9.3.1
RDP, solid – carbon brake oxidation, s 3.2.11
RDP, solid – changes in ingredients, s 4.4.2
RDP, solid – changes in manufacturing, s 4.4.2
RDP, solid – chloride content, ss 3.2.3, 4.2.1
RDP, solid – chromium as contaminant, s 3.1.2
RDP, solid – commingling, s 1.3.1
RDP, solid – compatibility with other RDP, s 1.3.1
RDP, solid – composition, s 3.1
RDP, solid – containers, ss 5.1.2, 5.1.4, 8.4
RDP, solid – delivery, s 5
RDP, solid – dissolution, s 1.3.1.1
RDP, solid – ecological behavior, s 3.1.1.4
RDP, solid – effect on aircraft metals, s 3.2.9
RDP, solid – effect on asphalt concrete, ss 3.2.8.2, 4.2.2, Appendix A
RDP, solid – effect on carbon brake systems, s 3.2.11
RDP, solid – effect on painted surfaces, ss 3.2.6, 4.2.2
RDP, solid – effect on runway concrete, s 3.2.8.1, 4.2.2
RDP, solid – effect on transparent plastics, ss 3.2.5, 4.2.2
RDP, solid – effect on unpainted surfaces, ss 3.2.7, 4.2.2
RDP, solid – Federal (US) Supply Classification 6850, s 8.4
RDP, solid – flash point, ss 3.2.2, 4.2.1
RDP, solid – freezing point curve, s 3.1.4
RDP, solid – friction evaluation, s 1.3.2
RDP, solid – halogens as contaminant, s 3.1.2
RDP, solid – handling, s 5.1.4
RDP, solid – heavy metals as contaminant, s 3.1.2
RDP, solid – hydrogen embrittlement, s 3.2.9.4
RDP, solid – ice melting, s 3.2.10
RDP, solid – ice penetration, s 3.1.10
RDP, solid – ice undercutting, s 3.2.10
RDP, solid – independent laboratory testing, ss 4.1, 4.5
RDP, solid – inspection, s 4.1
RDP, solid – labels, s 5
RDP, solid – lead as contaminant, s 3.1.2
RDP, solid – licensee, s 4.4.3
RDP, solid – liquefaction 119, s 1.3.1.1
RDP, solid – lot – acceptance tests, s 4.2.1
RDP, solid – lot – definition, s 4.3
RDP, solid – lot number, s 5.1.2
RDP, solid – low embrittling cadmium plate, s 3.2.9.3
RDP, solid – mercury as contaminant, s 3.1.2
RDP, solid – multiple location tests, s 4.4.3
RDP, solid – nitrate as contaminant, s 3.1.2
RDP, solid – packaging, ss 5.1, 8.4
RDP, solid – performance, s 3.2.10
RDP, solid – periodic tests, s 4.2.2
RDP, solid – pH, ss 3.2.1, 4.2.1
RDP, solid – phosphate as contaminant, s 3.1.2
RDP, solid – physical properties, s 3.2
RDP, solid – preproduction tests, s 4.2.3
RDP, solid – production same as approved sample, s 4.4.2
RDP, solid – purchase orders, s 6
RDP, solid – quotation, s 6
RDP, solid – rejection, s 7
RDP, solid – reports, s 4.5
RDP, solid – resampling, s 4.6
RDP, solid – retesting, s 4.6
RDP, solid – right-to-know regulations, s 5.1.3
RDP, solid – runway concrete surface scaling resistance, s 3.2.8.1
RDP, solid – safety data sheet, s 4.5.1
RDP, solid – sampling plan, s 4.3
RDP, solid – sampling, s 4.3

119 Usually liquefaction is a process whereby, in a phase transition, a gas or a solid becomes a liquid. In this case, it seems dissolution would be a better term as the RDP is dissolved in water to form a solution. The dissolution process of a salt is also known as brining.
AMS1435D Liquid Runway Deicing Product

Revised 2018-11-02 by SAE G-12 RDP.

AMS1435 sets the technical requirements for runway deicing and anti-icing products in the form of a liquid. Runway deicing products are used typically at airports on aircraft maneuvering areas, such as aprons, runways, and taxiways, for the prevention and removal of frozen deposits of snow, frost, and ice. Runway deicing products (RDP) in liquid form, sometimes called runway deicing fluids, must never be used as aircraft deicing fluid.

Keywords:
aircraft maneuvering area deicing product. See RDP
airfield deicing fluid. See RDP
apron deicing product. See RDP
definition – RDP, liquid – lot, s 4.3
fluid runway and taxiway deicing/anti-icing compound. See RDP, liquid
liquid runway and taxiway deicing/anti-icing compound. See RDP, liquid
RDF. See RDP, liquid
RDP, fluid. See RDP, liquid
RDP, liquid – acceptance tests – flash point, s 4.2.1
RDP, liquid – acceptance tests – pH, s 4.2.1
RDP, liquid – acceptance tests – specific gravity, s 4.2.1
RDP, liquid – AIR6130 reporting, s 3.2.5.3.1
RDP, liquid – airfield use label, s 5.1.2
RDP, liquid – appearance, s 3.1.2
RDP, liquid – approval by purchaser, s 4.4.1
RDP, liquid – aquatic toxicity, s 3.1.1.2
RDP, liquid – asphalt concrete degradation resistance, ss 3.2.10.2, 4.2.2
RDP, liquid – biodegradation, s 3.1.1.1
RDP, liquid – BOD, s 3.1.1.1
RDP, liquid – bulk shipments, s 4.3.2
RDP, liquid – cadmium as contaminant, s 3.1.1.3
RDP, liquid – cadmium corrosion, s 3.2.5.3
RDP, liquid – carbon brake oxidation, s 3.2.13
RDP, liquid – changes in ingredients, s 4.4.2
RDP, liquid – changes in manufacturing, s 4.4.2
RDP, liquid – chromium as contaminant, s 3.3.1.3
RDP, liquid – commingling, s 1.3.1
RDP, liquid – compatibility with other RDP, s 1.3.1
RDP, liquid – composition, s 3.1
RDP, liquid – containers, ss 5.1.1, 5.1.2, 5.1.4, 8.4
RDP, liquid – delivery, s 5
RDP, liquid – dilution, s 1.3.1.1
RDP, liquid – drum shipments, s 4.3.1
RDP, liquid – ecological behavior, s 3.1.1.2
RDP, liquid – effect on aircraft materials, ss 3.2.5, 4.2.2
RDP, liquid – effect on asphalt concrete, ss 3.2.10.2, 4.2.2, Appendix A
RDP, liquid – effect on carbon brake systems, s 3.2.13
RDP, liquid – effect on painted surfaces, ss 3.2.7, 4.2.2
RDP, liquid – effect on runway pavement, s 3.2.10
RDP, liquid – effect on transparent plastics, ss 3.2.6, 4.2.2
RDP, liquid – effect on unpainted surface, ss 3.2.8, 4.2.2
RDP, liquid – Federal (US) Supply Classification 6850, s 8.5
RDP, liquid – flash point, ss 3.2.1, 4.2.1
RDP, liquid – formamide, s 1.1.3
RDP, liquid – freezing point, ss 3.2.4. 4.2.2
RDP, liquid – friction evaluation, s 1.3.2
RDP, liquid – halogens as contaminant, s 3.1.1.3
RDP, liquid – handing, s 5.1.4
RDP, liquid – heavy metals as contaminant, s 3.1.1.3
RDP, liquid – hydrogen embrittlement, s 3.2.5.4
RDP, liquid – ice melting, s 3.2.12
RDP, liquid – ice penetration, s 3.1.12
RDP, liquid – ice undercutting, s 3.2.12
RDP, liquid – independent laboratory testing, ss 4.1, 4.5
RDP, liquid – inspection, s 4.1
RDP, liquid – labels, s 5
RDP, liquid – lead as contaminant, s 3.1.1.3
RDP, liquid – licensee, s 4.4.3
RDP, liquid – lot – acceptance, s 4.2.1
RDP, liquid – lot – definition, s 4.3
RDP, liquid – lot number, ss 4.5, 5.1.2
RDP, liquid – low embrittling cadmium plate, s 3.2.5.3
RDP, liquid – mercury as contaminant, s 3.1.1.3
RDP, liquid – nitrate as contaminant, s 3.1.1.3
RDP, liquid – packaging, ss 5.1.4, 5.1.5, 8.4
RDP, liquid – performance, s 3.2.12
RDP, liquid – periodic tests, s 4.2.2
AIR6130A Cadmium Plate Cyclic Corrosion Test

Revised 2017-05-18 by SAE G-12 RDP.

AIR6130A describes a 14-day material test to determine the cyclic effects of runway deicing products on aircraft cadmium plated parts. Some runway and taxiway deicing/anti-icing products, have been found to cause severe corrosion on aircraft components with cadmium plating. There is a need for users to understand the effect of these products on aircraft components when they are exposed repeatedly in a normal winter operating environment. The existing test in the AMS1431E and AMS1435D specifications for runway deicing products is a one-time 24-hour immersion test
for cadmium corrosion, which does not accurately reflect how aircraft and airport equipment are affected by runway deicers. AIR6130 with its 14-day cyclic test is intended to provide better information to the end user/purchaser of the deicing products regarding the cyclic effects on cadmium plated aircraft parts or airport equipment. The document is intended to be referred to by the AMS1431 and AMS1435 specifications, which will then provide more useful information to the end-users in the test report.

Keywords:
cadmium plate corrosion test – AMS1431 sample, s 3c
cadmium plate corrosion test – AMS1435 sample, s 3b
cadmium plate corrosion test – cleaning of test specimens, s 5b
cadmium plate corrosion test – criterion for undesirable corrosion effects, s 6
cadmium plate corrosion test – gravimetric results, ss 5i., 5l.
cadmium plate corrosion test – procedure, s 5
cadmium plate corrosion test – runway deicing compound sample, s 3
cadmium plate corrosion test – sample preparation, s 4
cadmium plate corrosion test – steel substrate, s 3
cadmium plate corrosion test – test coupons, s 3
cadmium plate corrosion test – test results, s 6
cadmium plate corrosion test – test specimen, s 3
cadmium plated aircraft parts – RDP caused corrosion, s 1
cadmium plated aircraft parts corrosion test. See cadmium plate corrosion test
corrosion of cadmium plated aircraft parts – undesirable corrosion criterion, s 6
corrosion of cadmium plated aircraft parts, s 1
RDP – cadmium plate corrosion test, Title at p 1, s 1
RDP – undesirable corrosion criterion, s 6
RDP caused corrosion – undesirable corrosion criterion, s 6
runway deicing fluid. See RDP, liquid
runway deicing/anti-icing compound. See RDP
taxiway deicing/anti-icing compound. See RDP

AIR6170A Ice Melting Test Method for Runways and Taxiways Deicing/Anti-icing Chemicals

Revised 2017-01-21 by SAE G-12 RDP.

AIR6170A describes a quantitative test method for liquid and solid deicing/anti-icing products, to evaluate the amount of ice melted as a function of the time and temperature.

Keywords:
AMS1431 RDP ice melting test. See RDP ice melting test
AMS1435 RDP ice melting test. See RDP ice melting test
ice melting test for RDP. See RDP ice melting test
ice melting test. See RDP ice melting test
RDP – comparative melting capability, s 3.2
RDP – use on taxiways, s 1
RDP ice melting capability, comparative, s 3.2
RDP ice melting relative capacity, s 1
RDP ice melting test ice preparation, s 3.3.5
RDP ice melting test procedure, s 3.4
RDP ice melting test reference control solution, ss 3.5.3, 3.5.3.1, 3.5.3.2
RDP ice melting test report, s 3.8
RDP ice melting test sample preparation, ss 3.5.1, 3.5.2
RDP ice melting test significance, s 1
RDP ice melting test significance, ss 1, .2
RDP ice melting test temperatures ss 3.6, 3.7
RDP ice melting test, Title at p 1
RDP ice melting v temperature, ss 1, 3.8
RDP ice melting v time, ss 1, 3.8
RDP, liquid – ice melting test. See RDP ice melting test
RDP, solid – ice melting test. See RDP ice melting test
SHRP H-332, s 2

AIR6172A Ice Undercutting Test Method for Runways and Taxiways Deicing/Anti-icing Chemicals

Revised 2017-03-15 by SAE G-12 RDP.

AIR6172A describes a quantitative test method, for liquid and solid runway deicing/anti-icing products (RDP), to evaluate the ice undercut as a function of the time and temperature.

Keywords:
AMS1431 RDP ice undercutting test. See RDP ice undercutting test
AMS1435 RDP ice undercutting test. See RDP ice undercutting test
ice undercutting test, RDP. See RDP ice undercutting test, Title at p 1
ice undercutting test. See RDP ice undercutting test
RDP ice undercutting test description, s 3.1
RDP ice undercutting test dye, ss 3.3.1, 3.4.4
RDP ice undercutting test dye – rhodamine, s 3.3.3
RDP ice undercutting test dye – fluorescein, s 3.3.3
RDP ice undercutting test equipment, s 3.3
RDP ice undercutting test ice cavity preparation, s 3.3.6
RDP ice undercutting test ice preparation, s 3.3.5
RDP ice undercutting test procedure, s 3.4
RDP ice undercutting test reference control solution, ss 3.4.3, 3.4.3.1, 3.4.3.2
RDP ice undercutting test reference control solution – 25% w/w potassium acetate solution, s 3.4.3.2
RDP ice undercutting test report, s 3.7
RDP ice undercutting test sample preparation, ss 3.4.1, 3.4.2
RDP ice undercutting test significance, s 3.2
RDP ice undercutting test temperature, s 3.5, 3.6
RDP ice undercutting test, Title at p 1
RDP, liquid – ice undercutting test. See RDP ice undercutting test
RDP, solid – ice undercutting test. See RDP ice undercutting test
SHRP H-332, s 2.4
AIR6211A Ice Penetration Test Method for Runways and Taxiways Deicing/Anti-Icing Chemicals

Revised 2017-05-08 by SAE G-12 RDP.

AIR6211A describes a quantitative method, for liquid and solid runway deicing/anti-icing products (RDP), to evaluate the ice penetration as a function of the time and temperature.

Keywords:
AMS1431 RDP ice penetration test. See RDP ice penetration test
AMS1435 RDP ice penetration test. See RDP ice penetration test
ice penetration test. See RDP ice penetration test
RDP ice penetration test – description, s 3.1
RDP ice penetration test dye, s 3.4.4
RDP ice penetration test ice preparation, s 3.3.4
RDP ice penetration test procedure, s 3.4
RDP ice penetration test reference control solution – potassium acetate 50%, s 3.4.3.1
RDP ice penetration test reference control solution – potassium acetate 25%, s 3.4.3.2
RDP ice penetration test reference control solution,
RDP ice penetration test reference control solution, s 3.4.3
RDP ice penetration test significance – reporting, s 3.7
RDP ice penetration test significance, s 3.2
RDP ice penetration test temperature, ss 3.6, 3.7
RDP ice penetration test time, s 3.7
RDP ice penetration test, Title at p 1
RDP, liquid – ice penetration test. See RDP ice penetration test
RDP, solid – ice penetration test. See RDP ice penetration test
SHRP H-332, s 2.4

Documents Issued by the SAE A-5A Wheels, Brakes and Skid Control Committee

AIR5490A Carbon Brake Contamination and Oxidation

Revised 2016-04-12 by SAE A-5A.

This document provides information on the susceptibility of aircraft carbon brake discs to contamination and oxidation. Carbon used in the manufacture of aircraft brake discs is porous, and can absorb liquids and contaminants, such as runway deicing products (RDP), aircraft deicing fluids (ADF), sea water, aircraft hydraulic fluid, aircraft wash fluids, sea water, cleaning solvents, etc. Some of the contaminants can negatively impact the intended performance of the brakes, particularly through catalytic oxidation of the carbon.
Although aircraft carbon brakes had been operating for many years with the occasional oxidative degradation issues, the introduction of environmentally-friendly, low BOD, alkali organic salt based runway deicing products in the 1990s resulted in significant increases in the frequency of occurrences and severity of carbon brake disk degradation. The catalytic oxidative action is attributed to the alkali moiety of the organic salts.

This document intends to raise awareness of the effects of carbon brake contamination and present information on the chemicals promoting catalytic oxidation, the mechanism of oxidation, and inspection technique on and off the aircraft.120

Keywords:
aircraft carbon brake. See carbon brake
aircraft deicing fluid. See deicing fluid
aircraft hydraulic fluid – definition, s 2.2
aircraft lubricant – definition, s 2.2
airplane. See aircraft
carbon brake – antioxidant treatment – barrier coating, s 5.2.4a
carbon brake – antioxidant treatment – barrier coating, self-healing, s 5.2.4a
carbon brake – antioxidant treatment – chemical vapor infiltration, s 5.2.5
carbon brake – antioxidant treatment – densification of the polyacrylonitrile fibers, s 5.2.5
carbon brake – antioxidant treatment – disk soaking, s 5.2.4a
carbon brake – antioxidant treatment – oxidation inhibitor, phosphate based, s 5.2.4b
carbon brake – antioxidant treatment – oxidation inhibitor, s 5.2.4b
carbon brake – antioxidant treatment – oxidation resistance of the carbon, s 5.2.5
carbon brake – antioxidant treatment – phosphate solution, s 5.2.4b
carbon brake – antioxidant treatment – porosity of the carbon, s 5.2.5
carbon brake – antioxidant treatment, s 2.2
carbon brake – catalytic oxidation. See carbon brake oxidation
carbon brake – contamination. See carbon brake contamination
carbon brake – degradation, Rationale at p 1
carbon brake – friction and wear modifier – definition, s 4.2.2
carbon brake – friction material, s 3
carbon brake – inspection, Rationale at p 1
carbon brake – operating temperature v steel brake operating temperature, s 3a
carbon brake – oxidation. See carbon brake oxidation
carbon brake – removal criteria, s 5.4.3.2
carbon brake – return-to-service criteria, s 5.4.4.2
carbon brake – smoke from, s 4.2.1 note
carbon brake contamination – decontamination method, s 8
carbon brake contamination – detection – chromatography, s 5.4

120 SAE Committee A-5A appears to use the word airplane rather than aircraft in the following expressions: airplane anti-icing/deicing fluids, airplane hydraulic fluids, airplane lubricants, and airplane wash fluids. In this \textit{Guide to Aircraft Ground Deicing}, we index the word “aircraft” rather than the word “airplane”. Specifically, Committee A-5A refers to airplane anti-icing/deicing fluids. SAE G-12 refers to them as aircraft deicing/anti-icing fluids. Here we follow SAE G-12 usage.
carbon brake contamination – detection – conductivity measurement, s 5.4
carbon brake contamination – detection – discoloration, s 5.4.1
carbon brake contamination – detection – hardness probes, with, s 5.4
carbon brake contamination – detection – odor, s 5.4
carbon brake contamination – detection – off-aircraft inspection, s 5.4.4
carbon brake contamination – detection – on-aircraft inspection, s 5.4.3
carbon brake contamination – detection – smoke, s 5.4
carbon brake contamination – detection – spectrometry, s 5.4
carbon brake contamination – detection – staining, s 5.4
carbon brake contamination – detection – visual, by, ss 5.4, 5.4.1, 5.4.2, 5.4.3.1
carbon brake contamination – effect – aircraft runway over-runs, s 6.2
carbon brake contamination – effect – brake disk lug rupture, s 5.3.1
carbon brake contamination – effect – brake disk rupture, s 6.1
carbon brake contamination – effect – brake overheating, s 6.2
carbon brake contamination – effect – brake torque, s 4.2.2
carbon brake contamination – effect – brake vibrations, ss 4.2.2, 6.1
carbon brake contamination – effect – brake wear, s 4.2.2
carbon brake contamination – effect – brake wear, ss 3b, 6.3
carbon brake contamination – effect – catalytic oxidation, s 3a
carbon brake contamination – effect – complete loss of braking capability, s 5.3.1
carbon brake contamination – effect – friction coefficient, increase and decrease, s 6.2
carbon brake contamination – effect – increased aircraft braking distance in rejected takeoff, s 5.3.1
carbon brake contamination – effect – loss in braking performance, ss 3a, 5.3.1
carbon brake contamination – effect – loss of brake disk reuse capability, s 5.3.3
carbon brake contamination – effect – loss of friction area, s 3a
carbon brake contamination – effect – loss of mechanical strength, s 3a
carbon brake contamination – effect – loss of rubbed area, s 3a
carbon brake contamination – effect – mass loss, s 5.1.2
carbon brake contamination – effect – of humidity on friction coefficient of contaminated brakes, s 6.2
carbon brake contamination – effect – overheating of other brakes, s 6.2
carbon brake contamination – effect – partial loss of braking capability, s 5.3.1
carbon brake contamination – effect – premature brake removal, s 5.3.2
carbon brake contamination – effect – runway over-runs, s 6.2
carbon brake contamination – effect – structural brake disc failure, ss 3a, 5.3
carbon brake contamination – effect – temporary or permanent change in friction level, ss 3b, 6.2
carbon brake contamination – effect – torque reduction, s 3
carbon brake contamination – effect – uneven braking, s 6.2
carbon brake contamination – effect – vibration, squeal, s 6.1
carbon brake contamination – effect – vibration, whirl, s 6.1
carbon brake contamination – prevention – phosphate solutions 121, s 5.2.4b
carbon brake contamination – prevention – use of wheel covers, s 7
carbon brake contamination – source – acetate v formate, s 4.2.1b
carbon brake contamination – source – aircraft deicing fluids, s 4.1b
carbon brake contamination – source – aircraft hydraulic fluids, s 4.1e
carbon brake contamination – source – aircraft hydraulic fluids, phosphate ester based, s 4.1e
carbon brake contamination – source – aircraft lubricants, s 4.1d
carbon brake contamination – source – aircraft wash fluids, s 4.1c
carbon brake contamination – source – alkali metal salts, s 4.2.1b
carbon brake contamination – source – alkali organic salts, s 4.2.1b
carbon brake contamination – source – automatic aircraft washing systems, s 7

121 Section 8 of AIR5490 stated that brake manufacturers had used phosphate or boron solutions to protect against oxidation. Boron solution was deleted from AIR5490A; no explanation was given.
carbon brake contamination – source – calcium salts, s 4.2.1c
carbon brake contamination – source – catalyst – alkali metal based RDP, s 4.2.1b
carbon brake contamination – source – catalyst – anti-viral agent, s 4.2.1f
carbon brake contamination – source – catalyst – calcium from cleaning agents, s 4.2.1c
carbon brake contamination – source – catalyst – disinfectants, ss 4.2.1f, 5.2.9
carbon brake contamination – source – catalyst – potassium acetate, s 4.2.1b
carbon brake contamination – source – catalyst – potassium formate, s 4.2.1b
carbon brake contamination – source – catalyst – potassium from cleaning agents, s 4.2.1c
carbon brake contamination – source – catalyst – potassium in Purple K fire extinguishers, s 4.2.1k
carbon brake contamination – source – catalyst – RDP, s 4.2.1b
carbon brake contamination – source – catalyst – sodium acetate, s 4.2.1b
carbon brake contamination – source – catalyst – sodium formate, s 4.2.1b
carbon brake contamination – source – catalyst – sodium from cleaning agents, ss 4.2.1a, 4.2.1c
carbon brake contamination – source – catalyst – sodium from sea water, s 4.2.1a
carbon brake contamination – source – catalyst – sodium hypochlorite, ss 4.2.1f, 5.2.9
carbon brake contamination – source – catalyst – temperature indicating crayon marks, s 4.2.1e
carbon brake contamination – source – catalyst, s 4.2.1
carbon brake contamination – source – cleaning solvents, ss 4.1g, 5.2.8
carbon brake contamination – source – disinfectants, bleach containing, ss 4.1h, 5.2.9
carbon brake contamination – source – disinfectants, calcium containing, s 4.1h
carbon brake contamination – source – disinfectants, chlorine\(^\text{122}\) containing, ss 4.1h, 5.2.9
carbon brake contamination – source – disinfectants, citric acid containing, s 4.1h
carbon brake contamination – source – disinfectants, hypochlorite containing, ss 4.1h, 5.2.9
carbon brake contamination – source – disinfectants, potassium containing, s 4.1h
carbon brake contamination – source – disinfectants, sodium containing, s 4.1h
carbon brake contamination – source – disinfectants, ss 4.1h, 5.2.9
carbon brake contamination – source – fire extinguishing agent, ss 4.1f, 4.2.2
carbon brake contamination – source – formate v acetate, s 4.2.1b
carbon brake contamination – source – hydraulic fluid leaks, s 4.2.2
carbon brake contamination – source – hydraulic system servicing, s 4.2.2
carbon brake contamination – source – RDP, s 4.1a
carbon brake contamination – source – sea water, s 4.1j
carbon brake contamination – source – solvents, cleaning, ss 4.1g, 5.2.8
carbon brake contamination – source – temperature indicator crayon marks, s 4.1i
carbon brake oxidation – oxidation effects v cumulative thermal load, s 5.3
carbon brake oxidation – temperature in absence of contamination [ca 400 °C], s 5.1.1
carbon brake oxidation – variables – aircraft deicing fluids, s 5.2.7
carbon brake oxidation – variables – airline route structure, s 5.2.6
carbon brake oxidation – variables – airport selection of RDP, s 5.2.6
carbon brake oxidation – variables – alcohol based RDP, s 5.2.6
carbon brake oxidation – variables – alkali metal acetate based RDP, s 5.2.6
carbon brake oxidation – variables – alkali metal formate based RDP, s 5.2.6
carbon brake oxidation – variables – ambient temperature, s 5.2.1
carbon brake oxidation – variables – antioxidant coatings, s 5.2.4
carbon brake oxidation – variables – antioxidant treatment, s 5.2.4
carbon brake oxidation – variables – brake wear, s 5.2.1
carbon brake oxidation – variables – cleaners, s 5.2.8
carbon brake oxidation – variables – cooling air, s 5.2.2
carbon brake oxidation – variables – cooling ducts in wheel bay, s 5.2.2
carbon brake oxidation – variables – cooling fans, s 5.2.2

\(^{122}\) ARP5490A, in section 4.1h, lists chlorine containing disinfectants as potential source of carbon brake contamination. Chlorine is meant to include hypochlorite and bleach (see section 5.2.9).
carbon brake oxidation – variables – energy absorbed during braking, s 5.2.1
carbon brake oxidation – variables – length of winter, s 5.2.6
carbon brake oxidation – variables – mass of carbon heat sink, s 5.2.1
carbon brake oxidation – variables – number of landings per overhaul, s 5.2.3
carbon brake oxidation – variables – number of thermal cycles, s 5.2.3
carbon brake oxidation – variables – peak temperature ss 5.1.1, 5.2.1
carbon brake oxidation – variables – peak temperature, time at ss 5.1.1, 5.2.1
carbon brake oxidation – variables – ram air cooling, s 5.2.2
carbon brake oxidation – variables – time of exposure to contaminant, s 5.2.10
carbon brake oxidation – variables – urea based RDP, s 5.2.6
carbon brake oxidation – variables – wheel brake structure, s 5.2.1

carbon brake oxidation – variables – wind, s 5.2.1

carbon brake oxidation, Rationale at p 1

catalytic oxidation – definition, s 2.2

cleaning solvent – definition, s 2.2

carbon brake contamination. See carbon brake contamination
definition – aircraft deicing fluid. See definition – deicing fluid
definition – aircraft hydraulic fluid, s 2.2
definition – aircraft lubricant, s 2.2
definition – carbon brake antioxidant treatment, s 2.2
definition – carbon brake friction and wear modifier, s 4.2.2
definition – carbon brake, s 2.2
definition – catalytic oxidation. See definition – oxidation, catalytic
definition – cleaning solvent, s 2.2
definition – deicing fluid, s 2.2
definition – disinfectant, s 2.2
definition – fire extinguishing agent, s 2.2
definition – hygroscopic, s 2.2
definition – lubricant, aircraft, s 2.2
definition – oxidation [of carbon], s 2.2
definition – oxidation, catalytic, s 2.2
definition – oxidation, thermal, s 2.2.
definition – runway anti-icing/deicing solids and fluids, s 2.2
definition – temperature indication markers, s 2.2
definition – thermal oxidation, s 2.2.
definition – tribology, s 2.2
deficing fluid – definition, s 2.2
disinfectant – definition, s 2.2
fire extinguishing agent – definition, s 2.2
hydraulic fluid – effect on carbon brake, s 4.2.1 note
hygroscopic – definition, s 2.2
lubricant, aircraft – definition, s 2.2
oxidation [of carbon] – definition, s 2.2
oxidation, thermal, s 2.2
RDP – catalytic oxidation of carbon brakes, Rationale at p 1, s 1
RDP – effect on carbon brakes, Rationale at p 1
RDP – market introduction history, Rationale at p 1, s 5.2.6
RDP – oxidation of carbon brakes, Rationale at p 1, s 1,
runway anti-icing/deicing solids and fluids – definition, s 2.2

AIR5490A, in section 2.2, defines hygroscopic as absorbs liquid. Hygroscopic is usually defined as the property of a substance that takes up and retains moisture.
AIR5567A Test Method for Catalytic Brake Oxidation

Issued 2015-08-17 by SAE A-5A.

This test method provides stakeholders including fluid manufacturers, brake manufacturers, aircraft constructors, aircraft operators and airworthiness authorities with a relative assessment of the effect of runway deicing products on carbon brake oxidation. This simple test is only designed to assess the relative effects of runway deicing products by measuring mass change of contaminated and bare carbon samples tested under the same conditions. It is not possible to set a general acceptance threshold oxidation limit based on this test method because carbon brake oxidation is a function of heat sink design and the operating environment.

Keywords:
aircraft carbon brake. See carbon brake
alkali metal salts – effect on carbon brakes, p 1
decarbonized soil – catalyst for carbon brake oxidation, p 1
carbon brake – antioxidant treatment – generic, s 3.2
carbon brake oxidation – catalysis by alkali salts, s 1
carbon brake oxidation – catalysis by RDP, s 1
carbon brake oxidation – effect on mass change, s 1
carbon brake oxidation – effect on weight loss, s 1
carbon brake oxidation – test – antioxidant formulation, generic, s 3.2
carbon brake oxidation – test – antioxidant, application of, s 3.3
carbon brake oxidation – test – carbon coupon selection, s 3.1
carbon brake oxidation – test – coupon oxidation procedure, s 3.5
carbon brake oxidation – test – mean normalized carbon weight loss %, s 4.2
carbon brake oxidation – test – potassium acetate normalized results, s B.3
carbon brake oxidation – test – potassium formate normalized results, s B.3
carbon brake oxidation – test – RDP application to coupon, s 3.4
carbon brake oxidation – test – round robin testing, s B.3
carbon brake oxidation – test – sodium acetate normalized results, s B.3
carbon brake oxidation – test – test result for liquid RDP, s 4.2
carbon brake oxidation – test – test result for solid RDP, s 4.2
carbon brake oxidation – test – test results, s 4
carbon brake oxidation – test – test temperature (550 °C), s 3.5d.
carbon brake oxidation – test – test time (24 h), s 3.5 e.
carbon brake oxidation – test – urea normalized results, s B.3
carbon brake oxidation – test – weight loss %, mean normalized, s 4.2
carbon brake oxidation – test, Title at p 1
carbon brake oxidation – threshold limit – not possible to measure, s 1
RDP – carbon brake oxidation test, p 1
RDP – catalytic oxidation of carbon brakes, p 1
RDP – effect on carbon brakes p 1, s 1
Documents Issued by SAE G-15 Airport Snow and Ice Control

AMS1448B Sand, Airport Snow and Ice Control

This is a stabilized document meaning it is no longer updated by SAE G-15 and is not known to be used actively by air carriers or operators.

It is included in this Guide as, from time to time, questions are asked on the effects of sand upon aircraft components which are discussed briefly in AMS1448B.

Keywords:
sand – aircraft engine, detrimental to, s 1.3
sand – boxed dry, s 3.1
sand – chlorides as contaminant, s 3.2.1
sand – containers, s 5
sand – effect on aircraft engines, s 1.3
sand – free form corrosive agent, s 3.1
sand – free from clay, s 3.1
sand – free from debris, s 3.1
sand – free from organic matter, s 3.1
sand – free from salts, s 3.1
sand – free from stones, s 3.1
sand – gradation, s 3.1.1
sand – impurities, s 3.1
sand – periodic tests, s 4.2.2
sand – preproduction tests, s 4.2.3
sand – quality assurance, s 4
sand – rejection, s 7
sand – report, s 4.5
sand – sampling, s 4.3
sand – specification, title at p 1
sand – use on ramp, s 1.2
sand – use on runway, s 1.2
sand – use on taxiway, s 1.2
sand – washed, s 3.1
sand – washed, s 3.1

Documents Issued by the FAA

FAA Special Airworthiness Information Bulletin SAIB NM-08-27R1 Landing gear: Catalytic Oxidation of Aircraft Carbon Brakes due to Runway De-icing (RDI) Fluids

Issued 2008-12-31 by the FAA.
This bulletin informs aircraft owners and operators of the deleterious effect of alkali organic salt based runway deicing products on aircraft with carbon brakes. The alkali moiety of the organic salts is known to catalyze oxidation of the carbon with accompanying possible brake failure. The FAA recommends detailed visual inspection of carbon brake stators and rotors, looking for obvious damage. Depending on wheels removal frequency and findings, more frequent inspections may be appropriate to prevent reduction of brake effectiveness or brake failure.

Keywords:
carbon brake – inspection frequency, pp 2–3
carbon brake – inspection of rotor, pp 2–3
carbon brake – inspection of stator, pp 2–3
carbon brake contamination – detection – visual – carbon chips, p 2
carbon brake contamination – detection – visual – crushed carbon, p 2
carbon brake contamination – detection – visual – damaged carbon, p 2
carbon brake contamination – detection – visual – debris, p 2
carbon brake contamination – detection – visual – flaked carbon, p 2
carbon brake contamination – detection – visual – frayed carbon, p 2
carbon brake contamination – detection – visual – missing carbon, p 2
carbon brake contamination – detection – visual – soft carbon, p 2
carbon brake contamination – detection – visual p 2
carbon brake contamination – effect – brake failure during aborted takeoff, p 2
carbon brake contamination – effect – brake failure, p 3
carbon brake contamination – effect – dragged brake, p 2
carbon brake contamination – effect – overheated brakes, p 2
carbon brake contamination – effect – vibrations, p 2
carbon brake contamination – process, pp 1-2
carbon brake contamination – source – catalyst – alkali metal based RDP, p 1
carbon brake contamination – source – catalyst – potassium acetate, p 1
carbon brake contamination – source – catalyst – potassium formate, p 1
carbon brake contamination – source – catalyst – RDP, p 1
RDP – catalytic oxidation of carbon brakes, p 1
RDP – oxidation of carbon brakes, p 1

Documents Issued by Transport Canada

Transport Canada, Catalytic Oxidation of Aircraft Carbon Brakes due to Runway De-icing (RDI) Fluids, Service Difficulty Advisory AV-2009-03

Issued 2009-06-26 by Transport Canada.

This advisory informs aircraft owners and operators of the deleterious effect of alkali organic salt based runway deicing products on aircraft with carbon brakes. The alkali moiety of the organic salts is known to catalyze oxidation of the carbon with accompanying possible brake failure or
dragged bake and subsequent overheat. Transport Canada recommends detailed visual inspection of carbon brake stators and rotors at each landing gear wheel removal, looking for obvious damage.

Keywords:
carbon brake – inspection frequency, p 2
carbon brake – inspection of rotor, p 2
carbon brake – inspection of stator, p 2
carbon brake contamination – detection – visual – carbon chips, p 2
carbon brake contamination – detection – visual – crushed carbon, p 2
carbon brake contamination – detection – visual – damaged carbon, p 2
carbon brake contamination – detection – visual – flaked carbon, p 2
carbon brake contamination – detection – visual – missing carbon, p 2
carbon brake contamination – detection – visual – soft carbon, p 2
carbon brake contamination – effect – brake degradation, p 1
carbon brake contamination – effect – brake failure during aborted takeoff, p 1
carbon brake contamination – effect – brake failure, p 1
carbon brake contamination – effect – dragged brake, p 1
carbon brake contamination – effect – overheated brakes, p 1
carbon brake contamination – effect – vibrations, p 1
carbon brake contamination – process, p 1
carbon brake contamination – source – catalyst – alkali metal based RDP, p 1
carbon brake contamination – source – catalyst – potassium acetate, p 1
carbon brake contamination – source – catalyst – potassium formate, p 1
carbon brake contamination – source – catalyst – RDP, p 1
RDP – catalytic oxidation of carbon brakes, p 1
RDP – oxidation of carbon brakes, p 1

Documents Issued by EASA

EASA Safety Information Bulletin SIB No.: 2018-01 Information on Materials Used for Runway and Taxiway De/Anti-icing

Issued 2018-01-09 by EASA.

Alkali organic salt based runway deicing products have deleterious effects on aircraft carbon brakes. The alkali organic salts penetrate carbon brakes lowering the oxidation temperature of the carbon resulting in structural deterioration of carbon discs, reducing efficiency and long-term efficiency of the brakes. EASA believes aircraft operators should be aware of the nature of the runway deicing products used at airports to assess exposure of the brakes to the alkali organic salts and adjust maintenance programs. This information should be noted in SNOWTAM or in the Aeronautical Information Publication (AIP).

Keywords
AIP reporting – RDP, p 1
EASA Safety Information Bulletin SIB No.: 2008-19R2 Catalytic Oxidation of Aircraft Carbon Brakes due to Runway De-icers

Revised 2013-04-23 by EASA.

This bulletin informs aviation stakeholders of the deleterious effect of alkali organic salt based runway deicing products on aircraft with carbon brakes. The alkali moiety of the organic salts is known to catalyze oxidation of the carbon with accompanying possible brake failure or dragged bake and subsequent overheat. EASA recommends detailed visual inspection of carbon brake stators and rotors at each landing gear wheel removal, looking for obvious damage. EASA further raises issues of cadmium and aluminum corrosion of landing gear joints and of electrical wire bundles, particularly those using Kapton® insulation, caused by alkali organic salts.

Keywords:
alkali organic salts – effect on aluminum, p 1
alkali organic salts – effect on cadmium, p 1
alkali organic salts – effect on carbon brakes, p 1
alkali organic salts – effect on Kapton insulation, p 2
alkali organic salts – effect on landing gear, p 2
alkali organic salts – effect on wire bundles, p 2
carbon brake – inspection frequency, p 3
carbon brake – inspection of rotor, p 3
carbon brake – inspection of stator, p 3
carbon brake contamination – detection – visual – carbon chips, p 3
carbon brake contamination – detection – visual – crushed carbon, p 3

124 Trademark of E. I. du Pont de Nemours and Company.
Runway Deicing Documents – Issued by the FAA, Transport Canada and EASA

carbon brake contamination – detection – visual – damaged carbon, p3
carbon brake contamination – detection – visual – debris, p 3
carbon brake contamination – detection – visual – flaked carbon, p 3
carbon brake contamination – detection – visual – frayed carbon, p 3
carbon brake contamination – detection – visual – missing carbon, p 3
carbon brake contamination – detection – visual – soft carbon, p 3
carbon brake contamination – detection – visual p 3
carbon brake contamination – effect – brake degradation, p 1
carbon brake contamination – effect – brake failure during aborted takeoff, pp 1–2
carbon brake contamination – effect – brake failure, pp 1–2
carbon brake contamination – effect – dragged brake, p 1
carbon brake contamination – effect – overheated brakes, p 1
carbon brake contamination – effect – vibrations, p 2
carbon brake contamination – process, p 1
carbon brake contamination – source – catalyst – alkali metal based RDP, p 1
carbon brake contamination – source – catalyst – potassium acetate, p 1
carbon brake contamination – source – catalyst – potassium formate, p 1
carbon brake contamination – source – catalyst – RDP, p 1
potassium acetate. See also alkali organic salts
potassium formate. See also alkali organic salts
RDP – aluminum corrosion, p 2
RDP – cadmium corrosion, p 2
RDP – catalytic oxidation of carbon brakes, p 1
RDP – electrical wire bundle degradation, Kapton® insulated, p 2
RDP – electrical wire bundle degradation, p 2
RDP – oxidation of carbon brakes, p 1
sodium acetate. See also alkali organic salts
sodium formate. See also alkali organic salts

EASA AMC1 ADR.OPS.C010 Pavements, Other Ground Surfaces, and Drainage

Issued 2017 by EASA.

This short document recommends to airport operators to maintain the good friction of paved runway. Specifically, it recommends removing dust, sand, oil, rubber deposits as rapidly and as completely as possible.

Keywords:
aprons, s (a)
dust, s (a)
friction, runway, ss (a), (d)
mud, s (a)
pavement, Title
rubber deposits, s (a)
ramp, s (a)
rampway friction, ss (a), (d)
sand, s (a)
taxiways, s (a)
Alkali organic salts used in runway deicing products (RDP), catalytically reduce the temperature at which aircraft brakes undergo oxidation. Catalytic oxidation of the carbon brakes discs results in the mechanical and structural degradation of the brakes. This leads to a reduced service life of the brakes and in some instances could result in brake fires or failures. The author recommends that airlines, airports, regulators and legislators engage in discussions to change the current practice of using alkali organic salts to maintain and improve aviation safety.

Keywords:
alkali organic salts – effect on carbon brakes, pp 19–24
carbon brake – advantages – better wear, p 20
carbon brake – advantages – high temperature stability, p 20
carbon brake – advantages – reuse of worn carbon discs, p 20
carbon brake contamination – effect – brake degradation, p 20
carbon brake contamination – effect – brake fire, p 23
carbon brake contamination – effect – brake softening, p 20
carbon brake contamination – effect – debris, p 24
carbon brake contamination – effect – decreased service life, p 20
carbon brake contamination – effect – flight cancellation, p 24
carbon brake contamination – effect – flight delays, p 24
carbon brake contamination – effect – foreign object damage, p 24
carbon brake contamination – effect – mechanical degradation, p 20
carbon brake contamination – effect – structural degradation, p 20
carbon brake contamination – landing, p 20
carbon brake contamination – process, p 19
carbon brake contamination – source – catalyst – alkali metal based RDP, p 19
carbon brake contamination – source – catalyst – alkali metal based RDP, p 19
carbon brake contamination – taking off, p 20
carbon brake contamination – taxiing, p 20
carbon brake oxidation – catalytic vs thermal, p 19
carbon brake oxidation – exposure time to alkali, p 20
carbon brake oxidation – exposure to ADF – insignificant contribution, p 19
carbon brake oxidation – exposure to alkali based RDP – significant contribution, p 19
carbon brake oxidation – exposure to glycol based RDP – no catalytic oxidation, p 19
carbon brake oxidation – exposure to urea RDP – no catalytic oxidation, p 19
carbon brake oxidation – history of, pp 19–20
carbon brake oxidation – mitigation – anti-oxidant brake coatings, p 24
carbon brake oxidation – mitigation – lower application rates for RDP, p 24

125 (2014) 53 Q01 Boeing Aero Magazine 19, online:<
carbon brake oxidation – mitigation – lowering of brake temperature, p 24
carbon brake oxidation – mitigation – mechanical snow removal, p 24
carbon brake oxidation – mitigation – proper landing points, p 24
carbon brake oxidation – mitigation – proper touchdown speeds, p 24
carbon brake oxidation – mitigation – use of wheel covers, p 24
carbon brake oxidation – oxidation rate – unpredictable, p 20
potassium acetate. See also alkali organic salts
potassium formate. See also alkali organic salts
RDP – oxidation of carbon brakes, pp 19–24
sodium acetate. See also alkali organic salts
sodium formate. See also alkali organic salts
Frequently Asked Questions

1. What are the differences between the FAA and Transport Canada (TC) Holdover Time Guidelines?126

The FAA and Transport Canada Holdover Time (HOT) Guidelines are derived from the same data set. There are some differences:

- **Snowfall intensities.** The snowfall intensities as a function of prevailing visibility tables are significantly different.

- **Very light snow cells.** The TC tables provide one holdover time in each very light snow cell which is based on a rate of 4 g/dm²/h; the FAA tables provide two values in each cell based on rates of 3 and 4 g/dm²/h. Holdover time tables impacted: all.

- **Snow cells.** TC caps snow holdover times at 2 hours; FAA caps snow holdover times at 3 hours. This results in different holdover times in some cases. Holdover time tables impacted: select Type II and Type IV fluid specific and Type IV generic.

- **Light freezing rain “-3°C and above” and “below -3 to -6°C” cells.** The TC Type I holdover time tables give holdover times for these cells based on testing conducted at -6°C; the FAA Type I holdover time tables give holdover times for these cells based on testing conducted at -10°C. Holdover time tables impacted: Type I.

The HOT Guidelines must be read with their respective accompanying documents. For the FAA it is the *FAA Notice N 8900.525 Revised FAA–Approved Deicing Program Updates, Winter 2019–2020* and for TC, *Transport Canada Guidelines for Aircraft Ground Icing Operations TP 14052E, 4th ed, August 2019*. These two documents are significantly different.

126 Information provided by Stephanie Bendickson of APS Aviation with authorization by Antoine Lacroix of Transport Canada. Thank you.
2. **When does any SAE standard (AMS, AS, ARP, AIR) become effective?**

It becomes effective on the day of publication unless the standard states an effective date. There is no grace period.

Examples:
AMS14315D and AMS1431E only have publication dates and no separate effective date. Therefore they became effective on their respective publication dates.

AMS1435D became effective on 2018-11-02
AMS1431E became effective on 2018-10-24

3. **Does a manufacturer need to retest to all the technical requirements according the latest version of the Aerospace Material Specification (AMS)?**

My understanding is no; my answer is based on custom and purpose of the SAE standards in general, and of Aerospace Material Standards in particular.

Only the tests for which the technical requirements have changed need to be performed. Otherwise every time a specification is issued, all tests would have to be redone entirely. That would be expensive and inefficient. The purpose of issuing a revised version of a specification is to update whatever has been changed and not to force an entire requalification. For example, sometimes, a caution note will be added and none of the technical requirements change; in those instances, there is no need to retest the product.

4. **Is it necessary to wait for the result of the long term stability test before offering for sale a product according to a given AMS specification?**

The purchaser can waive this requirement until the results are known. It is generally understood and usual that purchasers will waive long term stability requirement until the results become available. The testing laboratory will generally state on the qualification report that the long term stability test is under way.

5. **Can a purchaser waive a requirement?**

There are provisions usually in AMS standards for a purchaser to waive a requirement. For instance see section 7 of AMS1431E and of AMS1435C:
7. REJECTIONS
Product not conforming to this specification, or to modifications authorized by purchaser, will be subject to rejection.

The words “modifications authorized by the purchaser” would include waiving of a requirement. If the purchaser waives a requirement, it should be understood that the purchaser has the required competence and or authority, particularly if regulated, to waive the requirement.

6. Are residual fluid and fluid residue the same?
No. Residual fluid refers to Type I, II, III or IV fluid that is left on the surface of the aircraft during flight or after flight.

Fluid residue is usually Type II, III or IV that has dried up in aerodynamically quiet areas of the aircraft. The dried up residue can rehydrate when exposed to rain and humidity to form a gel that can freeze and impede the movement of control surfaces.
List of Preferred Words and Expressions

<table>
<thead>
<tr>
<th>Preferred</th>
<th>Avoid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3-propanediol</td>
<td>1,3-Propanediol</td>
</tr>
<tr>
<td>aircraft surface coating</td>
<td>aircraft coating</td>
</tr>
<tr>
<td>aircraft</td>
<td>airplane</td>
</tr>
<tr>
<td>airport</td>
<td>aerodrome(^{127})</td>
</tr>
<tr>
<td>anti-icing code</td>
<td>deicing/anti-icing code</td>
</tr>
<tr>
<td>category specification</td>
<td>detail specification</td>
</tr>
<tr>
<td>cockpit windows</td>
<td>flight deck windows</td>
</tr>
<tr>
<td>cockpit windows</td>
<td>windscreen</td>
</tr>
<tr>
<td>deicing</td>
<td>de-icing</td>
</tr>
<tr>
<td>deicing/anti-icing fluid</td>
<td>de-/anti-icing fluid</td>
</tr>
<tr>
<td>dewpoint</td>
<td>dew point</td>
</tr>
<tr>
<td>diethylene glycol</td>
<td>Diethylene Glycol</td>
</tr>
<tr>
<td>drum</td>
<td>barrel</td>
</tr>
<tr>
<td>effluent</td>
<td>runoff</td>
</tr>
<tr>
<td>engines-on</td>
<td>engines on</td>
</tr>
<tr>
<td>engines-on</td>
<td>engines running</td>
</tr>
<tr>
<td>ethylene glycol</td>
<td>Ethylene Glycol</td>
</tr>
<tr>
<td>flaps and slats</td>
<td>slats and flaps</td>
</tr>
<tr>
<td>flightcrew</td>
<td>cockpit crew</td>
</tr>
<tr>
<td>flightcrew</td>
<td>flight crew</td>
</tr>
<tr>
<td>foundation specification</td>
<td>base specification</td>
</tr>
<tr>
<td>freezing point buffer</td>
<td>buffer</td>
</tr>
<tr>
<td>freezing point buffer</td>
<td>freeze point buffer</td>
</tr>
<tr>
<td>freezing point buffer</td>
<td>freeze point temperature buffer</td>
</tr>
<tr>
<td>freezing point</td>
<td>freeze point</td>
</tr>
<tr>
<td>frost point</td>
<td>frostpoint</td>
</tr>
<tr>
<td>gate</td>
<td>stand</td>
</tr>
<tr>
<td>ground crew</td>
<td>ground personnel</td>
</tr>
<tr>
<td>highest on-wing viscosity</td>
<td>maximum on-wing viscosity</td>
</tr>
<tr>
<td>hoarfrost</td>
<td>hoar frost</td>
</tr>
<tr>
<td>HOWV(^{128})</td>
<td>MOWV</td>
</tr>
<tr>
<td>ice, snow and frost</td>
<td>snow, ice and frost</td>
</tr>
<tr>
<td>in-flight (adjective)</td>
<td>in flight</td>
</tr>
<tr>
<td>in-flight ice accretion</td>
<td>impact ice</td>
</tr>
<tr>
<td>infrared</td>
<td>infra-red</td>
</tr>
<tr>
<td>liter</td>
<td>litre</td>
</tr>
<tr>
<td>meter</td>
<td>metre</td>
</tr>
</tbody>
</table>

\(^{127}\) Aerodrome is used in the expression “Terminal Aerodrome Forecast” (TAF).

\(^{128}\) See footnote 5.
message board
pilot-in-command
pilot-in-command
pilot-in-command
post deicing/anti-icing check
post deicing/anti-icing check
post deicing/anti-icing check
pre-deicing process
pre-deicing process
pre-deicing process
pre-takeoff contamination check
pre-takeoff contamination check
pre-takeoff contamination check
pre-takeoff
pre-takeoff
program
propylene glycol
rehydrated
rotorcraft
safety data sheet
SDS
service provider
takeoff
takeoff
tote
walk-around

signboard
commander
pilot in command
Pilot-in-Command
post application check
post deicing check
post-deicing check
pre-deicing step
pre-step
pre-takeoff contamination check
pre-takeoff contamination check
pretakeoff contamination inspection
pre takeoff
pre-takeoff
programme
Propylene Glycol
re-hydrated
helicopter
material safety data sheet
MSDS
FBO
take off
take-off
1 m³ container
walk around
Figure 2 Runway Deicing Documents

Testing Procedures
- AIR6130A Cadmium Plate Corrosion Test
- AIR6170A Ice Melting Method
- AIR6172A Ice Undercutting Method
- AIR6211A Ice Penetration Method

Material Specification
- AMS1431E Solid RDP
- AMS1435D Liquid RDP

Related Specification
- AIR5490A Carbon Brake Contamination

Guidance
- EASA, FAA, Transport Canada, Boeing
Index

References are to page numbers.

1,3-propanediol. See Glycol, Non-conventional – 1,3-propanediol
14 CFR § 121.629, 132, 146
14 CFR § 139, 150
14 CFR 77 Subpart C, 101
abbreviations, 15
AC 120-112, 148
AC 120-60B, 146
AC 150/5300-13, 99, 101
AC 150/5300-14, 101
AC 150/5300-14C, 150
ACARS – definition, 99
accident – Air Florida Flight 90, 21
accident – Air Ontario Flight 1363, 22
accident – Dryden, 22
accident – Fond-du-Lac, 23
accident – Iberia IB3195 collision at Munich airport, 24
accident – Royal Air Maroc collision at Montreal (Mirabel) airport, 24
accident – USAir Flight 405, 23
accident – West Wind Flight 282, 23
accident rate, aircraft ground icing catastrophic, 77
accidents, aircraft ground icing catastrophic – collision with deicing vehicle, 24
accidents, ground icing – catastrophic – rate, 77
accidents, ground icing – categories – collision with deicing vehicle, 21
accidents, ground icing – categories – detected frozen contamination but ignored, 21, 77
accidents, ground icing – categories – engine icing after deicing, 21
accidents, ground icing – categories – fluid failure after deicing, 21, 77
accidents, ground icing – categories – improper procedure, 21
accidents, ground icing – categories – systemic errors, 21
accidents, ground icing – categories – undetected frozen contamination, 21, 77
accidents, ground icing – categories – undetected frozen contamination after deicing, 77
accidents, ground icing – historical data, 77
accountable executive – definition, 112
accountable person – definition, 112
acronyms, 15
active frost. See frost – active
ADF, spent. See spent deicing fluid, see also deicing facility – spent deicing fluid
Adrian, Philip, 201
advancing contact angle. See contact angle, advancing
AEA recommendations – publication discontinuation, 187
aerodynamic acceptance – definition, 61, 69
aerodynamic acceptance test, 39, See also Type II/III/IV – aerodynamic acceptance. See also Type I – aerodynamic acceptance
aerodynamic acceptance test – BLDT, 37
aerodynamic acceptance test – BLDT – Bernoulli equation, 37
aerodynamic acceptance test – BLDT – calculation, 37
aerodynamic acceptance test – BLDT, dry – at 35 m/s – 3.3 mm, 37
aerodynamic acceptance test – BLDT, dry – at 65 m/s – 3.0 mm, 37
aerodynamic acceptance test – Boeing history, 34
aerodynamic acceptance test – Bombardier (de Havilland) history, 34
aerodynamic acceptance test – calibration requirements, 37
aerodynamic acceptance test – commuter aircraft, 37
aerodynamic acceptance test – continued acceptance, 37
aerodynamic acceptance test – definition, 161
aerodynamic acceptance test – description, 37
aerodynamic acceptance test – development by Boeing, 34
aerodynamic acceptance test – development by de Havilland, 34
aerodynamic acceptance test – facility competency, 37
aerodynamic acceptance test – facility independence, 38
aerodynamic acceptance test – facility independence from fluid manufacturer, 37
aerodynamic acceptance test – facility qualification, 38
aerodynamic acceptance test – facility qualification frequency, 38
aerodynamic acceptance test – facility requirements, 38
aerodynamic acceptance test – fluid elimination – Type II/III/IV high speed ramp – 74%, 38
aerodynamic acceptance test – fluid elimination – Type II/III/IV low speed ramp – 57%, 38
aerodynamic acceptance test – fluid formulation change, 38
aerodynamic acceptance test – fluid from licensee, 38
aerodynamic acceptance test – fluid property change, 38
aerodynamic acceptance test – fluid residual thickness – Type I high speed ramp – 600 microns, 38
aerodynamic acceptance test – fluid residual thickness – Type I low speed ramp – 400 microns, 38
aerodynamic acceptance test – general description, 34
aerodynamic acceptance test – high and low speed ramp on Type I and Type III, 34
aerodynamic acceptance test – high speed – description, 37
aerodynamic acceptance test – high speed aircraft – ≥ 100 knots and > 20 s, 38
aerodynamic acceptance test – high speed ramp, 38
aerodynamic acceptance test – high speed ramp – 2.6 m/s², 38
aerodynamic acceptance test – high speed ramp – 25 s, 38
aerodynamic acceptance test – high speed ramp – 65 m/s, 38
aerodynamic acceptance test – high speed ramp – acceleration, 38
aerodynamic acceptance test – high speed ramp – compensating measures for turbo prop aircraft, 38
aerodynamic acceptance test – high speed ramp – description, 34, 38
aerodynamic acceptance test – high speed ramp – reference fluid, 38
aerodynamic acceptance test – high speed ramp – speed diagram, 38
aerodynamic acceptance test – high speed ramp on Type II and Type IV, 34
aerodynamic acceptance test – initial testing, 38
aerodynamic acceptance test – large transport jet aircraft, 38
aerodynamic acceptance test – licensee fluid, 38
aerodynamic acceptance test – low speed – description, 37
aerodynamic acceptance test – low speed aircraft – 60 to 100 knots and 15 to 20 s, 38
aerodynamic acceptance test – low speed ramp, 38
aerodynamic acceptance test – low speed ramp – acceleration, 38
aerodynamic acceptance test – low speed ramp – description, 34
aerodynamic acceptance test – low speed ramp – reference fluid, 38
aerodynamic acceptance test – low speed ramp – speed diagram, 38
aerodynamic acceptance test – maximum acceptable lift loss for commuter type aircraft with wing mounted propellers (8%), 34
aerodynamic acceptance test – maximum acceptable lift loss for large transport jet aircraft (5.24%), 34
aerodynamic acceptance test – method, 38
aerodynamic acceptance test – non-glycol based fluid, 38
aerodynamic acceptance test – procedure, 38
aerodynamic acceptance test – production sample, 38
aerodynamic acceptance test – report, 38
aerodynamic acceptance test – results, 38
aerodynamic acceptance test – results – high speed ramp, 143, 157
aerodynamic acceptance test – results – low speed ramp, 143, 157
aerodynamic acceptance test – retesting, 38
aerodynamic acceptance test – site. See aerodynamic acceptance test – facility
aerodynamic acceptance test – subset of aerodynamic effect of fluids, 35
aerodynamic acceptance test – test duct frost, 38
aerodynamic acceptance test – test fluid age < 3 months, 38
aerodynamic acceptance test – test fluid final thickness, 38
aerodynamic acceptance test – test fluid HHET, 38
aerodynamic acceptance test – test fluid pH, 39
aerodynamic acceptance test – test fluid pre-cooling, 39
aerodynamic acceptance test – test fluid quantity per run – 1 liter, 39
aerodynamic acceptance test – test fluid refractive index, 39
aerodynamic acceptance test – test fluid requirements, 39
aerodynamic acceptance test – test fluid settling period of 5 minutes, 39
aerodynamic acceptance test – test fluid surface tension, 39
aerodynamic acceptance test – test fluid thickness 2 mm, 39
aerodynamic acceptance test – test fluid unsheared, 39
aerodynamic acceptance test – test fluid viscosity, 39
aerodynamic acceptance test – test fluid WSET (unsheared), 39
aerodynamic acceptance test – test fluid, experimental, 39
aerodynamic acceptance test – test fluid, production, 39
aerodynamic acceptance test – test gas, 39
aerodynamic acceptance test – third party reviewer, 39
aerodynamic acceptance test – Type I, 39
aerodynamic acceptance test – Type I requirements, 42
aerodynamic acceptance test – Type II/III/IV, 39
aerodynamic acceptance test – Type II/III/IV requirement, 50
aerodynamic acceptance test – V2 at least 1.10VS1g, 35
aerodynamic clean surface, description of, 35
aerodynamic effect of asymmetric contamination, 161
aerodynamic effect of contamination, 180
aerodynamic effect of contamination [frozen] – effect on aerodynamic effect of contamination – guidance (TC), 161
aerodynamic effect of fluids – aircraft certification, 183
aerodynamic effect of fluids – aircraft certification, FAA, 155
aerodynamic effect of fluids – bibliography, 35
aerodynamic effect of fluids – compensating measures. See aerodynamic effect of fluids – performance adjustments
aerodynamic effect of fluids – critical point at maximum angle of attack, 35
aerodynamic effect of fluids – critical point during takeoff, 35
aerodynamic effect of fluids – decrease of during ground roll, rotation and climb, 35
aerodynamic effect of fluids – effect of angle of attack, 35
aerodynamic effect of fluids – effect of fuselage geometry, 35
aerodynamic effect of fluids – effect of geometry-limited aircraft, 35
aerodynamic effect of fluids – effect of high lift configuration, 35
aerodynamic effect of fluids – effect of initial climb speed, 35
aerodynamic effect of fluids – effect of leading-edge stall v trailing-edge stall, 35
aerodynamic effect of fluids – effect of OAT on fluid flow-off, 35
aerodynamic effect of fluids – effect of OAT on fluid viscosity, 35
aerodynamic effect of fluids – effect of rotation speed, 35
aerodynamic effect of fluids – effect of speed and time to accelerate to rotation speed, 35
aerodynamic effect of fluids – effect of time to accelerate to climb speed, 35
aerodynamic effect of fluids – effect of wing stall characteristics, 35
aerodynamic effect of fluids – evaluation by Bombardier, 35
aerodynamic effect of fluids – evaluation by Cessna, 35
aerodynamic effect of fluids – evaluation by de Havilland, 35
aerodynamic effect of fluids – evaluation by SAAB, 35
aerodynamic effect of fluids – evaluation methods, 35
aerodynamic effect of fluids – evaluation methods – flight tests, 35
aerodynamic effect of fluids – evaluation methods – methodologies pros and cons, 35
aerodynamic effect of fluids – evaluation methods – process flow chart, 35
aerodynamic effect of fluids – evaluation methods – similarity analysis, 35
aerodynamic effect of fluids – evaluation methods – wind tunnel tests, 35
aerodynamic effect of fluids – fluid freezing in flight, residual, 132
aerodynamic effect of fluids – fluid presence at time of rotation, 35, 132
aerodynamic effect of fluids – not addressed by AS5900 – control forces, 155
aerodynamic effect of fluids – on aircraft aerodynamic performance, 35
aerodynamic effect of fluids – on aircraft responsiveness to pitch control input, 155
aerodynamic effect of fluids – on aircraft with non-powered flight controls – failure to rotate, 132
aerodynamic effect of fluids – on CLmax, 35
aerodynamic effect of fluids – on corporate jet, small – failure to rotate, 132
aerodynamic effect of fluids – on decrease of angle-of-attack for stall, 183
aerodynamic effect of fluids – on drag, 35, 183
aerodynamic effect of fluids – on elevator control force, 35, 132
aerodynamic effect of fluids – on elevator effectiveness, 35, 132
aerodynamic effect of fluids – on handling qualities, 35
aerodynamic effect of fluids – on hinge moment, 35
aerodynamic effect of fluids – on lateral control, 35
aerodynamic effect of fluids – on lift, 183
aerodynamic effect of fluids – on lift decrease, 35
aerodynamic effect of fluids – on loss of lift coefficient at normal angle-of-attack, 183
aerodynamic effect of fluids – on low rotation speed aircraft, 183
aerodynamic effect of fluids – on low takeoff speed aircraft, 155
aerodynamic effect of fluids – on mass balance of control surfaces, 183
aerodynamic effect of fluids – on maximum lift coefficient decrease, 184
aerodynamic effect of fluids – on Mitsubishi YS-11, 35
aerodynamic effect of fluids – on pitching moment, 184
aerodynamic effect of fluids – on small corporate jet, small – failure to rotate, 132
aerodynamic effect of fluids – on specific aircraft, 36
aerodynamic effect of fluids – on specific aircraft (AS6852) – subset of aerodynamic effect of fluids, 35
aerodynamic effect of fluids – on specific aircraft, reasons to evaluate – additional requirements beyond AAT, 35
aerodynamic effect of fluids – on specific aircraft, reasons to evaluate – different from Boeing 737-200ADV, 35
aerodynamic effect of fluids – on specific aircraft, reasons to evaluate – report of high stick forces during rotation, 35
aerodynamic effect of fluids – on specific aircraft, reasons to evaluate – report of high wheel forces during rotation, 36
aerodynamic effect of fluids – on stall speed increase, 184
aerodynamic effect of fluids – on stick/column forces, 36, 132
aerodynamic effect of fluids – on tab effectiveness, 36, 132
aerodynamic effect of fluids – on tail surfaces, 132
aerodynamic effect of fluids – on turbo-prop aircraft, slow rotation speed – failure to rotate, 132
aerodynamic effect of fluids – on unpowered longitudinal flight control, 155, 184
aerodynamic effect of fluids – on operational limitations – delayed response to pilot pitch control input, 155
aerodynamic effect of fluids – on operational limitations – higher than normal control column back pressure, 155
aerodynamic effect of fluids – on operational limitations – increased rotation speed, 155
aerodynamic effect of fluids – on operational limitations – pilot force to initiate rotation, 155
aerodynamic effect of fluids – on operational limitations – takeoff flap setting limitations, 155
aerodynamic effect of fluids – performance adjustments, 36, See also Type II/III/IV – aircraft operational considerations
aerodynamic effect of fluids – performance adjustments – attitude, 36
aerodynamic effect of fluids – performance adjustments – braking energy, 36
aerodynamic effect of fluids – performance adjustments – pitch rate, 36
aerodynamic effect of fluids – performance adjustments – takeoff distance, 36
aerodynamic effect of fluids – performance adjustments – takeoff flap settings, 36
aerodynamic effect of fluids – performance adjustments – takeoff speeds, 36
aerodynamic effect of fluids – performance adjustments – takeoff technique, 36
aerodynamic effect of fluids – performance adjustments – takeoff weight, 36
aerodynamic effect of fluids – performance adjustments – to ensure adequate safety margins, 36
aerodynamic effect of fluids – rejected takeoff, 155
aerodynamic effect of fluids – rotation difficulties on aircraft with unpowered pitch control surfaces, 36
Guide to Aircraft Ground Deicing – Issue 12

aerodynamic effect of fluids – superset of aerodynamic acceptance test (AS5900), 36
aerodynamic effect of fluids – on specific aircraft (AS6852), 36
aerodynamic effect of fluids – transitory nature of, 36
aerodynamic effect of fluids – wave roughness introduced by flow-off, 36, 184
aerodynamic effect of freezing fog, 180
aerodynamic effect of frost, 180
daerodynamic effect of fuselage contamination, 180
daerodynamic effect of leading-edge roughness, 161
daerodynamic effect of roughness, 161
daerodynamic effect of tail plane contamination, 180
daerodynamic effect of wing contamination, 180
aerodynamic effect on specific aircraft – Boeing 737-200ADV, 36
aerodynamic flow-off characteristics, acceptability of, 39
aerodynamic flow-off requirement, 39
aerodynamically quiet area – definition, 181
aerodynamically quiet area – superset of aerodynamically quiet cavities, 180
aerodynamically quiet area – superset of aerodynamically quiet surface, 180
aerodynamically quiet cavity – definition, 181
aerodynamically quiet cavity – drainage issues, 181
aerodynamically quiet surface – definition, 181
Aerospace Information Report. See AIR
Aerospace Material Specification. See AMS
Aerospace Recommended Practice. See ARP
AIP reporting – RDP, 221
AIR, 27
air bubble removal by centrifugation, 60
Air Florida accident, 21
Air Florida Flight 90, 21
air heaters. See contamination [frozen] – removal with air heaters
Air Ontario Flight 1363, 22
air operator – responsibility for compliance with clean aircraft concept, 193
air operator – responsibility for deicing/anti-icing process, 193, 198
air operator – responsibility for ground deicing program, 193
air operator – responsibility for operation of the aircraft, 193
air operator – responsibility for quality assurance program, 193
air operator – responsibility for verification of deicing/anti-icing process, 193
air operator (TC) – definition, 161
air operator certificate (TC) – definition, 161
air stream. See forced air
AIR5490A, 212
AIR5567A, 217
AIR5704, 59
AIR6130, 209
AIR6170A, 210
AIR6172, 211
AIR6211A, 212
AIR6232, 31
AIR6284, 109

Airbus, 26
Airbus A220 spray area diagram, 112
Airbus A220-100 dimensions, 112
Airbus A220-200 dimensions, 112
Airbus A300 spray area diagram, 112
Airbus A310 dimensions, 112
Airbus A310 spray area diagram, 112
Airbus A318/319 spray area diagram, 112
Airbus A318/319/320/321 dimension, 112
Airbus A320 spray area diagram, 112
Airbus A321 spray area diagram, 112
Airbus A330 dimensions, 112
Airbus A330 spray area diagram, 112
Airbus A340 dimensions, 112
Airbus A340 spray area diagram, 112
Airbus A350 spray area diagram, 112
Airbus A350-1000 dimensions, 112
Airbus A380 dimensions, 112
Airbus A380 spray area diagram, 112
Airbus A400M spray area diagram, 112
Airbus AIMS 09-00-002, 31
carbon brake. See carbon brake
category. See category, aircraft
certification, 156
certification – test aircraft, 184
certification – Type II/III/IV – AFM, 155
certification – Type II/III/IV – AFM – accelerate distance, 184
certification – Type II/III/IV – AFM – aircraft specific limitations, 155, 184
certification – Type II/III/IV – AFM – list of approved Types of fluid, 155
certification – Type II/III/IV – AFM – list of prohibited fluids, 155
certification – Type II/III/IV – AFM – LOUT limitations, 155
certification – Type II/III/IV – AFM – non-normal operating procedures, 184
certification – Type II/III/IV – AFM – normal operating procedures, 184
certification – Type II/III/IV – AFM – performance adjustments, 184
certification – Type II/III/IV – AFM – stop distance, 184
certification – Type II/III/IV – AFM – takeoff distance, 184
certification – Type II/III/IV – AFM – takeoff run, 184
certification – Type II/III/IV – AFM – takeoff speed increase, 155, 184
certification – Type II/III/IV – buffeting, 155, 184
certification – Type II/III/IV – controllability, 155
certification – Type II/III/IV – effect in visibility of windshield, 184
certification – Type II/III/IV – effect of heated surfaces, 155, 184
certification – Type II/III/IV – effect of ice protection systems, 155
certification – Type II/III/IV – effect on air data probes, 155, 184
certification – Type II/III/IV – effect on airspeed probe, s 3.7, 184

238
aircraft certification – Type II/III/IV – effect on altitude probe, 184
aircraft certification – Type II/III/IV – effect on angle-of-attack sensors, 184
aircraft certification – Type II/III/IV – effect on APU, 155, 184
aircraft certification – Type II/III/IV – effect on engine anti-ice system, 184
aircraft certification – Type II/III/IV – effect on environmental control system, 155, 184
aircraft certification – Type II/III/IV – effect on fluid baking, 155, 184
aircraft certification – Type II/III/IV – effect on temperature probe, 184
aircraft certification – Type II/III/IV – effect on vent blocking, 155
aircraft certification – Type II/III/IV – effect on fluid to be tested, 155, 184
aircraft certification – Type II/III/IV – flight tests, 155, 184
aircraft certification – Type II/III/IV – fluid application, 155, 184
aircraft certification – Type II/III/IV – fluids to be tested, 155, 184
aircraft certification – Type II/III/IV – handling qualities, 155
aircraft certification – Type II/III/IV – ICA, 155
aircraft certification – Type II/III/IV – lift loss determination, 155
aircraft certification – Type II/III/IV – maintenance instructions – aerodynamically quiet area inspections, 155
aircraft certification – Type II/III/IV – maintenance instructions – control balance bay inspections, 155
aircraft certification – Type II/III/IV – maintenance instructions – drain hole inspections, 155, 156
aircraft certification – Type II/III/IV – maintenance instructions – internal control system component inspection, 156
aircraft certification – Type II/III/IV – maintenance instructions – lubrication, 156
aircraft certification – Type II/III/IV – maintenance instructions – residue check frequency, 156
aircraft certification – Type II/III/IV – maintenance instructions – residue detection, 156
aircraft certification – Type II/III/IV – maintenance instructions – residue monitoring, 156
aircraft certification – Type II/III/IV – maintenance instructions – residue removal, 156, 184
aircraft certification – Type II/III/IV – measurement of elevator/horizontal stabilizer gap, 156
aircraft certification – Type II/III/IV – pilot application of longitudinal control forces, 156
aircraft certification – Type II/III/IV – regulatory requirements, 156
aircraft certification – Type II/III/IV – required for aircraft brake release to \(V_R < 30 \text{ s} \), 156
aircraft certification – Type II/III/IV – required for aircraft with reversible longitudinal flight controls, 156
aircraft certification – Type II/III/IV – required for aircraft with \(V_R < 100 \text{ KACS} \), 156
aircraft certification – Type II/III/IV – residue – inspection, 156, 184
aircraft certification – Type II/III/IV – residue – maintenance instructions, 156, 184
aircraft certification – Type II/III/IV – responsiveness to pitch control input, 156
aircraft certification – Type II/III/IV – similarity to previously tested aircraft model, 156
aircraft certification – Type II/III/IV – takeoff angle-of-attack margin tests, 156, 184
aircraft certification – Type II/III/IV – takeoff at fixed pitch angle, 184
aircraft certification – Type II/III/IV – takeoff performance, 156, 184
aircraft certification – Type II/III/IV – test day temperature, 156, 184
aircraft certification – Type II/III/IV – test deicing/anti-icing procedures, 184
aircraft certification – Type II/III/IV – training, 156, 184
aircraft certification – Type II/III/IV – vibration, 156, 184
aircraft certification – Type II/III/IV – viscosity measurement, 156
aircraft coating. See aircraft surface coating
aircraft deicing configuration. See configuration, aircraft deicing
aircraft deicing facility. See deicing facility aircraft deicing fluid. See deicing fluid aircraft deicing pad. See deicing pad aircraft deicing standards, global. See global aircraft deicing standards
aircraft deicing vehicle – self-propelled. See deicing unit aircraft diagram, 112
aircraft ground deicing research reports, 29 aircraft handedness, 112 aircraft hydraulic fluid – definition, 213 aircraft icing, conditions conducive to, 188 aircraft left-hand, 112 aircraft lubricant – definition, 213 aircraft maneuvering area deicing product. See RDP aircraft manufacturer documentation – aircraft deicing procedure, specific, 81 aircraft manufacturer documentation – aircraft surface coating, 81 aircraft manufacturer documentation – check, tactile, 81 aircraft manufacturer documentation – cleaner for cockpit windows, 81 aircraft manufacturer documentation – cold soaked fuel frost exception, 81 aircraft manufacturer documentation – compliance with, 81, 193 aircraft manufacturer documentation – deicing configuration, 81 aircraft manufacturer documentation – engine deicing procedure, 81 aircraft manufacturer documentation – fluid application, 81 aircraft manufacturer documentation – fluid restrictions for aircraft type and model, 42 aircraft manufacturer documentation – fluid temperature limit, 81 aircraft manufacturer documentation – frost exception for fuselage, 81 aircraft manufacturer documentation – frost exception for wings, tail, control surfaces, 81 aircraft manufacturer documentation – list fluid types allowed on aircraft, 61, 69
Guide to Aircraft Ground Deicing – Issue 12

aircraft manufacturer documentation – local frost prevention, 81
aircraft manufacturer documentation – need for tactile check, 81
aircraft manufacturer documentation – salt-based fluid, 81
aircraft manufacturer documentation – Type II/III/IV – residue, 81
aircraft manufacturer recommendation – compliance with. See aircraft manufacturer documentation – compliance with.
aircraft operating manual, 15
aircraft operator – aircraft deicing configuration in absence of flightcrew, 82
aircraft operator – ground crew qualification, 82
aircraft operator – responsibility – adaptation of deicing/anti-icing procedures, 82
aircraft operator – responsibility – deicing/anti-icing procedures, 82
aircraft operator – responsibility – ground deicing programs, 82
aircraft operator – responsibility – management, 82
aircraft operator – responsibility – party assignment for anti-icing code, 82
aircraft operator – responsibility – party assignment for post deicing/anti-icing check, 82
aircraft operator – responsibility – pilot-in-command, 82
aircraft operator – responsibility – special checks, 82
aircraft operator – responsibility – special deicing procedures, 113
aircraft parking area length, 150
aircraft parking area width, 150
aircraft parking area, deicing pad – definition, 151
aircraft right-hand, 113
aircraft skin temperature lower than OAT. See wing temperature lower than OAT
aircraft surface coating, 32
aircraft surface coating – after-market, 31
aircraft surface coating – AMS3090 weathering, 31
aircraft surface coating – comparative endurance time test, 31
aircraft surface coating – compatibility with aircraft surfaces, 31
aircraft surface coating – compatibility with cleaners, 31
aircraft surface coating – compatibility with polishes, 31
aircraft surface coating – compatibility with waxes, 31
aircraft surface coating – definition, 31
aircraft surface coating – durability, 31
aircraft surface coating – effect of acid rain on, 31
aircraft surface coating – effect of detergents on, 32
aircraft surface coating – effect of hydraulic fluid on, 32
aircraft surface coating – effect of jet fuel on, 32
aircraft surface coating – effect of oxidation on, 32
aircraft surface coating – effect of ozone on, 32
aircraft surface coating – effect of Type I/II/III/IV on, 32
aircraft surface coating – effect on aerodynamic performance, 32
aircraft surface coating – effect on drag, 32
aircraft surface coating – effect on endurance time, 32
aircraft surface coating – effect on frost formation, 32
aircraft surface coating – effect on HOT, 32
aircraft surface coating – effect on ice adhesion, 32
aircraft surface coating – effect on inflight ice accretion, 32
aircraft surface coating – effect on thermal conductivity, 32
aircraft surface coating – effect on Type I, 32
aircraft surface coating – effect on Type II/III/IV, 32
aircraft surface coating – hardness, 32
aircraft surface coating – immersion tests, 32
aircraft surface coating – super-hydrophobic – limitation in frost, 32
aircraft surface coating – thickness 1–2 mils, 32
aircraft surface coating – thickness test for Type II/III/IV, 32
aircraft surface coating – weathering, 32
aircraft surface coating – wetting test for Type I, 32
aircraft, turbo-prop high wing – inspection, 132
airfield deicing fluid. See RDP
airline. See aircraft operator airplane. See aircraft
airport authority – responsibility – communications before, during, after deicing, 82
airport authority – responsibility – deicing facilities operability, 82
airport authority – responsibility – environmental regulation compliance, 82
airport authority – responsibility – fluid logistics airside, 82
airport authority – responsibility – health and safety, 82
airport authority – responsibility – message boards, 82
airport authority – responsibility – off gate/CDF/DDF procedures, 82
airport authority – responsibility – taxi and stop guidance, 82
airport authority – responsibility – taxi routing, 82
airport authority – responsibility – unique requirements, 82
airport authority – responsibility – weather support, 82
Airport Certification Manual (US), 151
Airport Improvement Program (US), 151
airport, certificated (FAA), 151
alkali metal salts. See also Non-glycol
alkali metal salts – effect on carbon brakes, 217
alkali organic salt based Type I – effect on Type II/III/IV protection time, 61
alkali organic salt based Type I – exclusion from the fluid list (FAA/TC), 61
alkali organic salt based Type I – guidance (EASA), 187
alkali organic salt based Type I – guidance (FAA), 132
alkali organic salt based Type I – guidance (TC), 161
alkali organic salt based Type I – HOT – invalid, 61
alkali organic salts – aircraft maintenance program, 222
alkali organic salts – catalyst for carbon brake oxidation, 217
alkali organic salts – corrosion of electrical connectors, 201
alkali organic salts – corrosion of hydraulic system components, 201
alkali organic salts – effect on aluminum, 222
alkali organic salts – effect on cadmium, 222
alkali organic salts – effect on carbon brakes, 201, 222, 224
alkali organic salts – effect on Kapton insulation, 222
alkali organic salts – effect on landing gear, 222
alkali organic salts – effect on wire bundles, 222
alkali organic salts – oxidation of carbon brakes, 222
allowance time, 133, See also wind tunnel testing
allowance time – 76% adjusted – flaps and slats deployed, 132, 143, 157
allowance time – 76% adjusted – guidance (FAA), 132
Index

allowance time – definition, 61, 69
allowance time – EG v PG Type IV based fluids, 143, 157
allowance time – end of, 161
allowance time – extension time, 161
allowance time – extension with pretakeoff contamination check – none, 132
allowance time – extension with pretakeoff contamination inspection – none, 162
allowance time – failure mode – aerodynamic and visual, 62, 69
allowance time – guidance (FAA), 132
allowance time – guidance (TC), 162
allowance time – METAR code GR. See METAR code GR
allowance time – METAR code GS. See METAR code GS
allowance time – METAR code SHGS. See METAR code SHGS
allowance time – precipitation – ice pellets and small hail, 69
allowance time – precipitation – ice pellets, light, 132, 143, 157, 162
allowance time – precipitation – ice pellets, light – mixed with freezing drizzle, 132, 143, 157, 162
allowance time – precipitation – ice pellets, light – mixed with freezing rain, 132, 143, 157, 162
allowance time – precipitation – ice pellets, light – mixed with rain, 132, 143, 157, 162
allowance time – precipitation – ice pellets, light – mixed with snow, 143, 157
allowance time – precipitation – ice pellets, moderate, 132, 143, 157, 162
allowance time – precipitation – small hail, 132, 162
allowance time – precipitation – small hail, light, 143, 157
allowance time – precipitation – small hail, moderate, 143, 157
allowance time – precipitation – small hail, moderate – mixed with freezing drizzle, 143, 157
allowance time – precipitation – small hail, moderate – mixed with rain, 143, 157
allowance time – precipitation stops, when, 132, 143, 157, 162
allowance time – pretakeoff contamination check not required, 132
allowance time – pretakeoff contamination check useless, 132
allowance time – purpose, 132
allowance time – rotation speed 100 knots minimum – Type III fluids, 143, 157, 162
allowance time – rotation speed 100 knots minimum – Type IV EG fluids, 143, 157, 162
allowance time – rotation speed 115 knots minimum – Type IV glycol unknown, 143, 157
allowance time – rotation speed 115 knots minimum – Type IV PG fluids, 162
allowance time – rotation speed, minimum, 132
allowance time – sample selection – Type II/IV, 69
allowance time – start of, 132, 162
allowance time – temperature decreasing, 132, 143, 157, 162
allowance time – temperature increasing, 132, 162
allowance time – temperature stable, 132, 162
allowance time – Type I – none, 62, 132, 162
allowance time – Type II – none, 62, 132, 162
allowance time – Type III neat, 62, 133, 143, 157, 162
allowance time – Type III unheated, 133, 143, 157, 162
allowance time – Type IV neat, 62, 133, 143, 157, 162
allowance time – v HOT, 133, 162
allowance time – wind tunnel testing, 62
AMIL, 74, 143, 157
AMIL gel residue tables, 69
AMS, 27
AMS1424 – performance v composition of matter specification, 42
AMS1424 – purpose – minimum requirements for Type I, 62
AMS1424 – recognition – ICAO, 193
AMS1424 – recognition – TC, 162
AMS1424/1, 42, 48, 50, 57
AMS1424/1 – purpose – identity of freezing point depressant, 62
AMS1424/2, 42, 48, 50, 58
AMS1424/2 – purpose – identity of freezing point depressant, 62
AMS1424P, 41
AMS1428 – performance v composition of matter specification, 50
AMS1428 – purpose – minimum requirements for Type II/II/IV fluids, 69
AMS1428 – recognition – ICAO, 193
AMS1428 – recognition – TC, 162
AMS1428/1, 57
AMS1428/1 – purpose – identity of freezing point depressant, 69
AMS1428/2, 58
AMS1428/2 – purpose – identity of freezing point depressant, 69
AMS1428K, 49
AMS1431 RDP ice melting test. See RDP ice melting test
AMS1431 RDP ice penetration test. See RDP ice penetration test
AMS1431 RDP ice undercutting test. See RDP ice undercutting test
AMS1431E, 205
AMS1435 RDP ice melting test. See RDP ice melting test
AMS1435 RDP ice penetration test. See RDP ice penetration test
AMS1435D, 207
AMS1448B, 219
analyses, 35
angle of attack – flow separation at high, 181
angle of attack – flow separation at low, 181
angle, contact. See contact angle
angle, roll-off. See roll-off angle
angle, sliding. See sliding angle
anti-icing – definition, 77, 82, 146, 162, 180, 193
anti-icing code, 82, 97, 147, 188, 189, 193, 200
anti-icing code – definition, 82
anti-icing code – exception for local deicing, 82
anti-icing code – functional definition, 81
anti-icing code – transmission after completion of post deicing/anti-icing check, 82
anti-icing code – transmission to flightcrew, 82
anti-icing fluid – definition, 82, 149, 162, 179, 188
anti-icing fluid – functional description, 113
anti-icing fluid – protection time, limited, 162
anti-icing fluid additives – aquatic toxicity, 113
anti-icing performance – HHET and WSET, 39
anti-icing procedure. See fluid application; fluid application
– anti-icing
anti-icing truck. See deicing unit
Antonov AN-12 dimensions, 113
Antonov AN-124 dimensions, 113
Antonov AN-70 dimensions, 113
Antonov AN-74/AN-74T dimensions, 113
AOS. See alkali organic salt
application equipment. See deicing unit
apron – definition, 162
apron deicing product. See RDP
APRs, 223
APS Aviation, 29, 74, 143, 157
APU fluid ingestion, 113, 162
APU glycol ingestion, 113
APU, running – fluid ingestion – catastrophic failure, 162
APU, running – fluid ingestion – flame out, 162
area, wetted – definition, 113
ARP, 27
ARP1971D, 107
ARP4737H, 29
ARP4902 – recognition – ICAO, 193
ARP4902C, 101
ARP5058A, 110
ARP5149B, 29
ARP5485 – use by FAA to develop HOT, 133
ARP5485B, 74
ARP5646, 29
ARP5660A, 99
ARP5718B, 68
ARP5945 – use by FAA to develop HOT, 133
ARP5945A, 65
ARP6257, 29, 96
ARP6257 – recognition – ICAO, 193
ARP6852C, 34
Arriaga, Michael, 201, 224
AS, 27
AS5537, 97
AS5635, 106
AS5681B, 76
AS5900C, 37
AS5901D, 39
AS6285, 29, 162
AS6285 – recognition – ICAO, 193
AS6285C, 81
AS6286, 29, 162
AS6286 – recognition – ICAO, 193
AS6286 aircraft deicing procedures – precedence of
AS6285 procedures, 113
AS6286A, 111
AS6332, 29, 125
AS6332 – recognition – ICAO, 193
AS9100, 125
AS9968, 58
Association of European Airlines. See AEA
ATC – responsibilities, 82
ATC – winter operations plan, 193
ATC – winter operations plan – flow through rate, 193
ATC – winter operations plan – in controller’s manual, 193
ATC – winter operations plan – shortest taxi time, 193
ATOS, 133
ATR42/ATR72 dimensions, 113
ATR42/ATR72 spray area diagram, 113
audit, 125
audit – documented procedure, 125
audit – self, 162
audit – TC, by, 162
audit checklist (TC), 162
audit checklist (TC) – aircraft deicing/anti-icing
procedures, 185
audit checklist (TC) – aircraft inspection and reporting
procedures, 185
audit checklist (TC) – aircraft specific procedures, 185
audit checklist (TC) – communications with flightcrew, 185
audit checklist (TC) – contamination [frozen], effects of,
185
audit checklist (TC) – contamination [frozen], recognition
of, 185
audit checklist (TC) – coordination with airport authorities,
185
audit checklist (TC) – coordination with ATC, 185
audit checklist (TC) – critical surface identification, 185
audit checklist (TC) – critical surface inspection, 185
audit checklist (TC) – critical surface inspection report, 185
audit checklist (TC) – dispatcher responsibilities, 185
audit checklist (TC) – facilities, adequate, 185
audit checklist (TC) – flightcrew responsibilities, 185
audit checklist (TC) – fluids, composition of, 185
audit checklist (TC) – fluids, effect on aircraft performance
of, 185
audit checklist (TC) – fluids, identification of, 185
audit checklist (TC) – fluids, use of, 185
audit checklist (TC) – FOD, 185
audit checklist (TC) – ground icing operations, send of, 185
audit checklist (TC) – ground icing operations, start of, 185
audit checklist (TC) – ground icing program – activation,
185
audit checklist (TC) – ground icing program – chain of
command, 185
audit checklist (TC) – ground icing program –
dissemination, 185
audit checklist (TC) – ground icing program – publication,
185
audit checklist (TC) – ground icing program – revisions,
186
audit checklist (TC) – ground icing program – service
provider’s v operator’s, 186
audit checklist (TC) – HOT for decision making, 186
audit checklist (TC) – HOT, approval of, 186
audit checklist (TC) – HOT, end of, 186
audit checklist (TC) – HOT, start of, 186
audit checklist (TC) – HOT, use of, 186
audit checklist (TC) – inspection reporting, 186
audit checklist (TC) – management responsibilities, 186
audit checklist (TC) – management supervision, 186
audit checklist (TC) – operational procedures, 186
audit checklist (TC) – operations v maintenance
responsibilities, 186
audit checklist (TC) – operator’s management plan, 186
audit checklist (TC) – person responsible, 186
audit checklist (TC) – personnel, sufficient, 186
audit checklist (TC) – pretakeoff contamination inspection, 186
audit checklist (TC) – representative surfaces, 186
audit checklist (TC) – service providers, supervision of, 186
audit checklist (TC) – service providers, training of, 186
audit checklist (TC) – tactile check, 186
audit checklist (TC) – training – initial, 186
audit checklist (TC) – training – recurrent, 186
audit checklist (TC) – training and testing, 186
audit checklist (TC) – training – initial, 186
audit checklist (TC) – training – recurrent, 186
audit checklist (TC) – training and testing, 186
audit checklist (TC) – weather, 186
audit checklist (TC) – weather, 186
audit evidence – definition, 125
audit pool – DAQCP, 82
audit pool, 82
audit results, 125
audit, internal, 125
audit, external, 125
audit, impartial, 125
audit, objectivity, 125
auditor, 125
BLDT.
biodegradation, effects of, 162
BOD.
Beechcraft B1900 spray area diagram, 113
Beech King Air C90B/C90SE dimensions, 113
Beech King Air B200 dimensions, 113
Beech King Air 350 dimensions, 113
Beechbeejet 400A dimensions, 113
Beechjet 400A dimensions, 113
Beech King Air 350 dimensions, 113
Beech King Air B200 dimensions, 113
Beech King Air C90B/C90SE dimensions, 113
Beechcraft B1900 spray area diagram, 113
BFIU, 25
Brix, 42, 50, 162
booming. See deicing unit – boom
boots, leading edge deicing boot. See boot, deicing
boots, leading edge deicing boot. See boot, deicing
Brix, 42, 50, 162
Brookfield LV viscometer. See viscometer, Brookfield LV
buoyancy. See lifting forces
Buehler test, 50
buffer. See freezing point buffer
buffers, negative. See freezing point buffer – negative
cabin. See deicing unit – basket; deicing unit – cabin, enclosed
cabin windows. See windows, cabin
cadmium plate corrosion test, 209
cadmium plate corrosion test – AMS1431 sample, 210
cadmium plate corrosion test – AMS1435 sample, 210
cadmium plate corrosion test – cleaning of test specimens, 210
cadmium plate corrosion test – criterion for undesirable corrosion effects, 210
cadmium plate corrosion test – gravimetric results, 210
cadmium plate corrosion test – procedure, 210
cadmium plate corrosion test – RDP sample, 210
cadmium plate corrosion test – sample preparation, 210
cadmium plate corrosion test – test coupons, 210
cadmium plate corrosion test – test results, 210
cadmium plate corrosion test – test specimen, 210
cadmium plated aircraft parts – RDP caused corrosion, 210
cadmium plated aircraft parts corrosion test. See cadmium plate corrosion test
Canada Labour Code – mandatory compliance, 162
Canadair RJ100/200 spray area diagram, 114
Bombardier (de Havilland) – aerodynamic acceptance test history, 36
Bombardier 310-100 Continental dimensions, 114
Bombardier Challenger CL600 dimensions, 114
Bombardier CRJ dimensions, 114
Bombardier DHC-8, 36
Bombardier Global Express dimensions, 114
Bombardier Global Express spray area diagram, 114
Bombardier Shorts. See Shorts
bomb. See deicing unit – boom
boot, leading edge deicing boot. See boot, deicing
buffers, negative. See freezing point buffer – negative
cabin. See deicing unit – basket; deicing unit – cabin, enclosed
cabin windows. See windows, cabin
cadmium plate corrosion test, 209
cadmium plate corrosion test – AMS1431 sample, 210
cadmium plate corrosion test – AMS1435 sample, 210
cadmium plate corrosion test – cleaning of test specimens, 210
cadmium plate corrosion test – criterion for undesirable corrosion effects, 210
cadmium plate corrosion test – gravimetric results, 210
cadmium plate corrosion test – procedure, 210
cadmium plate corrosion test – RDP sample, 210
cadmium plate corrosion test – sample preparation, 210
cadmium plate corrosion test – test coupons, 210
cadmium plate corrosion test – test results, 210
cadmium plate corrosion test – test specimen, 210
cadmium plated aircraft parts – RDP caused corrosion, 210
cadmium plated aircraft parts corrosion test. See cadmium plate corrosion test
Canada Labour Code – mandatory compliance, 162
Canadair RJ100/200 spray area diagram, 114
Guide to Aircraft Ground Deicing – Issue 12

Canadair RJ700/900/1000 spray area diagram, 114
Canadian Aviation Regulations, 162
Canadian Aviation Regulations – aerial work, 162
Canadian Aviation Regulations – air taxi operations, 162
Canadian Aviation Regulations – airlines operations, 162
Canadian Aviation Regulations – commuter operations, 162
Canadian Aviation Regulations – General Operating Flight Rules, 162
CANUTEC, 162
CAR. See Canadian Aviation Regulations
carbon brake – advantages – better wear, 224
carbon brake – advantages – high temperature stability, 224
carbon brake – advantages – reuse of worn carbon discs, 224
carbon brake – antioxidant treatment – barrier coating, 213
carbon brake – antioxidant treatment – barrier coating, self-healing, 213
carbon brake – antioxidant treatment – chemical vapor infiltration, 213
carbon brake – antioxidant treatment – definition, 213
carbon brake – antioxidant treatment – densification of the polycrylonitrile fibers, 213
carbon brake – antioxidant treatment – disk soaking, 213
carbon brake – antioxidant treatment – generic, 217
carbon brake – antioxidant treatment – oxidation inhibitor, 213
carbon brake – antioxidant treatment – oxidation inhibitor, phosphate based, 213
carbon brake – antioxidant treatment – oxidation resistance of the carbon, 213
carbon brake – antioxidant treatment – phosphate solution, 213
carbon brake – antioxidant treatment – porosity of the carbon, 213
carbon brake – catalytic oxidation. See carbon brake oxidation
carbon brake – contamination. See carbon brake contamination
carbon brake – definition, 213
carbon brake – degradation, 213
carbon brake – friction and wear modifier – definition, 213
carbon brake – friction material, 213
carbon brake – inspection, 213
carbon brake – inspection frequency, 220, 221, 222
carbon brake – inspection of rotor, 220, 221, 222
carbon brake – inspection of stator, 220, 221, 222
carbon brake – operating temperature vs steel brake operating temperature, 213
carbon brake – oxidation. See carbon brake oxidation
carbon brake – removal criteria, 213
carbon brake – return-to-service criteria, 213
carbon brake – smoke from, 213
carbon brake contamination – decontamination method, 213
carbon brake contamination – detection – chromatography, 213
carbon brake contamination – detection – conductivity measurement, 214
carbon brake contamination – detection – discoloration, 214
carbon brake contamination – detection – hardness probes, with, 214
carbon brake contamination – detection – odor, 214
carbon brake contamination – detection – off-aircraft inspection, 214
carbon brake contamination – detection – on-aircraft inspection, 214
carbon brake contamination – detection – smoke, 214
carbon brake contamination – detection – spectrometry, 214
carbon brake contamination – detection – staining, 214
carbon brake contamination – detection – visual, 214, 220, 223
carbon brake contamination – detection – visual – carbon chips, 220, 221, 222
carbon brake contamination – detection – visual – crushed carbon, 220, 221, 223
carbon brake contamination – detection – visual – damaged carbon, 220, 221, 223
carbon brake contamination – detection – visual – debris, 220, 223
carbon brake contamination – detection – visual – flaked carbon, 220, 221, 223
carbon brake contamination – detection – visual – frayed carbon, 220, 223
carbon brake contamination – detection – visual – missing carbon, 220, 221, 223
carbon brake contamination – detection – visual – soft carbon, 220, 221, 223
carbon brake contamination – effect – aircraft runway overruns, 214
carbon brake contamination – effect – brake degradation, 221, 223, 224
carbon brake contamination – effect – brake disk lug rupture, 214
carbon brake contamination – effect – brake failure, 220, 221, 223
carbon brake contamination – effect – brake failure during aborted takeoff, 220, 221, 223
carbon brake contamination – effect – brake fire, 224
carbon brake contamination – effect – brake overheating, 214
carbon brake contamination – effect – brake softening, 224
carbon brake contamination – effect – brake wear, 214
carbon brake contamination – effect – catalytic oxidation, 214
carbon brake contamination – effect – complete loss of braking capability, 214
carbon brake contamination – effect – debris, 224
carbon brake contamination – effect – decreased service life, 201, 224
carbon brake contamination – effect – dragged brake, 220, 221, 223
carbon brake contamination – effect – flight cancellation, 224
carbon brake contamination – effect – flight delays, 224
carbon brake contamination – effect – foreign object damage, 224
carbon brake contamination – effect – friction coefficient, increase and decrease, 214
carbon brake contamination – effect – increased aircraft braking distance in rejected takeoff, 214
carbon brake contamination – effect – loss in braking performance, 214
carbon brake contamination – effect – loss of brake disk reuse capability, 214
carbon brake contamination – effect – loss of friction area, 214
carbon brake contamination – effect – loss of mechanical strength, 214
carbon brake contamination – effect – loss of rubbed area, 214
carbon brake contamination – effect – mass loss, 214
carbon brake contamination – effect – mechanical degradation, 224
carbon brake contamination – effect – of humidity on friction coefficient of contaminated brakes, 214
carbon brake contamination – effect – overheated brakes, 220, 221, 223
carbon brake contamination – effect – overheating of other brakes, 214
carbon brake contamination – effect – partial loss of braking capability, 214
carbon brake contamination – effect – premature brake removal, 214
carbon brake contamination – effect – runway over-runs, 214
carbon brake contamination – effect – structural brake disc failure, 214
carbon brake contamination – effect – structural degradation, 224
carbon brake contamination – effect – temporary or permanent change in friction level, 214
carbon brake contamination – effect – torque reduction, 214
carbon brake contamination – effect – uneven braking, 214
carbon brake contamination – effect – vibration, squeal, 214
carbon brake contamination – effect – vibration, whirl, 214
carbon brake contamination – effect – vibrations, 214, 220, 221, 223
carbon brake contamination – landing, 224
carbon brake contamination – prevention – phosphate solutions, 214
carbon brake contamination – prevention – use of wheel covers, 214
carbon brake contamination – process, 220, 221, 222, 223, 224
carbon brake contamination – source – acetate v formate, 214
carbon brake contamination – source – aircraft deicing fluids, 214
carbon brake contamination – source – aircraft hydraulic fluids, 214
carbon brake contamination – source – aircraft hydraulic fluids, phosphate ester based, 214
carbon brake contamination – source – aircraft lubricants, 214
carbon brake contamination – source – aircraft wash fluids, 214
carbon brake contamination – source – alkali metal salts, 214
carbon brake contamination – source – alkali organic salts, 214
carbon brake contamination – source – automatic aircraft washing systems, 214
carbon brake contamination – source – calcium salts, 215
carbon brake contamination – source – catalyst – alkali metal based RDP, 215, 220, 221, 223, 224
carbon brake contamination – source – catalyst – anti-viral agent, 215
carbon brake contamination – source – catalyst – calcium from cleaning agents, 215
carbon brake contamination – source – catalyst – disinfectants, 215
carbon brake contamination – source – catalyst – potassium acetate, 215, 220, 221, 223
carbon brake contamination – source – catalyst – potassium formate, 215, 220, 221, 223
carbon brake contamination – source – catalyst – potassium from cleaning agents, 215
carbon brake contamination – source – catalyst – potassium in Purple K fire extinguishers, 215
carbon brake contamination – source – catalyst – RDP, 215, 220, 221, 223
carbon brake contamination – source – catalyst – sodium acetate, 215
carbon brake contamination – source – catalyst – sodium formate, 215
carbon brake contamination – source – catalyst – sodium from cleaning agent, 215
carbon brake contamination – source – catalyst – sodium from sea water, 215
carbon brake contamination – source – catalyst – sodium hypochlorite, 215
carbon brake contamination – source – catalyst – temperature indicating crayon marks, 215
carbon brake contamination – source – catalytic agents, 215
carbon brake contamination – source – cleaning solvents, 215
carbon brake contamination – source – disinfectants, 215
carbon brake contamination – source – fire extinguishing agent, 215
carbon brake contamination – source – formate v acetate, 215
carbon brake contamination – source – hydraulic fluid leaks, 215
carbon brake contamination – source – hydraulic system servicing, 215
carbon brake contamination – source – RDP, 215
carbon brake contamination – source – sea water, 215
carbon brake contamination – source – temperature indicator crayon marks, 215
carbon brake contamination – taking off, 224
carbon brake contamination – taxiing, 224
carbon brake contamination and oxidation, 212
carbon brake oxidation, 216
carbon brake oxidation – alkali metal salt based RDP – significant contribution, 224
carbon brake oxidation – catalysis by alkali salts, 217
carbon brake oxidation – catalysis by RDP, 217
carbon brake oxidation – catalytic v thermal, 224
carbon brake oxidation – effect on mass change, 217
carbon brake oxidation – effect on weight loss, 217
carbon brake oxidation – exposure time to alkali, 224
carbon brake oxidation – exposure to ADF – insignificant contribution, 224
carbon brake oxidation – exposure to alkali based RDP – significant contribution, 224
carbon brake oxidation – exposure to glycol based RDP – no catalytic oxidation, 224
carbon brake oxidation – exposure to urea RDP – no catalytic oxidation, 224
carbon brake oxidation – history of, 224
carbon brake oxidation – mitigation – anti-oxidant brake coatings, 224
carbon brake oxidation – mitigation – lower application rates for RDP, 224
carbon brake oxidation – mitigation – lowering of brake temperature, 225
carbon brake oxidation – mitigation – mechanical snow removal, 225
carbon brake oxidation – mitigation – proper landing points, 225
carbon brake oxidation – mitigation – proper touchdown speeds, 225
carbon brake oxidation – mitigation – use of wheel covers, 225
carbon brake oxidation – oxidation effects v cumulative thermal load, 215
carbon brake oxidation – oxidation rate – unpredictable, 225
carbon brake oxidation – temperature in absence of contamination [ca 400 °C], 215
carbon brake oxidation – test, 217
carbon brake oxidation – test – antioxidant formulation, generic, 217
carbon brake oxidation – test – antioxidant, application of, 217
carbon brake oxidation – test – carbon coupon selection, 217
carbon brake oxidation – test – coupon oxidation procedure, 217
carbon brake oxidation – test – mean normalized carbon weight loss %, 217
carbon brake oxidation – test – potassium acetate normalized results, 217
carbon brake oxidation – test – potassium formate normalized results, 217
carbon brake oxidation – test – RDP application to coupon, 217
carbon brake oxidation – test – round robin testing, 217
carbon brake oxidation – test – sodium acetate normalized results, 217
carbon brake oxidation – test – test result for liquid RDP, 217
carbon brake oxidation – test – test result for solid RDP, 217
carbon brake oxidation – test – test results, 217
carbon brake oxidation – test – test temperature (550 °C), 217
carbon brake oxidation – test – test time (24 h), 217
carbon brake oxidation – test – urea normalized results, 217
carbon brake oxidation – test – weight loss %, mean normalized, 217

carbon brake oxidation – threshold limit – not possible to measure, 217
carbon brake oxidation – variables – aircraft deicing fluids, 215
carbon brake oxidation – variables – airline route structure, 215
carbon brake oxidation – variables – airport selection of RDP, 215
carbon brake oxidation – variables – alcohol based RDP, 215
carbon brake oxidation – variables – alkali metal acetate based RDP, 215
carbon brake oxidation – variables – alkali metal formate based RDP, 215
carbon brake oxidation – variables – ambient temperature, 215
carbon brake oxidation – variables – antioxidant coatings, 215
carbon brake oxidation – variables – antioxidant treatment, 215
carbon brake oxidation – variables – brake wear, 215
carbon brake oxidation – variables – cleaners, 215
carbon brake oxidation – variables – cooling air, 215
carbon brake oxidation – variables – cooling ducts in wheel bay, 215
carbon brake oxidation – variables – cooling fans, 215
carbon brake oxidation – variables – energy absorbed during braking, 216
carbon brake oxidation – variables – length of winter, 216
carbon brake oxidation – variables – mass of carbon heat sink, 216
carbon brake oxidation – variables – number of landings per overhaul, 216
carbon brake oxidation – variables – number of thermal cycles, 216
carbon brake oxidation – variables – peak temperature, 216
carbon brake oxidation – variables – peak temperature, time at, 216
carbon brake oxidation – variables – ram air cooling, 216
carbon brake oxidation – variables – time of exposure to contaminant, 216
carbon brake oxidation – variables – urea based RDP, 216
carbon brake oxidation – variables – wheel brake structure, 216

carbon brake oxidation – variables – wind, 216
Cassie state. See state, Cassie
catalytic oxidation – definition, 216
category specification, 48, 57, 58
category, aircraft, 114
CCME, 163
CDF. See also deicing facility, See also DDF
CDF – air traffic control tower line-of-sight, 151
CDF – aircraft access routes, 151
CDF – approval (TC), 163
CDF – benefits – avoiding changing weather along long taxiing routes, 151
CDF – benefits – improved airfield flow, 151
CDF – benefits – reduced taxiing time, 151
CDF – benefits – retreatment near departure runway, 151
CDF – capacity, 151
CDF – common deicing procedures – safety benefits, 151
CDF – common deicing procedures for all users, 151
CDF – components – bypass taxiing capability for aircraft not needing deicing, 151
CDF – components – control enter, 151
CDF – components – crew shelter, 151
CDF – components – deicing pads, 151
CDF – components – deicing unit, 151
CDF – components – environmental runoff mitigation, 151
CDF – components – fluid storage and handling, 151
CDF – components – lighting system, 151
CDF – control center, 151
CDF – definition, 99, 151, 163
CDF – deicing pad, factors affecting number of, 151
CDF – deicing pad, factors affecting number of – deicing procedure, 151
CDF – deicing pad, factors affecting number of – peak hour departure rate, 151
CDF – deicing pad, factors affecting number of – preflight inspection, 151
CDF – deicing pad, factors affecting number of – type of aircraft, 151
CDF – deicing pad, factors affecting number of – type of deicing units, 151
CDF – deicing pad, factors affecting number of – variation in meteorological conditions, 151
CDF – design, 151
CDF – effluent mitigation, 152
CDF – effluent mitigation – aerobic treatment, 151
CDF – effluent mitigation – anaerobic biochemical reactor, 151
CDF – effluent mitigation – biomass, 151
CDF – effluent mitigation – BOD, 151
CDF – effluent mitigation – COD, 151
CDF – effluent mitigation – diversion boxes, 151
CDF – effluent mitigation – effluent control at the source, 151
CDF – effluent mitigation – flow rate limits, 151
CDF – effluent mitigation – lifecycle cost, 151
CDF – effluent mitigation – mechanical aeration of detention basins, 151
CDF – effluent mitigation – metered discharge from detention basin, 151
CDF – effluent mitigation – oil and grease, 151
CDF – effluent mitigation – pH, 151
CDF – effluent mitigation – POTW (US), 151
CDF – effluent mitigation – recycled water, 151
CDF – effluent mitigation – recycling glycol, 151
CDF – effluent mitigation – recycling system, 151
CDF – effluent mitigation – spent deicing fluid detention basins, 151
CDF – effluent mitigation – spent deicing fluid storage tanks, 151
CDF – effluent mitigation – TOC, 151
CDF – effluent mitigation – total suspended solids, 151
CDF – effluent mitigation – urea algae blooms, 151
CDF – effluent mitigation – wildlife management, 152
CDF – environmental considerations. See also CDF – runoff mitigation
CDF – environmental considerations – receiving water aquatic communities quality, 152
CDF – environmental considerations – receiving water quality, 152
CDF – holding bays, 152
CDF – location and sizing, factors affecting, 152
CDF – location and sizing, factors affecting – aircraft type fleet mix, 152
CDF – location and sizing, factors affecting – airport layout, 152
CDF – location and sizing, factors affecting – airport safety programs, 152
CDF – location and sizing, factors affecting – deicing queues, 152
CDF – location and sizing, factors affecting – environmental considerations, 152
CDF – location and sizing, factors affecting – HOT and time to takeoff clearance time, 152
CDF – location and sizing, factors affecting – lighting, 152
CDF – location and sizing, factors affecting – restriction of type of deicing fluid, 152
CDF – location and sizing, factors affecting – taxiing times and routes, 152
CDF – location and sizing, factors affecting – topography, 152
CDF – location and sizing, factors affecting – type of deicing fluids used, 152
CDF – location and sizing, factors affecting – type of deicing unit, 152
CDF – location and sizing, factors affecting – utilities, 152
CDF – multiple, 152
CDF – operational issues, 152
CDF – overview of, 152
CDF – pavement requirements, 152
CDF – program (TC), 163
CDF – requirements (TC), 163
CDF – role, 152
CDF – runoff mitigation. See CDF – effluent mitigation
CDF – safety risk management mandatory before construction (FAA), 152
CDF – separation standards, 152
CDF – service provider, single, 152
CDF – siting, 152
CDF – snow desk, 152
CDF – subset of DDF, 99
CDF – subset of remote deicing facility, 152
CDF – vehicle safety zone, 152
CDF – vehicle service roads, 152
central deicing facility. See CDF centralized deicing facility. See CDF
CEPA guidelines, 163
CEPA reporting, 163
certificate of analysis, 82
certificate of conformance, 82
certificate of conformance – AMS1424, 163
certificate of conformance – AMS1428, 163
certification, aircraft. See aircraft certification
Cessna 550 Citation Bravo dimensions, 114
Cessna 560 Encore dimensions, 114
Cessna 560 Excel dimensions, 114
Cessna 680 Citation Sovereign dimensions, 114
Cessna Citation 750 Citation X dimensions, 114
Cessna Caravan C208 spray area diagram, 114
Cessna Citation 525 CJ1 dimensions, 114
Cessna Citation 525 CJ2 dimensions, 114
check – definition, 82
check time, 97, 133
clean condition – data sensing devices, 83
clean condition – engine control system probes, 83
clean condition – engine cooling intakes, 83
clean condition – engine exhaust, 83
clean condition – engine fan blades, 83
clean condition – engine inlets, 83, 201
clean condition – engine intake, 83
clean condition – engine leading edge, 83
clean condition – engine ports, 83
clean condition – engine spinner cones, 83
clean condition – fuel tank vents, 83, 201
clean condition – fuselage, 83
clean condition – fuselage – presence of frost, 83
clean condition – girt bar area (before closing door), 201
clean condition – horizontal stabilizer, 83
clean condition – inlets, 83
clean condition – landing gear, 83
clean condition – landing gear doors, 83, 201
clean condition – landing gear truck beam, 201
clean condition – leading edge devices, 201
clean condition – main gear, 201
clean condition – nose, 83
clean condition – nose gear, 201
clean condition – outflow valves, 83
clean condition – outlets, 83
clean condition – passenger doors, 201
clean condition – pitot tubes, 83, 201
clean condition – pressure release valves, 83
clean condition – propellers, 83
clean condition – radome, 83
clean condition – rudder, 83
clean condition – sensor, 83
clean condition – sensor – angle of attack, 83
clean condition – sensor – temperature, 83
clean condition – sensors near heated windows, 83
clean condition – stabilizer, vertical, 83
clean condition – static ports, 83, 201
clean condition – tail, 83
clean condition – tail, horizontal, 201
clean condition – tail, vertical, 201
clean condition – wheel bays, 83
clean condition – window caution, heated, 83
clean condition – window, cockpit, 83
clean condition – wing upper surface, 201
clean condition – wings, 83
clean condition – wingtip devices, 83
cleaning solvent – definition, 216
clear ice, 193
clear ice – cold soaked – definition, 84
clear ice – conditions conducive to, 84, 163, 188
clear ice – definition, 77, 114, 163, 188, 193
clear ice – detection, 84, 189
clear ice – detection – ground ice detection system, 163
clear ice – detection – in engine inlets, 133
clear ice – detection – in engine inlets by ROGIDS, 133
clear ice – detection – ROGIDS, 77
clear ice – detection – ROGIDS as supplement to tactile pre-deicing check, 77
clear ice – detection – ROGIDS as supplement to visual pre-deicing check, 77
clear ice – detection – ROGIDS detection threshold, 77
clear ice – detection – ROGIDS v tactile check, 77
clear ice – detection – ROGIDS v visual check, 77
clear ice – detection – tactile check, 163
clear ice – detection – tactile wand, 163
clear ice – difficulty to detect, 77, 84, 163, 193
clear ice – effect of, 133, 163
clear ice – hazard, 84
clear ice – occurrence – inflight, 77
clear ice – occurrence – on the ground, 77
clear ice – undetected – probability estimate, 77
coating, aircraft surface. See aircraft surface coating
cold soaked clear ice – definition, 84
cold soaked fuel frost. See frost, cold soaked fuel
cold soaked fuel frost – definition, 84
cold soaked horizontal stabilizer, 84
cold soaked wing, 84
cold soaked wing ice/frost – definition, 84
cold soaking, 163
cold soaking – conditions conducive to, 193
cold soaking – conditions conducive to – conductive
cooling, 163
cold soaking – conditions conducive to – flight at high
temperature, 118
cold soaking – conditions conducive to – fueling, 118, 163
cold soaking – definition, 84, 163, 181, 193
cold soaking – effect on LOUT, 163
cold soaking – factors – fuel cell location, 84
cold soaking – factors – fuel cell type, 84
cold soaking – factors – fuel quantity, 84
cold soaking – factors – fuel temperature, 84
cold soaking – factors – time at high altitude, 84
cold soaking – factors – time since fueling, 84
cold soaking – fuel caused, 84
cold soaking – reason for above freezing HOT, 181
cold soaking – underwing frost as indicator of, 163
cold-soak effect – definition, 84
collision with aircraft, deicing unit, 163
collision with aircraft, deicing unit – at Mirabel airport, 24
collision with aircraft, deicing unit – at Munich airport, 24
color bleed-through – definition, 69
color bleed-through – evaluation, 69
color intensity, evaluation of – field spray test, 62, 69
color uniformity, 42, 50
color, Type I – orange, 42
color, Type II – yellow, 50
color, Type III – bright yellow, 50
color, Type IV – green, 51
combustion heaters – asphyxiation danger in poorly ventilated areas, 84
commander. See pilot-in-command
Commercial Air Service Standards (TC), list of, 163
common fluid, 101
communication – emergency procedures, 163
communication – English language, 84
communication – ineffective, 163
communication – limits, 163
communication – local language, 84
communication from passengers, 163
communication plan, 163
communication training, 163
communication with apron control, 163
communication with cabin crew – communication from passengers, 163
communication with flight operations, 163
communication with flightcrew – absence of flightcrew at time of deicing, 84, 133
communication with flightcrew – ACARS, 84
communication with flightcrew – after deicing/anti-icing, 84
communication with flightcrew – aircraft configuration confirmation, 97, 200
communication with flightcrew – aircraft deicing configuration, 84
communication with flightcrew – all clear signal, 84, 97, 163, 200
communication with flightcrew – anti-icing code, 84, 97, 200
communication with flightcrew – backup communication strategy, 163
communication with flightcrew – before starting deicing/anti-icing, 84, 97, 163, 200
communication with flightcrew – cabin crew responsibilities, 163
communication with flightcrew – CDF, 84
communication with flightcrew – communication from passengers, 163
communication with flightcrew – communication plan, 84
communication with flightcrew – communication to passengers, 163
communication with flightcrew – contamination check results, 84
communication with flightcrew – DDF, 84
communication with flightcrew – deicing facility and ATC control transfer, 163
communication with flightcrew – deicing unit proximity sensor activation, 84, 97, 200
communication with flightcrew – direct link, 163
communication with flightcrew – electronic flight bag, 84
communication with flightcrew – emergency, 84, 97, 163, 200
communication with flightcrew – engine start authorization, 163
communication with flightcrew – engines-on, 84
communication with flightcrew – English language, 84
communication with flightcrew – flight interphone, 84
communication with flightcrew – fluid Type, 200
communication with flightcrew – frost removal with Type I in non-active frost, 84
communication with flightcrew – frost, local, 84
communication with flightcrew – hand signals, 84, 164
communication with flightcrew – headset, 84
communication with flightcrew – HOT, start of, 160, 200
communication with flightcrew – importance of, 164
communication with flightcrew – in-pavement lights, 164
communication with flightcrew – interrupted operations, 97, 200
communication with flightcrew – interruption of deicing/anti-icing, 84
communication with flightcrew – local language, 84
communication with flightcrew – message boards, 84, 164
communication with flightcrew – off-gate, 84
communication with flightcrew – phraseology, 84, 97
communication with flightcrew – phraseology, need for standard, 97
communication with flightcrew – post deicing/anti-icing check completion, 84, 97, 200
communication with flightcrew – printed forms, 85
communication with flightcrew – proximity sensor activation, 85, 97, 200
communication with flightcrew – pushback instructions and requirements for deicing services, 164
communication with flightcrew – radio link, 164
communication with flightcrew – routing to deicing area, 164
communication with flightcrew – scripts, 85
communication with flightcrew – standardization, 164
communication with flightcrew – taxi and stop guidance, 85
communication with flightcrew – taxi instructions, 164
communication with flightcrew – taxi routing, 85
communication with flightcrew – training requirements, 164
communication with flightcrew – verbal, precedence of, 85
communication with passengers – decision to deice (TC), 164
communication with passengers – decision to deice (TC), 164
communication with passengers – taxi instructions, 164
communications, 85, See also anti-icing code; phraseology communications – service provider responsibilities, 163
compatibility, fluid. See also fluid compatibility – Type I with Type II/III/IV configuration, aircraft deicing, 85, 164
configuration, aircraft deicing – elevator, 114
configuration, aircraft deicing – flaps and slats, 164
configuration, aircraft deicing – routing to deicing area, 164
compatibility, fluid. See also fluid compatibility – Type I with Type II/III/IV configuration, aircraft deicing, 85, 164
compatibility, fluid. See also fluid compatibility – Type I with Type II/III/IV configuration, aircraft deicing, 85, 164
contact angle, 32
contact angle – definition, 32
contact angle, advancing, 32
contact angle, advancing – definition, 32
contact angle, measurement, 32
contact angle, receding, 32
contact angle, receding – definition, 32
contaminant, frozen. See contamination [frozen]
contamination – definition, 188
contamination – superset of anti-icing fluid, 181
contamination – superset of anti-icing fluid, 181
contamination – superset of bird droppings, 181
contamination – superset of dirt, 181
contamination – superset of frost, 181
contamination – superset of hydraulic oil, 181
contamination – superset of ice, 181
contamination – superset of ice, 181
contamination – superset of minor mechanical damage, 181
contamination – superset of minor mechanical damage, 181
contamination – superset of paint chipping, 181
contamination – superset of rain, 181
contamination – superset of snow, 181
contamination – superset of squashed bugs, 181
contamination – superset of variation in manufacturing tolerance, 180
contamination [frozen] – appearance – frost on treated surface, 66, 74
contamination [frozen] – appearance – ice crystals, disseminated, 66, 74
contamination [frozen] – appearance – ice front, 66, 74
contamination [frozen] – appearance – ice pieces imbedded in fluid, 66, 74
contamination [frozen] – appearance – ice pieces partially imbedded in fluid, 66, 74
contamination [frozen] – appearance – ice sheet, 66, 74
contamination [frozen] – appearance – slush front, 66, 74
contamination [frozen] – appearance – slush in clusters, 66, 74
contamination [frozen] – appearance – snow bridges, 66, 74
contamination [frozen] – asymmetric, 193
contamination [frozen] – asymmetric – in crosswind, 181
contamination [frozen] – definition, 77, 85, 125, 164
contamination [frozen] – effect on (rapid) pitch up and roll-off during rotation, 147
contamination [frozen] – effect on angle of attack reading, 194
contamination [frozen] – effect on angle of attack reading, 194
contamination [frozen] – effect on APU, 190
contamination [frozen] – effect on APU, 190
contamination [frozen] – effect on airfoil performance, 164
contamination [frozen] – effect on aircraft handling quality, 164
contamination [frozen] – effect on airspeed information, 193
contamination [frozen] – effect on angle of attack reading, 194
contamination [frozen] – effect on angle of attack reading, 194
contamination [frozen] – effect on engine, 114, 190
contamination [frozen] – effect on engine compressor, 190
contamination [frozen] – effect on engine foreign object damage, 147
contamination [frozen] – effect on engine power information, 194
contamination [frozen] – effect on engine stall, 190
contamination [frozen] – effect on engine stall, 190
contamination [frozen] – effect on FOD, 194
contamination [frozen] – effect on hard wing aircraft (without leading edge device), 147
contamination [frozen] – effect on instrument pick up points, 147
contamination [frozen] – effect on landing gear, 194
contamination [frozen] – effect on lift, 114, 147, 164, 190, 194, 201
contamination [frozen] – effect on lift, asymmetric, 164, 201
contamination [frozen] – effect on lift, asymmetric, 164, 201
contamination [frozen] – effect on operating envelope, 114
contamination [frozen] – effect on pilot’s perception of hazard, 164
contamination [frozen] – effect on pitch, 201
contamination [frozen] – effect on pitot tubes, 194
contamination [frozen] – effect on propeller balance, 114, 164
contamination [frozen] – effect on propeller efficiency, 164
contamination [frozen] – effect on propeller performance, 114, 190
contamination [frozen] – effect on radio communications, 194
contamination [frozen] – effect on ram air intakes, 147
contamination [frozen] – effect on roll, 201
contamination [frozen] – effect on stability, 194
contamination [frozen] – effect on stall angle, 114, 164
contamination [frozen] – effect on stall at lower-than-normal angle of attack, 147
contamination [frozen] – effect on stall characteristics, 164
contamination [frozen] – effect on stall pusher system, 164, 194
contamination [frozen] – effect on stall speed, 114, 164, 194
contamination [frozen] – effect on stall warning system, 194
contamination [frozen] – effect on roll, 201
contamination [frozen] – from fuselage melted ice or snow, 114
contamination [frozen] – from ice accretion in-flight, 114
contamination [frozen] – from water blown by propellers, 114
contamination [frozen] – from water splashed by wheels, 114
contamination [frozen] – removal by manual means, 164, 189
contamination [frozen] – removal from cockpit windows, 85
contamination [frozen] – removal from elevator, 85
contamination [frozen] – removal from engine fan blades, 85
contamination [frozen] – removal from engines, 85
contamination [frozen] – removal from flap track, 85
contamination [frozen] – removal from flaps, 85
contamination [frozen] – removal from fuselage, 85
contamination [frozen] – removal from hard wing aircraft, 85
contamination [frozen] – removal from horizontal stabilizer, 85
contamination [frozen] – removal from landing gear, 85
contamination [frozen] – removal from lower wing surface, 85
contamination [frozen] – removal from nose, 85
contamination [frozen] – removal from propeller driven aircraft, 85
contamination [frozen] – removal from radome, 85, 164
contamination [frozen] – removal from underwing surface, 85
contamination [frozen] – removal from vertical surfaces, 85
contamination [frozen] – removal from wheel bays, 85
contamination [frozen] – removal from windows, 164, 202
contamination [frozen] – removal from wings, 85
contamination [frozen] – removal general strategy, 85
contamination [frozen] – removal in hangar, 194
contamination [frozen] – removal with air heaters, 164
contamination [frozen] – removal with brooms, 85, 164, 194
contamination [frozen] – removal with brooms – mandatory tactile check (TC), 164
contamination [frozen] – removal with brushes, 164, 194
contamination [frozen] – removal with fluid injected into forced air, 85
contamination [frozen] – removal with fluids, 85, 194
contamination [frozen] – removal with forced air, 85, 109, 164, 189, 194
contamination [frozen] – removal with forced air and fluid, 109, 164
contamination [frozen] – removal with forced air at DDF, 99
contamination [frozen] – removal with heat, 85, 164
contamination [frozen] – removal with hot water, 85, 164, 189
contamination [frozen] – removal with infrared, 85, 164, 189
contamination [frozen] – removal with infrared at DDF, 99
contamination [frozen] – removal with mops, 164
contamination [frozen] – removal with negative buffer hot fluid, 85
contamination [frozen] – removal with ropes, 164
contamination [frozen] – removal with scrapers, 164, 194
contamination [frozen] – removal with squeegees, 164
contamination [frozen] – removal with steam at DDF, 99
contamination check, 189
contamination check – definition, 85, 125, 188
contamination check – establishes need for deicing, 85
contamination check – excludes special check, 85
contamination check – performance of, 85
contamination check – responsibility of qualified personnel, 85
contamination check – verification of all areas needing clean condition, 85
contamination inspection – definition, 125
contamination, carbon brake. See carbon brake contamination
contamination, chemical, 107
contamination, chemical – definition, 85
contamination, frozen. See contamination [frozen]
contamination, visible – definition, 181
continual improvement. See improvement, continual control point – definition, 99
control point. See also transfer point, 99
Conventional Glycol. See Glycol, Conventional corrective action, 125
correction criterion, 210
corrosion of cadmium plated aircraft parts, 210
corrosion of cadmium plated aircraft parts – undesirable corrosion criterion, 210
critical aircraft surfaces. See critical surface
critical component – definition, 85, 114, 125
critical ice contamination – definition, 77
critical ice contamination rate, 77
critical surface – aircraft manufacturer defined, 147, 164
critical surface – control surface, 147, 164, 194
critical surface – defined in CARs (TC), 164
critical surface – definition, 85, 114, 125, 164, 194
critical surface – empennage, 147
critical surface – engine inlets, 147, 194
critical surface – engine, 147, 164
critical surface – fuselage on aircraft with center mounted engine, 147, 164
critical surface – horizontal stabilizer, 165
critical surface – inspection (TC) – definition, 165
critical surface – inspection report (TC) – definition, 165
critical surface – instrument sensor pick up points, 147
critical surface – propeller, 165, 194
critical surface – ram-air intakes, 147
critical surface – rotors, 165
critical surface – stabilizer, vertical, 165
critical surface – stabilizing surface, 165
critical surface – static ports, 147
critical surface – wings, 147, 165, 194
crystallization, delayed, 66, 74
CSFF. See frost, cold soaked fuel
Dassault Falcon 2000 dimensions, 114
Dassault Falcon 50 dimensions, 114
Dassault Falcon 900 dimensions, 114
Dassault Falcon spray area diagram, 114
date, effective, 228
date, effective vs publication, 228
Davies, Lynn, 201
DDF – approval, 99
DDF – control boundaries, 99
DDF – definition, 99
DDF – design of, 99
DDF – documentation, 99
DDF – emergency action plans, 99
DDF – emergency communications protocol, 99
DDF – engines-on deicing, 99
DDF – environmental considerations, 99
DDF – fluid acceptance, 99
DDF – fluid management, 99
DDF – fluid testing, 99
DDF – operational procedure, 99
DDF – phraseology, 99
DDF – pilot brief sheet, 99
DDF – pre-storm planning, 99
DDF – quality control, 99
DDF – safety, 99
DDF – service provider, single, 99
DDF – service providers, several, 100
DDF – snow removal, 100
DDF – spent deicing fluid, 100
DDF – superset of centralized deicing facility, 100
DDF – superset of remote deicing facility, 100
de Havilland DASH-8 100/200 dimensions, 114
de Havilland DASH-8 100/200/300 spray area diagram, 114

de Havilland DASH-8 400/Q400 dimensions, 115
de Havilland DASH-8 400/Q400 spray area diagram, 115
definition – ACARS, 100
definition – accountable executive, 115
definition – accountable person, 115
definition – aerodynamic acceptance, 62, 69
definition – aerodynamic acceptance test, 165
definition – aerodynamically quiet area, 181
definition – aerodynamically quiet cavity, 181
definition – aerodynamically quiet surface, 181
definition – air operator (TC), 165
definition – air operator certificate (TC), 165
definition – aircraft deicing fluid. See definition – deicing fluid
definition – aircraft hydraulic fluid, 216
definition – aircraft lubricant, 216
definition – aircraft parking area, deicing pad, 152
definition – aircraft surface coating, 32
definition – allowance time, 62, 69
definition – anti-icing, 77, 85, 147, 165, 180, 194
definition – anti-icing code, 85
definition – anti-icing fluid, 85, 147, 149, 165, 179, 188
definition – anti-icing with fluid, 165
definition – apron, 165
definition – area, wetted, 115
definition – audit evidence, 125
definition – bleed-through, 69
definition – carbon brake, 216
definition – carbon brake antioxidant treatment, 216
definition – carbon brake friction and wear modifier, 216
definition – catalytic oxidation. See definition – oxidation, catalytic
definition – CDF, 100, 152, 165
definition – central deicing facility, 165
definition – check, 85
definition – check time, 149
definition – check, pre-deicing, 77
definition – check, tactile, 85
definition – clean aircraft concept, 125, 165
definition – cleaning solvent, 216
definition – clear ice, 77, 115, 165, 188, 194
definition – clear ice, cold soaked, 85
definition – cold soak effect, 194
definition – cold soaking, 86, 165, 181
definition – cold-soak effect, 86
definition – cold-soaked clear ice, 86
definition – cold-soaked fuel frost, 86
definition – cold-soaked wing ice/frost, 86
definition – conformity, 125
definition – contact angle, 32
definition – contact angle hysteresis, 32
definition – contact angle, advancing, 32
definition – contact angle, receding, 32
definition – contamination [frozen], 77, 86, 125, 165, 188
definition – contamination check, 86, 126, 188
definition – contamination inspection, 126
definition – contamination, chemical, 86
definition – contamination, visible, 181
definition – control point, 100
definition – corrective action, 126
definition – critical component, 86, 115, 126
definition – critical ice contamination, 77
definition – critical surface, 86, 115, 165, 194
definition – critical surface inspection (TC), 165
definition – critical surface inspection report (TC), 165
definition – DDF, 100
definition – defrosting, 165, 180
definition – deicing, 77, 86, 147, 165, 180, 194
definition – deicing bay, 100
definition – deicing coordinator, 100
definition – deicing crew, 100
definition – deicing event, 77
definition – deicing facility, 100, 101, 152, 165
definition – deicing facility, central, 165
definition – deicing facility, remote, 101
definition – deicing facility, terminal, 101, 165
definition – deicing fluid, 86, 147, 149, 165, 179, 188, 216
definition – deicing lead, 100
Index

definition – deicing pad, 100, 101, 152, 165
definition – deicing pad aircraft parking area, 152
definition – deicing pad maneuvering area for deicing units, 152
definition – deicing service provider, 86
definition – deicing vehicle operator, primary, 100
definition – deicing with fluid, 165
definition – deicing, primary, 101
definition – deicing, secondary, 101
definition – deicing/anti-icing, 86, 180, 194
definition – deicing/anti-icing procedure, 188
definition – deicing/anti-icing, one-step, 189, 194
definition – deicing/anti-icing, two-step, 189, 194
definition – dewpoint, 115, 133, 165
definition – disinfectant, 216
definition – drag, 115
definition – drizzle, 194
definition – due diligence, 165
definition – EFB, 161
definition – employee, frontline (TC), 165
definition – endurance time, 32, 62, 66, 69, 74, 149, 165, 180
definition – endurance time regression analysis, 149
definition – FAA/TC list of fluids. See definition – fluid list (FAA/TC), See fluid list (FAA/TC)
definition – failure front, 181
definition – failure, adherence, 181
definition – failure, adhesion, 181
definition – failure, entire plate, 181
definition – failure, fifth cross hair, 181
definition – failure, first, 181
definition – failure, full, 181
definition – failure, latent, 77
definition – failure, plate, 181
definition – failure, top edge, 181
definition – failure, total, 181
definition – finding, 126
definition – fire extinguishing agent, 216
definition – flight time, 165
definition – fluid adhesion, 181
definition – fluid failure, 77, 165
definition – fluid failure front, 181
definition – fluid failure, top edge, 181
definition – fluid list (FAA/TC), 62, 69
definition – fluid, acceptable, 181
definition – fluid, failed, 181
definition – fluid, non-Newtonian, 51
definition – fluid, pristine, 181
definition – fluid, pseudoplastic, 51
definition – fog, 194
definition – fog, ground, 194
definition – forced air, 165
definition – freezing drizzle, 86, 115, 194
definition – freezing fog, 86, 115, 194
definition – freezing point, 165
definition – freezing point buffer, 133, 165
definition – freezing point buffer, negative, 86
definition – freezing rain, 165, 194
definition – freezing rain, 86, 115
definition – freezing rain, light, 86, 115
definition – freezing rain, moderate, 86, 115
definition – freezing unknown, 194
definition – frost, 86, 115, 194
definition – frost point, 115, 133, 165
definition – frost, active, 86, 115, 133, 165, 194
definition – frost, cold-soaked fuel, 86
definition – frost, local, 86
definition – frozen contaminants, 147
definition – gel, 86
definition – GIDS, 165, 188
definition – Glycol, 42, 51
definition – glycol pan measurement, 149, 179
definition – Glycol, Conventional, 42, 51
definition – Glycol, Conventional and Non-conventional, 42, 51
definition – Glycol, Non-, 42, 51
definition – ground coordinator, 100
definition – ground ice detection system, 165
definition – ground icing conditions, 126, 165
definition – ground icing program (TC), 165
definition – hail, 86, 115, 165, 194
definition – hail, small, 115, 194
definition – hard wing, 133, 147
definition – hazard, 115
definition – HHET, 165
definition – high humidity, 194
definition – highest useable precipitation rate. See definition – HUPR
definition – hoarfrost, 86, 115, 133, 165, 194
definition – holdover time. See definition – HOT
definition – holdover time guidelines. See definition – HOT guidelines
definition – HOT, 62, 69, 86, 147, 149, 152, 166, 179, 181, 194, 202
definition – HOT guideline, 62, 69
definition – HOT guideline, fluid-specific, 62, 69
definition – HOT guideline, generic, 62, 69
definition – HOT guidelines, 86, 165, 181
definition – HOT range, 147
definition – HOT tables, 149, 165
definition – HOTDR, 179
definition – HOTDS, 179
definition – HOTDS continuously integrated measurement system, 179
definition – HOTDS discrete measurement system, 179
definition – HOWV, 51, 86
definition – HUPR, 69
definition – hydrophilic surface, 32
definition – hydrophobic surface, 32
definition – ice, 166, 181
definition – ice contamination, critical, 77
definition – ice pellets, 86, 115, 166, 194
definition – ice, ground accumulated, 202
definition – ice, operational, 202
definition – icehouse, 100, 166
definition – iceman, 100
definition – icephobic surface, 32
definition – icing conditions, AFM, 202
definition – illuminance, 77
definition – improvement, opportunity for, 126
definition – infrared heat deicing method, 166
definition – inspection, tactile (TC), 166
definition – lot, Type I, 42
definition – lot, Type II/III/IV, 51
definition – LOUT, 62, 86, 133, 144, 157, 188
definition – LOUT, Type I, 42
definition – LOUT, Type II/III/IV, 51, 69
definition – lowest useable precipitation rate. See definition – LUPR
definition – LUPR, 69
definition – LOWV, 69, 86, 166
definition – lubricant, aircraft, 216
definition – LWE rate, 149
definition – LWE sampling time, 149
definition – LWEES, 149
definition – management team, senior, 115
definition – management, senior, 126
definition – maneuvering area, 166
definition – may (SAE), 86
definition – METAR, 194
definition – moisture, visible, 195
definition – MOWV, 166
definition – must, 166
definition – negative buffer. See definition – freezing point buffer, negative
definition – nonconformity, 126
definition – Non-glycol, 42, 51
definition – nucleation site, 181
definition – observation, 126
definition – one-step deicing/anti-icing, 195
definition – operations bulletins s 18, 166
definition – oxidation [of carbon], 216
definition – oxidation, catalytic, 216
definition – pad control, 100
definition – pad control point, 100
definition – pad leadership, 100
definition – pilot-in-command, 166
definition – pink snow, 100
definition – plate, frosticator, 181
definition – plate, standard test, 181
definition – post deicing/anti-icing check. See definition – post deicing/anti-icing check
definition – post deicing/anti-icing check, 86
definition – post deicing/anti-icing check (FAA), 147
definition – precipitation intensity, 195
definition – precipitation rate, 166
definition – precipitation rate for HOT tables, 181
definition – precipitation rate, 10-minute average, 181
definition – precipitation rate, 20-minute average, 182
definition – precipitation rate, 40-minute average, 182
definition – precipitation rate, 5-minute average, 182
definition – precipitation rate, lowest useable. See definition – LUPR
definition – precipitation rate, peak, 182
definition – pre-deicing process, 86
definition – preflight check, 86
definition – pretakeoff check, 86
definition – pretakeoff check (FAA), 147
definition – pretakeoff contamination check, 86
definition – pretakeoff contamination check (EASA), 188
definition – pretakeoff contamination check (FAA), 147
definition – pretakeoff contamination inspection (TC), 166
definition – pretakeoff contamination report (TC), 166
definition – preventive action, 126
definition – primary deicing vehicle operator, 100

definition – protection time, 182
definition – proximity sensor, 86
definition – pseudoplastic, 51
definition – qualified personnel, 126
definition – qualified staff, 86
definition – quality assurance, 126
definition – quality control, 126
definition – quality improvement, 126
definition – quality management, 126
definition – quality management system, 115, 126
definition – quality manual, 126
definition – quality system accountable executive, 126
definition – quality system accountable person, 126
definition – quality system program manager, 126
definition – quality system responsible person, 126
definition – rain, 195
definition – RDP, liquid – lot, 207
definition – RDP, solid – lot, 205
definition – refractive index, 86
definition – refractometer, 86
definition – regression analysis (TC), 179
definition – regression analysis, endurance time, 149
definition – remote deicing facility, 100
definition – representative surface, 166
definition – residue/gel, 86
definition – responsible person, 115
definition – rime, 195
definition – rime ice, 86
definition – risk, 115
definition – ROGIDS, 77, 188
definition – ROGIDS detection angle, maximum, 77
definition – ROGIDS detection angle, minimum, 77
definition – ROGIDS detection distance, maximum, 77
definition – ROGIDS detection distance, minimum, 77
definition – ROGIDS false negative, 77
definition – ROGIDS false positive, 77
definition – roll-off angle, 32
definition – root cause, 126
definition – runway anti-icing/deicing solids and fluids, 216
definition – service provider, 166
definition – service provider, deicing, 86
definition – shall (SAE), 86
definition – shall (TC), 166
definition – shear force, 195
definition – should (SAE), 86
definition – should (TC), 166
definition – sliding angle, 32
definition – slot management, 100
definition – snow, 86, 133, 166, 182, 195
definition – SMS, 126
definition – snow, 87, 115, 182, 195
definition – snow desk, 100
definition – snow grains, 86, 115, 166, 195
definition – snow pellets, 87, 115, 166
definition – snow, dry, 195
definition – snow, pink, 100
definition – snow, wet, 195
definition – specimen sheet (training), 166
definition – spent deicing fluid, compliant, 101
definition – spent deicing fluid, high concentration, 101
definition – spent deicing fluid, low concentration, 101
definition – staff, qualified, 87
Index

definition – staging area, 100
definition – staging bay, 166
definition – state, Cassie, 32
definition – state, Wenzel, 32
definition – storage tank, 87
definition – storm water, clean, 101
definition – storm water, contaminated, 101
definition – strake, 166
definition – storm water, contaminated, 101
definition – tactile inspection (TC), 166
definition – tactile check. See definition – check, tactile
definition – surface, treated, 33
definition – super-hydrophobic surface, 32
definition – state, Wenzel, 32
definition – state, Cassie, 32
definition – terminal deicing facility, 166
definition – tactile inspection (TC), 166
definition – TAF, 195
definition – taxiway, 166
definition – temperature indication markers, 216
definition – terminal deicing facility, 166
definition – thermal oxidation, 216
definition – thrust, 115
definition – training, head of, 126
definition – training, head of deicing, 115
definition – training, postholder, 115
definition – transfer point, 100
definition – tribology, 216
definition – two-step deicing/anti-icing, 195
definition – Type I, 133
definition – Type II/III/IV, 133
definition – viscosity limit, lower sales specification, 69
definition – weight, 115
definition – windows, 100
definition – winter operations, 126
definition – winter program manager, 115
definition – WSET, 62, 69, 166
defrosting – definition, 166, 182
deicing, 87, See also fluid application, See also contamination [frozen], removal of
deicing – aircraft configuration, 195
deicing – definition, 77, 87, 147, 166, 182, 195
deicing – flightcrew and ground crew communications, 195
deicing bay – definition, 100
deicing boom, 111
deicing boom – variable height, 111
deicing configuration. See configuration, aircraft deicing
deicing coordinator – definition, 100
deicing crew – definition, 100
deicing event – definition, 77
deicing events – historical data 1985-2005, 78
deicing events – worldwide estimate 1985-2005, 78
deicing facility – accident reporting, 101
deicing facility – aircraft dimensions, 101
deicing facility – aircraft failure, 101
deicing facility – aircraft fleet mix, 102
deicing facility – aircraft ground movement complexity, 102
deicing facility – aircraft marshaling plan, 102
deicing facility – aircraft parking area, 102
deicing facility – aircraft queueing, 102
deicing facility – aircraft types, 102
deicing facility – aircraft wait times, 102
deicing facility – airport security, 102
deicing facility – airport utility master plan, 102
deicing facility – airspace analysis, 102
deicing facility – airway facilities, 102
deicing facility – fluid photolysis. See deicing facility – spent deicing fluid – photolysis
deicing facility – fluid quality control, 103
deicing facility – fluid transfer labeling, 103
deicing facility – fluid transfer system, 103
deicing facility – follow me vehicle, 103
deicing facility – gate hold procedure, 103
deicing facility – glycol – oxygen depleting potential, 103
deicing facility – glycol recovery vehicle, 103
deicing facility – grooved pavements, 103
deicing facility – ground power unit, 103
deicing facility – ground vehicle movement control, 103
deicing facility – ground water protection, 103
deicing facility – growth, future, 103
deicing facility – GRV, 103
deicing facility – HOT maximization – engines-on deicing, 103
deicing facility – illumination glare, 103
deicing facility – infrared, 103
deicing facility – jet blast, 103
deicing facility – jet blast, protection from, 103
deicing facility – jet start, 103
deicing facility – labeling, discharge points, 103
deicing facility – labeling, fill ports, 103
deicing facility – labeling, storage tank, 103
deicing facility – land use considerations, adjacent, 103
deicing facility – lighting, 103
deicing facility – lighting, in-pavement, 103
deicing facility – location considerations, 103
deicing facility – message boards, 106
deicing facility – NAVAIDS, interference with, 103
deicing facility – object clearing criteria, 103
deicing facility – object free area, 103
deicing facility – obstacle clearance limits, 103
deicing facility – off-gate, 152, See also CDF
deicing facility – oil/water separator, 103
deicing facility – operational considerations, 103
deicing facility – operational procedure, 100
deicing facility – pad configuration, 103
deicing facility – passenger emergency, 103
deicing facility – pavement lighting, 104
deicing facility – pavement markings, 104
deicing facility – pavement system, 104
deicing facility – pedestrian traffic, 104
deicing facility – piping, 104
deicing facility – planning, 104
deicing facility – post deicing/anti-icing check, 104
deicing facility – prevailing winds, 104
deicing facility – prop wash, 104
deicing facility – queuing, aircraft, 104
deicing facility – ramp safety procedures, 104
deicing facility – recycling ADF, 104
deicing facility – remote – definition, 104
deicing facility – remote – subset of CDF, 153
deicing facility – remote – subset of deicing facility, 104
deicing facility – risk – aircraft collision with aircraft, 166
deicing facility – risk – aircraft collision with deicing unit, 166
deicing facility – risk – aircraft collision with personnel, 166
deicing facility – risk – deicing unit collision with personnel, 166
deicing facility – risk – loss of separation between aircraft, 166
deicing facility – runway obstacle free zone, 104
deicing facility – runway protection zone, 104
deicing facility – runway proximity, departure, 104
deicing facility – runway safety area, 104
deicing facility – safety risk management, 153
deicing facility – safety risk management mandatory before construction, 153
deicing facility – secondary containment, 104
deicing facility – security requirements, 104
deicing facility – separation standards, 104
deicing facility – signage, 104
deicing facility – site considerations, multiple, 104
deicing facility – site, multiple, 104
deicing facility – siting, 104, 195
deicing facility – size, 104
deicing facility – sizing, 195
deicing facility – snow and ice control plan. See deicing facility – snow removal
deicing facility – snow removal, 104
deicing facility – speed limit, 104
deicing facility – spent deicing fluid – above ground storage tanks, 104
deicing facility – spent deicing fluid – biodegradation, 104
deicing facility – spent deicing fluid – biological destruction, 104
deicing facility – spent deicing fluid – detention pond, 104
deicing facility – spent deicing fluid – disposal, 104
deicing facility – spent deicing fluid – disposal – controlled release, 104
deicing facility – spent deicing fluid – disposal – permitting, 104
deicing facility – spent deicing fluid – disposal, sanitary, 104
deicing facility – spent deicing fluid – fluid segregation, 104
deicing facility – spent deicing fluid – photochemical oxidation, 104
deicing facility – spent deicing fluid – recycling, 104
deicing facility – spent deicing fluid – storage size, 104
deicing facility – spent deicing fluid – underground storage tanks, 104
deicing facility – spent deicing fluid – waste water treatment plant, 104
deicing facility – staging areas, 104
deicing facility – stakeholders – air traffic control, 153
deicing facility – stakeholders – aircraft rescue and firefighting chief, 153
deicing facility – stakeholders – airport environmental manager, 153
deicing facility – stakeholders – airport operations chief, 153
deicing facility – stakeholders – engineering design contractor, 153
deicing facility – stakeholders – general aviation, 153
deicing facility – stakeholders – ground deicing managers, 153
deicing facility – stakeholders – other authorities, 153
deicing facility – stakeholders – pilot organizations, 153
deicing facility – stakeholders – regulator, 153
Index

deicing facility – stakeholders – station managers of air carriers, 153
deicing facility – stop marks, 104
deicing facility – storage labeling, 104
deicing facility – storage, deicing fluid, 104
deicing facility – storm drain system, 104
deicing facility – storm water, 105
deicing facility – super set of remote deicing facility, 105
deicing facility – super set of terminal deicing facility, 105
deicing facility – surface water, 105
deicing facility – taxi routes, 105
deicing facility – taxi routes – deicing facility by pass, 105
deicing facility – terminal – definition, 105
deicing facility – terminal gate – apron drainage, 153
deicing facility – terminal gate – capacity, 153
deicing facility – terminal gate – cost of glycol mitigation issues, 153
deicing facility – terminal gate – environmental issues, 153
deicing facility – terminal gate – excludes CDF, 153
deicing facility – terminal gate – gate delays issues, 153
deicing facility – terminal gate – lack of gate for deicing issues, 153
deicing facility – terminal gate – spent deicing fluid collection, 153
deicing facility – terminal gate – taxing time issues, 153
deicing facility – threshold siting requirements, 105
deicing facility – throughput demand, 105
deicing facility – training, 105
deicing facility – use, alternative, 105
deicing facility – valve types, 105
deicing facility – vehicle staging, 105
deicing facility – vehicle traffic, 105
deicing facility – water quality guidelines, 105
deicing facility – water quality standards, 105
deicing facility – wingtip separation, 105
deicing facility, central – definition, 166
deicing facility, infrared. See infrared deicing facility
deicing facility, on-gate excludes CDF, 153
deicing facility, remote – subset of DDF, 100
deicing facility, remote aircraft. See CDF
deicing facility, terminal – definition, 166

deicing fluid – definition, 87, 147, 149, 166, 179, 188, 216
deicing fluid – functional description, 115
deicing fluid additives – aquatic toxicity, 115

deicing fluid disposal. See deicing facility – spent deicing fluid
deicing fluid v anti-icing fluid, 133
deicing lead – definition, 100
deicing operator – definition, 100
deicing pad – aircraft parking area – definition, 153
deicing pad – composite, 153
deicing pad – definition, 100, 105, 153, 166

deicing pad – fixed deicing unit considerations, 153

deicing pad – grouping, 153

deicing pad – layout, 153

deicing pad – maneuvering area for deicing units – definition, 153

deicing pad – number of, 153

deicing pad – orientation – high winds, 153

deicing pad – orientation – jet blast, 153

deicing pad – orientation – prevailing wind, 153

deicing unit – aircraft washing, 107

deicing unit – aerial device, 107

deicing unit – acceptable, 107

deicing unit – acceptance, 107

deicing unit – airdrop, 107

deicing unit – airdrop basket, 107

deicing unit – aerial device, 107

deicing unit – aircraft washing, 107

deicing unit – aspiration danger in poorly ventilated areas, 87

deicing unit – axle mass, 107

deicing unit – basket – load capacity, 107

deicing unit – basket – person capacity, number of, 107

deicing unit – basket – weight capacity, 107

deicing unit – basket/cabin capacity – two persons, 195

deicing unit – cabin, 107

deicing unit – cabin – two persons, 195

deicing unit – boom, 107

deicing unit – boom – lift, 107

deicing unit – boom elevation system, 107

deicing unit – cabin. See deicing unit – basket; deicing unit – cabin, enclosed

deicing unit – cabin design requirements, 111

deicing unit – chassis, 107

deicing unit – collision with aircraft, 24, 166

deicing unit – combustion heaters, 107

deicing unit – controls and instrumentation, 107

deicing unit – design, 166

deicing unit – enclosed cabin. See enclosed cabin

deicing unit – engine speed, 107

deicing unit – fast heating system, 107

deicing unit – fill ports, 107

deicing unit – fill ports – sizes, 107

deicing unit – fixed, 154

deicing unit – fixed – girder, 154

deicing unit – fluid contamination, 107

deicing unit – fluid degradation test, 107

deicing unit – fluid delivery pressure, 107

deicing unit – fluid delivery rate, 107

deicing unit – fluid delivery temperatures, 108

deicing unit – fluid fill couplings, 108

deicing unit – fluid fill ports, 108

deicing unit – fluid heating system, 108

deicing unit – fluid heating system, electric, 108

deicing unit – fluid labeling, 108

deicing unit – fluid level gauges, 108

deicing unit – fluid mixing system, 108

deicing unit – fluid mixing system – verification of, 195
deicing unit – fluid pressure gauge, 108
deicing unit – fluid proportioning system, 108
deicing unit – fluid pumps – circulating/mixing, 108
deicing unit – fluid pumps – on demand, 108
deicing unit – fluid pumps – positive displacement, 108
deicing unit – fluid pumps – rotary diaphragm, 108
deicing unit – fluid pumps – self-priming, 108
deicing unit – fluid pumps – strainer, 108
deicing unit – fluid pumps – test for degradation, 108
deicing unit – fluid pumps – Type II/III/IV, 108
deicing unit – fluid sampling, 108
deicing unit – fluid spray pattern, 108
deicing unit – fluid system, 108
deicing unit – fluid system labelling, 108
deicing unit – fluid tank capacity, 108
deicing unit – fluid tank design, 108
deicing unit – fluid temperature, 108
deicing unit – forced air. See forced air
deicing unit – fuel capacity, 108
deicing unit – heater system, 108
deicing unit – heating system – combustion type, 108
deicing unit – heating system – fast heating, 108
deicing unit – hose color, anti-icing fluid – green with yellow stripe, 108
deicing unit – hose color, deicing fluid – red with yellow stripe, 108
deicing unit – hose couplings, 108
deicing unit – hot water deicing system, 108
deicing unit – inspection – after maintenance, 166
deicing unit – inspection – after modification, 166
deicing unit – inspection – annual, 166
deicing unit – inspection – hoses, 166
deicing unit – inspection – nozzle, 166
deicing unit – inspection – pumps, 166
deicing unit – labeling of, 108
deicing unit – maintenance, 166
deicing unit – maintenance manuals, 108
deicing unit – maintenance schedule, 115
deicing unit – maintenance training, 108
deicing unit – markings, 108
deicing unit – mixing system. See deicing unit – fluid mixing system
deicing unit – modifications, 108
deicing unit – name-plate, 108
deicing unit – nozzle, 108
deicing unit – nozzle – adjustable, 108
deicing unit – nozzle – flow rate adjustment, 108
deicing unit – nozzle – fluid degradation test, 108
deicing unit – nozzle – ground level, 108
deicing unit – nozzle – ground level – deicing fluid only, 108
deicing unit – nozzle – gun type, 108
deicing unit – nozzle – pressure gauge, 108
deicing unit – nozzle – spray patterns, 108
deicing unit – nozzle – turret, 108
deicing unit – nozzle – Type II/III/IV, 108
deicing unit – on-board fluid mixing system, 109
deicing unit – open basket v closed cabin, 195
deicing unit – operating instructions, 109
deicing unit – operation, 166
deicing unit – operation in closed areas, 87
deicing unit – operation in poorly ventilated areas, 87
deicing unit – parts, 109
deicing unit – personnel basket. See deicing unit – basket
deicing unit – power distribution, 109
deicing unit – product support, 109
deicing unit – proportioning mix system, 109
deicing unit – proportioning system, 109
deicing unit – propulsion system, 109
deicing unit – pumps. See deicing unit- fluid pumps
deicing unit – spare part list, 109
deicing unit – speed, 109
deicing unit – speed control device, 109
deicing unit – spray delivery rate, 109
deicing unit – spray nozzle. See deicing unit – nozzle
deicing unit – spray pressure, 109
deicing unit – spray system, 109
deicing unit – tank capacity, 109
deicing unit – tank covers, 109
deicing unit – tank rain entry prevention, 109
deicing unit – technical requirements, 109
deicing unit – training by manufacturer, 109
deicing unit – Type II, III and IV system, 109
deicing unit – walk around check, 126
deicing unit – wind load, 109
deicing unit – wind velocity, permissible, 109
deicing vehicle. See deicing unit
deicing vehicle operator, primary – definition, 100
deicing with fluid – definition, 166
deicing, general strategy for, 88
deicing, primary – definition, 105
deicing, re-. See fluid application – re-deicing
deicing, secondary – definition, 105
deicing/anti-icing. See also fluid application
deicing/anti-icing – absence of flightcrew at the time of, 87, 133
deicing/anti-icing – definition, 87, 182, 195
deicing/anti-icing – flightcrew awareness, 133
deicing/anti-icing application information transmitted to flightcrew (ICAO) – part of aircraft airworthiness, 195
deicing/anti-icing contracts, 87, 115
deicing/anti-icing decision – aircraft deiced or anti-iced some time before flightcrew arrival, 87
deicing/anti-icing decision – aircraft subject to ice accretion in-flight, 87
deicing/anti-icing decision – aircraft subject to snow or ice conditions, 87
deicing/anti-icing decision – aircraft subject to snow or ice conditions during taxi to gate, 87
deicing/anti-icing decision – aircraft subject to snow or ice conditions while parked, 87
deicing/anti-icing decision – cold soaked aircraft with ice or frost, 87
deicing/anti-icing decision – contamination check by flightcrew, 87
deicing/anti-icing decision – contamination check by ground crew, 87
deicing/anti-icing methods, 87
deicing/anti-icing procedure – definition, 188
deicing/anti-icing truck. See deicing unit
deicing/anti-icing, aircraft requirements after. See clean condition
deicing/anti-icing, ground (ICAO) – part of aircraft operations, 195
deicing/anti-icing, interruption of, 87
deicing/anti-icing, one-step. See fluid application – one-step
deicing/anti-icing, two-step. See fluid application – two-step
deicing/anti-icing, two-step – definition, 189, 195
deposition, frost formation by, 87
descriptor [weather] – blowing, 133
descriptor [weather] – freezing, 133
descriptor [weather] – low drifiting, 133
descriptor [weather] – partial, 133
descriptor [weather] – patches, 133
descriptor [weather] – shallow, 133
descriptor [weather] – showers, 133
descriptor [weather] – thunderstorm, 133
designated deicing facility. See DDF
dewpoint, 133
dewpoint – definition, 115, 133, 167
diethylene glycol. See also Glycol, Conventional – diethylene glycol
diethylene glycol based Type I – endurance time tests not required, 66
dimension, aircraft, 115
disinfectant – definition, 216
Doc 9640-AN/940, 193
Doc 9640-AN/940, history of, 197
drizzle – definition, 195
drizzle, freezing. See freezing drizzle
drop impact resistance, 33
dry ice crystals – adhesion. See dry snow – adhesion
dry snow, 134
dry snow – accumulation on wing – removal required, 167
dry snow – adhesion – effect of aircraft parking location, 133
dry snow – adhesion – effect of fuel tanks (heat releasing), 134, 167
dry snow – adhesion – effect of fueling, 134, 167
dry snow – adhesion – effect of hydraulic fluid heat exchangers, 134
dry snow – adhesion – effect of OAT, 134
dry snow – adhesion – effect of weather, 134, 167
dry snow – adhesion – effect of wing in the sun, 134
dry snow – adhesion – effect of wing temperature, 134, 167
dry snow – adhesion – regulations (US), 134
dry snow – non-adhesion – non-use of fluids, 167
Dryden accident, 22
dry-out, Type II/IV. See Type II/III/IV – residue; Type II/IV – residue
due diligence – definition, 167
due diligence – principle of, 167
dust, 223
EASA, 3, 25
EASA AMC1 ADR.OPS.C010, 223
EASA GM1 CAT.OP.MPA.250, 188
EASA GM2 CAT.OP.MPA.250, 189
EASA GM3 CAT.OP.MPA.250, 190
EASA icing research, 26
EASA recommendation to use – FAA Holdover time Guidelines, 187
EASA recommendation to use – FAA Notice N 8900.xxx
FAA-Approved Deicing program Updates, Winter 20xx-20yy, 187
EASA recommendation to use – global aircraft deicing standards, 187
EASA SIB 2008-19R2, 222
EASA SIB 2018-01, 221
edge effect. See WSET – failure zone; HHET – failure zone
EFB – definition, 161
effective date, 228
effluent collection, 167
effluent containment, 167
effluent disposal, 167
EG v PG Type IV based fluids – allowance time. See allowance time – EG v PG based fluids
EHOT, 134
eHOT app, 161
eHOT app – acceptance process (TC), 161
eHOT app – authorization (TC), 161
eHOT app – definition, 161
eHOT app – demonstration of equivalence or superiority to HOT paper version, 161
eHOT app – guidance (TC), 161
eHOT app – MOPS (TC), 161
eHOT app – testing and evaluation requirements (TC), 161
eHOT app – training, 161
eHOT app – type – dynamic interactive – HOTDS input, 161
eHOT app – type – dynamic interactive – manual input, 161
eHOT app – type – fixed presentation, 161
Embraer E120 dimensions, 115
Embraer E120 spray area diagram, 115
Embraer E135/E140/E145 spray area diagram, 115
Embraer E145 dimensions, 115
Embraer E170/E175 dimensions, 115
Embraer E170/E175 spray area diagram, 115
Embraer E190/E195 dimensions, 115
Embraer E190/E195 spray area diagram, 115
emergency, 167
emergency – bomb threat, 167
emergency – communication plan, 167
emergency – communications, 97, 200
emergency – co-ordination, 167
emergency – evacuation, aircraft, 167
emergency – exercises, 167
emergency – fire, aircraft, 167
emergency – fire, deicing facility, 167
emergency – fire, ground equipment, 167
emergency – first response, 167
emergency – first response, equipment for, 167
emergency – hijacking, 167
emergency – injury, 167
emergency – medical, 167
emergency – other, 167
emergency – plan, 167
emergency – service provider role, 167
emergency – spill, fluid, 167
emergency – spill, jet fuel, 167
emergency exits, aircraft, 167
employee, frontline (TC) – definition, 167
encoded cabin, 111
encoded cabin – acceptance, 111
encoded cabin – controls, 111
encoded cabin – design requirements, 111
encoded cabin – dual operator weight capacity, 111
encoded cabin – general description, 111
encoded cabin – guidelines, 111
encoded cabin – ice detection system, 111
encoded cabin – nozzle for Type II/III/IV, 111
encoded cabin – nozzle requirements, 111
encoded cabin – safety devices, 111
encoded cabin – single operator weight capacity, 111
encoded cabin – stability, 111
encoded cabin – v open basket, 111
encoded operator’s cabin. See encoded cabin, 111
endurance time – definition, 33, 62, 66, 69, 75, 149, 167, 182
endurance time – limits in natural snow, 69
endurance time – LUPR and HUPR analysis, 69
endurance time – regression analysis – definition, 149
endurance time – regression equations, 149
endurance time tests, 76
endurance time tests – Type I, 67
endurance time tests – Type I – crystallization, delayed, 66
endurance time tests – Type I – data examination by SAE G-12 HOT, 66
endurance time tests – Type I – data validation by SAE G-12 HOT, 66
endurance time tests – Type I – delayed crystallization, 66
endurance time tests – Type I – diethylene glycol based – test not required, 66
endurance time tests – Type I – ethylene glycol based – test not required, 66
endurance time tests – Type I – failure mode – visual, 66
endurance time tests – Type I – failure mode, snow – dilution, 66
endurance time tests – Type I – failure mode, snow – dilution – more prevalent, 66
endurance time tests – Type I – failure mode, snow – snow-bridging, 66
endurance time tests – Type I – failure, frozen contamination – 30% area, 66
endurance time tests – Type I – failure, frozen contamination – appearance, 66
endurance time tests – Type I – failure, snow – 30% area or non-absorption over 5 crosshairs, 66
endurance time tests – Type I – fluid manufacturer documentation – aerodynamic acceptance data, 66
endurance time tests – Type I – fluid manufacturer documentation – freezing point data, 66
endurance time tests – Type I – fluid manufacturer documentation – freezing point v dilution data, 66
endurance time tests – Type I – fluid manufacturer documentation – freezing point v refractive index data, 66
endurance time tests – Type I – fluid manufacturer documentation – LOUT, 66
endurance time tests – Type I – fluid manufacturer documentation – safety data sheet, 66
endurance time tests – Type I – fog, freezing, 66
endurance time tests – Type I – freezing drizzle, 66
endurance time tests – Type I – freezing fog, 66
endurance time tests – Type I – frost, laboratory, 66
endurance time tests – Type I – frost, natural, 66
endurance time tests – Type I – glycol based – none, 62
endurance time tests – Type I – glycol based, other, 66
endurance time tests – Type I – ice crystal seeding, 66
endurance time tests – Type I – icing intensity measurements, 66
endurance time tests – Type I – ice crystal seeding, delayed crystallization, 66
endurance time tests – Type I – labo
endurance time tests – Type I – test facility – independence from fluid manufacturer, 67
endurance time tests – Type I – test facility, role of, 67
endurance time tests – Type I – test plate cleanliness, 67
endurance time tests – Type I – testing agent – independence from fluid manufacturer, 67
endurance time tests – Type I – testing agent, role of, 67
endurance time tests – Type I – variability across test plates, 67
endurance time tests – Type I – water droplet size – dye stain method, 67
endurance time tests – Type I – water droplet size – laser diffraction method, 67
endurance time tests – Type I – water droplet size – slide impact method with oil, 67
endurance time tests – Type I – water hardness, 67
endurance time tests – Type I – WSET check on sheared sample, 67
endurance time tests – Type II/III/IV, 76
endurance time tests – Type II/III/IV – data examination by SAE G-12 HOT, 75
endurance time tests – Type II/III/IV – data validation by SAE G-12 HOT, 75
endurance time tests – Type II/III/IV – delayed crystallization, 75
endurance time tests – Type II/III/IV – facility, 75
endurance time tests – Type II/III/IV – facility – independence from fluid manufacturer, 75
endurance time tests – Type II/III/IV – failure mode – visual, 75
endurance time tests – Type II/III/IV – failure mode, snow – dilution, 75
endurance time tests – Type II/III/IV – failure mode, snow – snow-bridging, 75
endurance time tests – Type II/III/IV – failure, frozen contamination – 30% area, 75
endurance time tests – Type II/III/IV – failure, frozen contamination – appearance, 75
endurance time tests – Type II/III/IV – failure, snow – 30% area or non-absorption over 5 crosshairs, 75
endurance time tests – Type II/III/IV – fluid manufacturer documentation – color, 75
endurance time tests – Type II/III/IV – fluid manufacturer documentation – dilutions to be tested, 75
endurance time tests – Type II/III/IV – fluid manufacturer documentation – freezing point data, 75
endurance time tests – Type II/III/IV – fluid manufacturer documentation – freezing point depressant, 75
endurance time tests – Type II/III/IV – fluid manufacturer documentation – refractive index data, 75
endurance time tests – Type II/III/IV – fluid manufacturer documentation – safety data sheet, 75
endurance time tests – Type II/III/IV – fluid manufacturer documentation – test name, 75
endurance time tests – Type II/III/IV – fluid manufacturer documentation – viscosity, 75
endurance time tests – Type II/III/IV – fluid manufacturer documentation – viscosity method, 75
endurance time tests – Type II/III/IV – fog, freezing, 75
endurance time tests – Type II/III/IV – freezing drizzle, 75
endurance time tests – Type II/III/IV – freezing fog, 75
endurance time tests – Type II/III/IV – frost, laboratory, 75
endurance time tests – Type II/III/IV – frost, natural, 75
endurance time tests – Type II/III/IV – ice crystal seeding, 75
endurance time tests – Type II/III/IV – icing intensity measurements, 75
endurance time tests – Type II/III/IV – icing intensity measurements by regression analysis, 75
endurance time tests – Type II/III/IV – icing intensity measurements with reference ice-catch plates, 75
endurance time tests – Type II/III/IV – light freezing rain, 75
endurance time tests – Type II/III/IV – manufacturer’s mandatory documentation, 75
endurance time tests – Type II/III/IV – purpose, 75
endurance time tests – Type II/III/IV – rain on cold soaked wing, 75
endurance time tests – Type II/III/IV – regression analysis, 75
endurance time tests – Type II/III/IV – relation to HOT, 75
endurance time tests – Type II/III/IV – sample – viscosity reduced after manufacturing, 75
endurance time tests – Type II/III/IV – sample – without shearing, 75
endurance time tests – Type II/III/IV – sample selection, 69, 75
endurance time tests – Type II/III/IV – sample selection – viscosity reduction by manufacturer, 75
endurance time tests – Type II/III/IV – sample viscosity, 75
endurance time tests – Type II/III/IV – snow form excludes: graupel (soft hail), 75
endurance time tests – Type II/III/IV – snow form excludes: hail, 75
endurance time tests – Type II/III/IV – snow form excludes: ice pellets, 75
endurance time tests – Type II/III/IV – snow form excludes: soft hail (graupel), 75
endurance time tests – Type II/III/IV – snow form includes: capped columns, 75
endurance time tests – Type II/III/IV – snow form includes: columns, 75
endurance time tests – Type II/III/IV – snow form includes: irregular particles, 75
endurance time tests – Type II/III/IV – snow form includes: needles, 75
endurance time tests – Type II/III/IV – snow form includes: plates, 75
endurance time tests – Type II/III/IV – snow form includes: snow grains, 75
endurance time tests – Type II/III/IV – snow form includes: spatial dendrites, 75
endurance time tests – Type II/III/IV – snow form includes: stellar crystals, 76
endurance time tests – Type II/III/IV – snow grains, 76
endurance time tests – Type II/III/IV – snow, artificial – made by shaving ice cores, 76
endurance time tests – Type II/III/IV – snow, artificial – made by spraying water in a cold chamber, 76
endurance time tests – Type II/III/IV – snow, artificial – test, indoor – with storage and distribution, 76
endurance time tests – Type II/III/IV – snow, artificial – test, indoor – without storage, 76
endurance time tests – Type II/III/IV – snow, laboratory, 76

Index
endurance time tests – Type II/III/IV – snow, natural, 76
endurance time tests – Type II/III/IV – snow, natural – test, outdoor, 76
endurance time tests – Type II/III/IV – test plate cleanliness, 76
endurance time tests – Type II/III/IV – testing agent – independence from fluid manufacturer, 76
endurance time tests – Type II/III/IV – testing agent role/duties, 76
endurance time tests – Type II/III/IV – variability across test plates, 76
endurance time tests – Type II/III/IV – viscosity check on unsheared sample, 76
endurance time tests – Type II/III/IV – viscosity reduction by manufacturer, 76
endurance time tests – Type II/III/IV – water droplet size – dye stain method, 76
endurance time tests – Type II/III/IV – water droplet size – laser diffraction method, 76
endurance time tests – Type II/III/IV – water droplet size – slide impact method with colloidal silver, 76
endurance time tests – Type II/III/IV – water droplet size – slide impact method with oil, 76
endurance time tests – Type II/III/IV – water hardness, nozzles, 76
endurance time tests – Type II/III/IV – WSET check on unsheared sample, 76
endurance time tests – Type III – fluid manufacturer documentation – intended method of use, 76
engine deicing, 87
engine icing – conditions conducive to – freezing fog, 87
engine icing – conditions conducive to – freezing precipitation, 87
engine manufacturer recommendations – compliance with, 87
engine numbering, 115
engine run-ups – ice removal, 202
engines, aft-mounted – effect of clear ice, 167
engines-on deicing, 100, 167
environmental regulations, compliance with, 195
equipment manufacturer recommendations, compliance with, 195
ethylene glycol, 65. See also Glycol, Conventional – ethylene glycol; EG v PG
ethylene glycol based Type I – endurance time tests not required, 67
European Aviation Safety Agency. See EASA eye protection, 167
FAA, 3, 23
FAA AC 120-60B Ground Deicing and Anti-icing Program, 146
FAA Advisory Circular AC 120-112, 148
FAA Engine and Propeller Directorate – engine run-ups in heavy snow, 134
FAA Holdover Time Guidelines – EASA recommendation to use, 188
FAA Holdover Time Guidelines Winter 2019-2020, 9, 143
FAA icing research, 26
FAA Notice N 8900.525, 134
FAA Notice N 8900.525 Revised FAA–Approved Deicing Program Updates, Winter 2019–2020, 131
FAA Notice N 8900.xxx FAA-Approved Deicing program Updates, Winter 20xx-20yy – EASA recommendation to use, 188
FAA/TC list of fluids. See fluid list (FAA/TC)
FAA-approved Snow and Ice Control Plan, 154
face protection, 167
failed fluid. See fluid failure
failure front – definition, 182
failure mode, allowance time – aerodynamic and visual, 62, 69
failure mode, endurance time – visual, 62, 67, 69
failure mode, HOT – visual, 62
failure, adherence – definition, 182
failure, adhesion – definition, 182
failure, deicing/anti-icing fluid. See fluid failure
failure, entire plate – definition, 182
failure, fifth cross hair – definition, 182
failure, fluid. See fluid failure
failure, full – definition, 182
failure, latent, 78
failure, latent – definition, 78
failure, plate. See also contamination [frozen], appearance failure, plate – 30% coverage with frozen contamination, 67
failure, plate – definition, 182
failure, standard plate, 182
failure, top edge – definition, 182
failure, total – definition, 182
failure, undetected. See failure, latent
Fairchild Dornier 328JET dimensions, 115
Fairchild Dornier 328JET spray area diagram, 116
Fairchild Dornier 728JET dimensions, 116
Fairchild Dornier D328 Propeller spray area diagram, 116
Fairchild Metro/Merlin spray area diagram, 116
fall protection systems, 167
FBO, 105, See also service provider
Federal Aviation Administration. See FAA
field spray test. See spray test, field finding – definition, 126
fire extinguishing agent – definition, 216
first aid, 167
first icing event. See failure first response, 167
Fisheries Act (Canada), 167
fixed base operator. See FBO
fixed deicing equipment – enclosed cabin, 111
flaps and slats contamination – blowing snow, 87
flaps and slats contamination – in-flight ice accretion, 87
flaps and slats contamination – not visible when retracted, 87
flaps and slats contamination – splash up during taxi, 87
flaps and slats deployed – guidance (FAA), 134
flaps and slats deployed – guidance (TC), 167
flight control, 87
flight control check, 87
flight time – definition, 167
flightcrew – HOT re-evaluation. See also pilot assessment of precipitation intensity
Index

fluid application – HOT re-evaluation in improving weather condition – guidance (TC), 167
fluid application – HOT re-evaluation in worsening weather conditions – guidance (TC), 167
flightcrew absence during deicing/anti-icing, 134
flightcrew awareness – deicing/anti-icing, 134
flightcrew knowledge of – critical areas, 195
flightcrew knowledge of – deicing anti-icing, factors affecting, 195
flightcrew knowledge of – deicing/anti-icing methods, 195
flightcrew knowledge of – deicing/anti-icing methods, limitations of, 195
flightcrew knowledge of – hazards of ice, snow and frost, 195
flow – laminar v turbulent, 182
fluid acceptance – appearance [documentation], 87
fluid acceptance – batch number, 87
fluid acceptance – brand name, 87
fluid acceptance – certificate of conformance, 87
fluid acceptance – cleanliness, 87
fluid acceptance – color, 87
fluid acceptance – concentration [by refraction], 88
fluid acceptance – concentration [documentation], 88
fluid acceptance – DDF, 100
fluid acceptance – discrepancies, 88
fluid acceptance – discrepancy procedure, 88
fluid acceptance – foreign body contamination [aka suspended matter], 88
fluid acceptance – lot number, 88
fluid acceptance – nonconformities, 88
fluid acceptance – nonconformity procedure, 88
fluid acceptance – pH, 88
fluid acceptance – pH [documentation], 88
fluid acceptance – previous load [documentation], 88
fluid acceptance – product name, 88
fluid acceptance – records, 88
fluid acceptance – refractive index, 88
fluid acceptance – refractive index documentation, 88
fluid acceptance – samples, 88
fluid acceptance – seals, 88
fluid acceptance – viscosity, 88
fluid acceptance – visual examination, 88
fluid adhesion – definition, 182
fluid application. See also spray, no; spray directly, no
fluid application – air conditioning off, 88
fluid application – aircraft deicing configuration, 88
fluid application – aircraft manufacturer requirement, 88
fluid application – anti-icing – amount required, 88
fluid application – anti-icing – before first step fluid freezes, 88
fluid application – anti-icing – clean aircraft, on, 88, 144, 157, 167
fluid application – anti-icing – insufficient amount, 88, 134, 144, 157
fluid application – anti-icing – maximum protection, 88
fluid application – anti-icing – not on top of contamination, 88, 167
fluid application – anti-icing – one-step application of Type II/III/IV – residue formation, 88
fluid application – anti-icing – overnight aircraft, 88
fluid application – anti-icing – uniformity, 88
fluid application – APU bleed air off, 88, 195
fluid application – composite surfaces, 88
fluid application – deicing – temperature (desirable) at nozzle ≥ 60°C, 144, 157
fluid application – elevator, 88
fluid application – engine, 88
fluid application – engine manufacturer recommendations, 88
fluid application – engines, 195
fluid application – folding wing bushings, 88
fluid application – folding wing hinges, 88
fluid application – fuselage, 88, 195
fluid application – fuselage from nose to aft, 202
fluid application – fuselage top centerline to outboard, 202
fluid application – general strategy, 88
fluid application – guidance (EASA), 189
fluid application – guidance (TC), 168
fluid application – guidelines, 88, 144, 157
fluid application – heat loss, 88, 168, 195
fluid application – horizontal stabilizer, 88, 195
fluid application – in a hangar, 134, 168
fluid application – in a hangar of T-tail aircraft, 134, 168
fluid application – instrument sensors, 195
fluid application – interruption – communication with flightcrew, 88
fluid application – interruption of, 88, 189
fluid application – issues – diluted fluid remaining on aircraft surface, 134
fluid application – issues – incomplete removal of contamination, 134
fluid application – issues – insufficient amount of Type II/IV, 134
fluid application – issues – insufficient freezing point buffer, 134
fluid application – issues – loss of fluid heat during application, 134
fluid application – issues – relying on fluid flow-back over contaminated areas, 134
fluid application – issues – reverse order – e.g. wing tip to wing root, 134
fluid application – issues – uneven application of Type II/III/IV, 134
fluid application – landing gear, 195
fluid application – landing gear and wheel bays, 88
fluid application – leading edge to trailing edge, 202
fluid application – local areas, 88
fluid application – minimize dilution with the first step fluid, 88
fluid application – one-step, 88, 144, 157, 168, 195, 202
fluid application – outboard to inboard, 202
fluid application – re-deicing, 88, 195
fluid application – removal of all frozen contamination, 88
fluid application – removal of dilute fluid, 88
fluid application – rudder, 88
fluid application – side-effect, possible – residues. See Type II/III/IV – residue; Type II/IV – residue
fluid application – stabilizer, vertical, 89
fluid application – steering system, 89
fluid application – symmetrical, 89, 168, 195, 202
fluid application – symmetrical – elevator, 202
fluid application – symmetrical – stabilizer, horizontal, 202
fluid application – symmetrical – stabilizer, vertical, 202
fluid application – symmetrical – wing, 202

263
Guide to Aircraft Ground Deicing – Issue 12

fluid application – temperature limits, 89, 144, 157
fluid application – three-minute rule. See three-minute rule
fluid application – T-tail aircraft, 168
fluid application – two-step, 89, 144, 158, 168, 195, 202
fluid application – two-step – compatibility of Type I with Type II/III/IV, 42, 89, 134
fluid application – Type I – anti-icing, 160
fluid application – Type I – anti-icing – quantity ≥ 1 liter/m², 89, 134, 144, 158
fluid application – Type I – anti-icing – temperature ≥ 60°C, 89, 134, 144, 158
fluid application – Type I – deicing, 160
fluid application – Type I – deicing v anti-icing, 160
fluid application – unheated – ineffective to deice, 89
fluid application – wing, 195
fluid application – wing skin temperature lower than OAT, 89, 144, 158
fluid certificate of conformance – fluid manufacturer to provide, 168
fluid check, 89
fluid check – daily, 89
fluid check – frequency, 89
fluid check – limits set by fluid manufacturer, 89
fluid check – mid-season, 89
fluid check – pre-season, 89
fluid check – program, 89
fluid check – records, 89
fluid check – within-season, 89
fluid compatibility – compatibility of Type I with Type II/III/IV, 168
fluid compatibility – Type I with Type II/III/IV, 42, 89, 134, 140
fluid delivery. See fluid acceptance
fluid dry-out. See Type II/III/IV – residue; Type II/IV – residue
fluid effectiveness, loss of. See fluid failure
fluid elimination – Type II/III/IV high speed ramp, 39
fluid elimination – Type II/III/IV low speed ramp, 39
fluid environmental impact, 168
fluid failure, 190
fluid failure – definition, 78, 168
fluid failure description, 78
fluid failure description – adherence of frozen contamination, 78
fluid failure description – color change to white, 89
fluid failure description – dulling of surface reflectivity, 78
fluid failure description – frozen fluid, 196
fluid failure description – ice pellets in fluid adhering to aircraft surface, 134
fluid failure description – ice pellets in fluid forming a slushy consistency, 134
fluid failure description – ice pellets in fluid forming a slushy consistency v visible individual ice pellets in fluid, 134
fluid failure description – lack of wetting, 116
fluid failure description – loss of gloss, 89, 168
fluid failure description – loss of shine, 168
fluid failure description – no absorption of precipitation, 78, 134, 168
fluid failure description – presence of frozen contamination in the fluid, 78
fluid failure description – presence of frozen contamination on the fluid, 78, 168, 196
fluid failure description – presence of ice crystals in the fluid, 89
fluid failure description – snow accumulation, 78
fluid failure description – snow accumulation, random, 78
fluid failure description – surface freezing, 78
fluid failure front – definition, 182
fluid failure recognition training for persons conducting pretakeoff contamination checks (FAA), 134
fluid failure recognition training for pilots (FAA), 134
fluid failure, deicing/anti-icing anew upon, 89
fluid failure, early – flaps and slats deployed. See flaps and slats deployed, See flaps and slats deployed fluid failure, first areas of – leading edge, 134
fluid failure, top edge – definition, 182
fluid failure, type of – adhesion, 182
fluid failure, type of – visual, 182
fluid freezing in flight – residual fluid on trailing edge, 134, 168
fluid heat hazard, 94
fluid list (FAA), 144
fluid list (FAA) – guidance, 134
fluid list (FAA/TC) – addition of new fluid, 70
fluid list (FAA/TC) – addition of new Type I fluid, 62
fluid list (FAA/TC) – definition, 62, 70
fluid list (FAA/TC) – fluid expiry dates, 62
fluid list (FAA/TC) – fluid manufacturer deadline to provide data – June 01, 62, 70
fluid list (FAA/TC) – publication process, 62, 70
fluid list (FAA/TC) – publication timeline, 62, 70
fluid list (FAA) – removal of obsolete data, 62, 70
fluid list (TC), 158
fluid manufacturer – obligation to provide to FAA/TC – Type II/III/IV (licensee location) – initial qualification test report – aerodynamic acceptance, 70
fluid manufacturer – obligation to provide to FAA/TC – Type II/IV – initial qualification test report for manufacturing location for licensee, 70
fluid manufacturer – obligation to provide to FAA/TC – additional requested data, 62, 70
fluid manufacturer – obligation to provide to FAA/TC – data – general obligation, 62, 70
fluid manufacturer – obligation to provide to FAA/TC – deadlines, 62, 70
fluid manufacturer – obligation to provide to FAA/TC – Type I – list of fluids to be commercialized by June 01, 62
fluid manufacturer – obligation to provide to FAA/TC – Type I – periodic requalification test report – aerodynamic acceptance, 62
fluid manufacturer – obligation to provide to FAA/TC – Type I – periodic requalification test report – anti-icing performance, 62
fluid manufacturer – obligation to provide to FAA/TC – Type I – restrictions on use of, 62

264
fluid manufacturer – obligation to provide to FAA/TC – Type I (licensee location) – initial qualification test report – aerodynamic acceptance, 62
fluid manufacturer – obligation to provide to FAA/TC – Type I (licensee location) – initial qualification test report – WSET, 63
fluid manufacturer – obligation to provide to FAA/TC – Type I (licensee location) – original qualification test data, 63
fluid manufacturer – obligation to provide to FAA/TC – Type I (new) – endurance time data, 63
fluid manufacturer – obligation to provide to FAA/TC – Type I (new) – final name by May 01, 63
fluid manufacturer – obligation to provide to FAA/TC – Type I (new) – freezing point data, 63
fluid manufacturer – obligation to provide to FAA/TC – Type I (new) – initial qualification test report – anti-icing performance, 63
fluid manufacturer – obligation to provide to FAA/TC – Type I (new) DEG based – endurance time data not required, 63
fluid manufacturer – obligation to provide to FAA/TC – Type I (new) EG based – endurance time data not required, 63
fluid manufacturer – obligation to provide to FAA/TC – Type I (new) PG based – endurance time data not required, 63
fluid manufacturer – obligation to provide to FAA/TC – Type I (new) – unique name, 63
fluid manufacturer – obligation to provide to FAA/TC – Type II/III/IV – list of fluids to be commercialized by June 01, 70
fluid manufacturer – obligation to provide to FAA/TC – Type II/III/IV (licensee location) – initial qualification test report – WSET, 70
fluid manufacturer – obligation to provide to FAA/TC – Type II/III/IV (licensee location) – original qualification test data, 70
fluid manufacturer – obligation to provide to FAA/TC – Type II/III/IV periodic requalification test report – endurance time tests – Type II/III/IV – fluid manufacturer documentation, See also endurance time tests – Type I – fluid manufacturer documentation
fluid manufacturer – obligation to provide to FAA/TC – Type II/III/IV periodic requalification test report – anti-icing performance, 70
fluid manufacturer – obligation to provide to FAA/TC – Type II/III/IV periodic requalification test report – multiple locations, 70
fluid manufacturer – obligation to provide to FAA/TC – Type II/III/IV, restrictions on use of, 70
fluid manufacturer – obligation to provide to FAA/TC – Type II/IV (new) – endurance time data, 70
fluid manufacturer – obligation to provide to FAA/TC – Type II/IV (new) – final name by May 01, 70
fluid manufacturer – obligation to provide to FAA/TC – Type II/IV (new) – freezing point data, 70
fluid manufacturer – obligation to provide to FAA/TC – Type II/IV (new) – unique name, 70
fluid manufacturer – obligation to provide to FAA/TC – Type II/IV (new) initial qualification test report – aerodynamic acceptance, high speed, 70
fluid manufacturer – obligation to provide to FAA/TC – Type II/IV (new) initial qualification test report – anti-icing performance, 70
fluid manufacturer – obligation to provide to FAA/TC – Type III (new) – endurance time data, 70
fluid manufacturer – obligation to provide to FAA/TC – Type III (new) – final name by May 01, 70
fluid manufacturer – obligation to provide to FAA/TC – Type III (new) – initial qualification test report – aerodynamic acceptance, high speed (optional), 70
fluid manufacturer – obligation to provide to FAA/TC – Type III (new) – initial qualification test report – aerodynamic acceptance, low speed, 70
fluid manufacturer – obligation to provide to FAA/TC – Type III (new) – initial qualification test report – anti-icing performance, 70
fluid manufacturer – obligation to provide to FAA/TC – Type III (new) – initial qualification test report – freezing point data, 70
fluid manufacturer – obligation to provide to FAA/TC – Type III (new) – to be used heated, not heated or both, 70
fluid manufacturer – obligation to provide to FAA/TC – Type III (new) – unique name, 70
fluid manufacturer – obligation to provide to FAA/TC data for new manufacturing location for licensee, 70
fluid manufacturer – option not to publish fluid-specific HOT, 71
fluid manufacturer – sample selection considerations, Type II/III/IV, 71
fluid manufacturer documentation, 76, 90, See also endurance time tests – Type II/III/IV – fluid manufacturer documentation, See also endurance time tests – Type I – fluid manufacturer documentation
fluid manufacturer documentation – acceptance field tests, 89, 116, 168
fluid manufacturer documentation – aerodynamic acceptance data, 42, 51, 89, 144, 158, 168
fluid manufacturer documentation – appearance, 42, 89
fluid manufacturer documentation – aquatic toxicity, 42, 51
fluid manufacturer documentation – biodegradability, 42, 51
fluid manufacturer documentation – BOD, 42, 51
fluid manufacturer documentation – certificate of analysis, 89, 116
fluid manufacturer documentation – certificate of conformance, 168
fluid manufacturer documentation – COD, 42
fluid manufacturer documentation – cold storage stability, 51
fluid manufacturer documentation – color, 42, 89, 168
fluid manufacturer documentation – compliance with, 196
fluid manufacturer documentation – concentration limits, 89, 168
fluid manufacturer documentation – dry-out exposure to cold dry air, 51
fluid manufacturer documentation – elastomer compatibility data, 168
fluid manufacturer documentation – exposure to dry air, 51
fluid manufacturer documentation – field viscosity test limits [optional], 89
fluid manufacturer documentation – filter requirements, 168

Index
Index

fluid name – new unique name, 63, 71
fluid name – reformulation, 63, 71
fluid operational limit, 182
fluid residue. See Type II/III/IV – residue
fluid residue table, 71
fluid retesting, 71
fluid runway and taxiway deicing/anti-icing compound. See RDP. liquid
fluid sampling. See sampling
fluid shelf life, 169
fluid slipperiness, 169
fluid specifications, non-SAE – TC not recognized, 169
fluid specifications, SAE – TC recognized, 169
fluid spills – emergency contact in Canada: CANUTEC, 169
fluid storage. See storage
fluid test. See fluid check
fluid test frequency – bulk storage, 169
fluid test frequency – deicing unit after maintenance, 169
fluid test frequency – deicing unit after repair, 169
fluid test frequency – deicing unit daily and when refilled, 169
fluid test frequency – drums, 169
fluid test frequency – totes, 169
fluid test frequency – upon dilution, 169
fluid test frequency – upon transfer, 169
fluid transfer system – chemical contamination, 90
fluid transfer system – dedicated, 90
fluid transfer system – design, 90
fluid transfer system – fluid manufacturer’s recommendation, 90
fluid transfer system – hoses, 90
fluid transfer system – labeling, 90
fluid transfer system – labeling of discharge points, 90
fluid transfer system – labeling of fill ports, 90
fluid transfer system – no inadvertent mixing, 90
fluid transfer system – no mixing with fluid of different manufacturer, 90
fluid transfer system – no mixing with fluid of different Types of fluids, 90
fluid transfer system – nozzle, 90
fluid transfer system – piping, 90
fluid transfer system – pumps, 90
fluid transfer system – shearing, 90
fluid transfer system – valves, 90
fluid, acceptability – guidance (TC), 169
fluid, acceptable – definition, 182
fluid, common, 105
fluid, composition of, 169
fluid, failed – definition, 182
fluid, neat, 141. See footnote 61, See also Type II/III/IV – neat
fluid, new – data required for use with generic HOT, 63
fluid, new – development of fluid-specific HOT, 71
fluid, new – new unique name, mandatory, 63, 71
fluid, new – obligation to provide information to FAA/TC, 63, 71
fluid, non-Newtonian – definition, 51
fluid, pristine – definition, 182
fluid, pseudoplastic, 52
fluid, pseudoplastic – definition, 51, 90
fluid, residual – on trailing edge, 134, 169
fluid, supercooled. See crystallization, delayed
fluid, thickened. See Type II/III/IV
fluids – guidance (TC), 169
foam – forced air application of Type II/III/IV, 110
FOD, 116
fog. See also snowfall intensity – overestimation due to obscuration
fog – definition, 196
fog, ground – definition, 196
fog, supercooled, 196
Fokker F100 dimensions, 116
Fokker F27 dimensions, 116
Fokker F-28, 22, 23
Fokker F28 dimensions, 116
Fokker F70 dimensions, 116
Fokker F70/F100 spray area diagram, 116
folding wing – bushings, deicing of, 90
folding wing – deicing, 90
folding wing – hinges, deicing of, 90
folding wing – lubricant removal by deicing, 90
footwear, 169
forced air, 90, 109, 169
forced air – air pressure at nozzle, 110
forced air – air pressure, maximum, 110
forced air – air velocity, 110
forced air – air velocity v distance, 110
forced air – air volumes, 110
forced air – aircraft safety – debris, 110
forced air – approval by aircraft manufacturer, 169
forced air – concerns – inadequate application of Type II/III/IV, 134
forced air – concerns – other, 134
forced air – concerns – over aerated Type II/IV – frothy appearance, 134
forced air – concerns – unduly aerated Type II/IV – milky white appearances, 134
forced air – debris as projectiles, 110
forced air – definition, 169
forced air – foam formation, 110
forced air – guidance (FAA), 134
forced air – guidance (TC), 169
forced air – incomplete removal of contaminants, 110
forced air – injected fluid quantity, 110
forced air – mandatory field test (FAA), 134
forced air – modes – alone, 169
forced air – modes – Type I fluid applied over air stream, 169
forced air – modes – Type II/III/IV applied over air stream, 169
forced air – noise levels, 110
forced air – personnel safety – noise, 110, 169
forced air – personnel safety – projectiles, 110, 169
forced air – post deicing/anti-icing check, 110
forced air – potential accumulation of contamination in control areas, 110
forced air – potential damage to landing gear, 110
forced air – potential damage to wheel well components, 110
forced air – precautions, 135
forced air – pressure distribution, 110
forced air – pressure loads, average, 110
forced air – pressure loads, peak, 110
forced air – pressure, average, 110
forced air – pressure, peak, 110
forced air – projectile formation, 110, 169
forced air – removal of frozen contamination, 110
forced air – safety trials, 110
forced air – sound level, 110
forced air – with fluid, 110, 169
forced air – with fluid – no HOT, 110
forced air – with heated fluid, 110, 169
forced air – with Type I, 135
forced air – with Type II/III/IV, 135
forced air – with unheated fluid, 110
forced air – without fluid, 110, 135, 169
formulation change – name change, 63, 71
forced air – sound level, 110
forced air – with unheated fluid, 110
freezing drizzle – definition, 90, 116, 196
freezing drizzle – gauge (TC), 169
freezing fog. See also HOT – precipitation rate
freezing fog v frozen fog, 182
freezing fog v frozen fog. See also HOT – precipitation rate
freezing fog, 169
freezing fog, 169
freezing fog. See also HOT – precipitation rate
freezing fog. See also HOT – precipitation rate
freezing point buffer – reasons for – refractometer measurement variability, 135, 169
freezing point buffer – reasons for – refractometer measurement variability, 135, 169
freezing point buffer – reasons for – solar radiation, 135
freezing point buffer – reasons for – variability in temperature of applied fluid, 135
freezing point buffer – reasons for – weather changes after fluid application, 169
freezing point buffer – reasons for – weather changes after fluid application, 169
freezing point buffer – Type I – 10°C, 63, 90, 135
freezing point buffer – Type I – 10°C, 63, 90, 135
freezing point buffer – Type II/III/IV – 7°C, 71, 90, 135
freezing point buffer – Type II/III/IV – 7°C, 71, 90, 135
freezing point depressant, 48, 57, 58
freezing point depressant, 48, 57, 58
freezing point depressant, Glycol, Conventional, 48, 57, 58
freezing point depressant, Glycol, Conventional, 48, 57, 58
freezing point depressant, Glycol, Non-conventional, 48, 57, 58
freezing point depressant, Glycol, Non-conventional, 48, 57, 58
freezing point depressant, Non-glycol, 48, 57, 58
freezing point depressant, Non-glycol, 48, 57, 58
freezing point depressant, Glycol, Conventional and Non-Conventional, 48, 57, 58
freezing point depressant, Glycol, Conventional and Non-Conventional, 48, 57, 58
freezing point depressant, Glycol, Conventional and Non-Conventional, 48, 57, 58
freezing point depressant, Glycol, Conventional and Non-Conventional, 48, 57, 58
freezing point determination – ASTM D 1177, 170
freezing point determination – first ice crystal formation, 170
freezing point determination – refraction, 170
freezing point determination – refraction in BRIX, 170
freezing rain, See also HOT – precipitation rate
frost. See also HOT – frost; HOT – precipitation rate
frost – active – definition, 91, 116, 135, 170, 196
frost – active – deicing, 170
frost – active – formation conditions, 91
frost – active – guidance (TC), 170
frost – appearance, 135, 170
frost – deceptively dangerous, 196
frost – deceptively dangerous – clean appearance of residual contaminated fluid, 182
frost – deceptively dangerous – drag increase, 135, 170
frost – deceptively dangerous – lift degradation, 135, 170
frost – definition, 91, 116, 196
frost – detection – ROGIDS less reliable than visual check, 78
frost – detection – ROGIDS v visual check, 78
frost – endurance test, 33
frost – formation, 33
frost – formation – condensation and freezing, 91
frost – formation – effect of surface composition, 170
frost – formation – effect of surface finish, 170
frost – formation – sublimation, 91
frost – formation conditions, 116, 170
frost – formation conditions – cold-soaked fuel – risk of fluid below LOUT, 170
frost – formation conditions – cold-soaked fuel (conductive cooling), 135, 170
frost – formation conditions – low light, shade, obscured sun, 170
frost – formation conditions – surface below OAT and at or below frost point, 135, 170
frost – formation mechanism – conductive cooling, 135, 170
frost – growth, 33
frost – local, 116
frost – local – definition, 91
frost – local – flight crew communications, 91
frost – local – fluid application (≥ 50°C) when frost starts to form, 91

Guide to Aircraft Ground Deicing – Issue 12

See also
subset of
See
also

268
frost – local – fluid application and coverage, 91
frost – local – fluid application to clean surface, 91
frost – local – prevention, 91
frost – local – prevention – aircraft operator approval, 91
frost – local – prevention – no HOT, 91
frost – local – prevention – trained personnel, 91
frost – local – prevention – no HOT, 91
frost – local – prevention – aircraft operator approval, 91
frost – local – prevention, 91
frost – local – fluid application to clean surface, 91
glycerine.
global aircraft deicing standards – list, 29, 188
global aircraft deicing standards – IATA initiative, 28
global aircraft deicing standards – list, 29, 188
glycerine. See Glycol, Non-conventional – glycerine
Glycol, Non-conventional – glycerine
Glycol – definition, 43, 52
glycerol, Conventional – propylene glycol, 43, 52
Glycol, Conventional – ethylene glycol, 43, 52
Glycol, Conventional – diethylene glycol, 43, 52
glycol, Non-conventional – 1,3-propanediol, 43, 52
Glycol, Non-conventional – definition, 43, 52
Glycol, Non-conventional – glycerine, 43, 52
Glycol, Non-conventional – organic non-ionic diols and triols, 43, 52
Glycol, Non-conventional – organic non-ionic diols and triols, mixtures of, 43, 52
Glycol, Non-conventional – organic non-ionic diols and triols, mixtures with Conventional Glycol, 43, 52
glycol, recycled. See Type I – recycled glycol
GR. See METAR code GR, See METAR code GR
ground coordinator – definition, 100
ground deicing program – aircraft operator responsibility, 91
ground deicing program – approval by regulator, 91
ground deicing program – infrared deicing facility, 91
ground deicing program (FAA), 135
ground deicing program (FAA) – approval, 148
ground deicing program (FAA) – approved, 135
ground deicing program (FAA) – approved operations in lieu of, 148
ground deicing program (FAA) – program elements, 148
ground deicing program (ICAQO) – aircraft specific procedures, 196
ground deicing program (ICAQO) – clean aircraft concept, 196
ground deicing program (ICAQO) – communication plan, 196
ground deicing program (ICAQO) – deicing processes, 196
ground deicing program (ICAQO) – emergency response plan, 196
ground deicing program (ICAQO) – HOT, 196
ground deicing program (ICAQO) – management plan, 196
ground deicing program (ICAQO) – post deicing/anti-icing check, 196
ground deicing program (ICAQO) – pretakeoff check, 196
ground deicing program (ICAQO) – pretakeoff contamination check, 196
ground deicing program (ICAQO) – quality assurance, 196
ground deicing program (ICAQO) – reporting system, 196
ground deicing program (ICAQO) – training for deicing crews, 196
ground deicing program (ICAQO) – training for flightcrew, 196
ground deicing program (ICAQO) – training for operations personnel, 196
ground deicing program (TC) – approval, 170
ground deicing program (TC) – audits, 170
ground deicing program (TC) – communication plan, 170
ground deicing program (TC) – definition, 170
ground deicing program (TC) – deicing fluids, 170
ground deicing program (TC) – deicing processes, 170
ground deicing program (TC) – deicing/anti-icing fluid, 170
ground deicing program (TC) – development of, 170
ground deicing program (TC) – emergency, 170
ground deicing program (TC) – environmental responsibilities, 170
ground deicing program (TC) – foreign air operator, 170
ground deicing program (TC) – GOFR 622.11, 170
ground deicing program (TC) – holdover times, 170
ground deicing program (TC) – management plan, 170
ground deicing program (TC) – operational issues, 171
ground deicing program (TC) – quality assurance program, 171
ground deicing program (TC) – quality loop, 171
ground deicing program (TC) – record keeping, 171
ground deicing program (TC) – roles and responsibilities, 171
ground deicing program (TC) – safety, personnel, 171
ground deicing program (TC) – service providers, 171
ground deicing program (TC) – SMS, 171
ground deicing program (TC) – training for deicing crews, 171
ground deicing program (TC) – training for flightcrew, 171
ground deicing program (TC) – training for maintenance personnel, 171
ground deicing program (TC) – training for operations personnel, 171
ground deicing program (TC) – training for service provider, 171
ground deicing program (TC) – training records, 171
ground deicing program (TC) – training, WHMIS, 171
ground deicing/anti-icing program (FAA). See ground deicing program (FAA)
ground deicing/anti-icing program (ICAO). See ground deicing program (ICAO)
ground icing conditions – definition, 126, 171
GRV, 105
GS. See METAR code GS
Gulfstream IV dimensions, 116
Gulfstream spray area diagram, 116
hail – definition, 91, 171, 196
hail – no allowance time, 135
hail – no HOT, 135
hail intensity, small v ice pellet intensity, 135
hail, small. See also allowance time
hail, small – definition, 116, 196
hail, small – intensity, 135, 171
hand signals, 100, 171
handedness, aircraft, 116
hangar, fluid application in, 136, 171, 196
hangar, fluid application in – start of HOT, 136, 171, 196
hangar, fluid application in – T-tail aircraft, 136, 171
hangar, use of, 136, 171, 196
hard wing – definition, 136, 148
hard wing – tactile check and visual check with pretakeoff contamination check when HOT exceeded, 136
hard wing – tactile check when temperature at or below 10°C and high humidity, 136
hard wing – tactile check with cold soaked wings, 136
hard wing – visual and tactile check after post deicing/anti-icing check, 136
harness, 171
Hawker 800 XP dimensions, 116
Hawker Horizon dimensions, 116
Hawker Siddeley HS 748 spray area diagram, 116
hazard – definition, 116
hazard, identified, 116
hazards of ice, snow and frost, 116, 171, 190, 196, See also contamination [frozen] – effect on haze. See snowfall intensity – overestimation due to obscuration
headsets, 171
headwear, protective, 171
heat loss, 91, 171, 196
height overall, aircraft, 116
helicopter. See rotorcraft
Hempelmann, Hans W., 25
HHET – air temperature (0.0°C), 39
HHET – calibration, 39
HHET – definition, 171
HHET – description, 39
HHET – failure criteria, 40
HHET – failure zone, 40
HHET – fluid preparation, 40
HHET – fluid sheared, 40
HHET – fluid temperature, 40
HHET – frost accumulation rate(0.30 g/dm².h), 40
HHET – humidity generator, 40
HHET – icing intensity (0.30 g/dm².h), 40
HHET – nucleation, no, 40
HHET – relative humidity, 40
HHET – report, 40
HHET – reproducibility – Type I (20%), 40
HHET – reproducibility – Type II/III/IV (10%), 40
HHET – spray equipment, 40
HHET – test chamber, 40
HHET – test description, 40
HHET – test method, 40
HHET – test plate, 40
HHET – test plate cleanliness, 40
HHET – test plate temperature, 40
HHET – Type I – 20 minutes minimum, 43
HHET – Type II 50/50 – 0.5 hours minimum, 52
HHET – Type II 75/25 – 2 hours minimum, 52
HHET – Type II neat – 4 hours minimum, 52
HHET – Type III 75/25 – determine and report, 52
HHET – Type III 50/50 – determine and report, 52
HHET – Type III neat – 2 hours minimum, 52
HHET – Type IV 50/50 – 0.5 hours minimum, 52
HHET – Type IV 75/25 – 2 hours minimum, 52
HHET – Type IV neat – 8 hours minimum, 52
HHET – water droplet size, 40
high humidity – definition, 196
high humidity endurance test. See HHET
high speed aircraft. See aerodynamic acceptance test – high speed aircraft
high speed ramp. See aerodynamic acceptance test – high speed ramp
high viscosity pre-production sample – MOWV, 71
highest usable precipitation rate. See HUPR
Hille, Joel, 201
hoarfrost, 136, See also frost
hoarfrost – definition, 91, 116, 136, 171, 196
hoarfrost on fuselage, 171
holdover start time. See HOT – start of
holdover time. See HOT
holdover time determination system. See HOTDS
HOT – 76% adjusted – flaps and slats deployed, 136, 144, 158
HOT – 76% adjusted – regression calculations, 145, 159
HOT – capping of. See HOT, preparation of Type II/III/IV – HOT values, capping of
HOT – decision making criterion (TC), 171
HOT – definition, 63, 71, 91, 148, 149, 154, 171, 179, 182, 196, 202
HOT – effect of aircraft surface coating, 91
HOT – effect of wind on, 136
HOT – electronic hand-held devices. See eHOT
HOT – end, 91, 148, 149, 154
HOT – end (EASA) – at fluid failure, 190
HOT – end (EASA) – at the beginning of the takeoff roll
(fluid shedding), 190
HOT – estimated time of protection, 91
HOT – FAA v TC, 227
HOT – failure mode – visual, 63, 71
HOT – flaps and slats deployed. See HOT – 76% adjusted – flaps and slats deployed
HOT – format by operator, 196
HOT – frost, 136, 144, 158
HOT – frost – guidance (TC), 171
HOT – guidance (EASA), 189, 190
HOT – guidance (FAA), 136, 144
HOT – guidance (ICAO), 196
HOT – guidance (TC), 160, 171
HOT – guideline – definition, 63, 71
HOT – guideline – fluid-specific – definition, 63, 71
HOT – guideline – generic – definition, 63, 71
HOT – guideline – publication date, 63
HOT – guideline – publication date for, 71
HOT – guideline – publication timeline, 63
HOT – guideline – validity – LOWV, 71
HOT – guidelines – definition, 91, 171, 182
HOT – intermittent precipitation, 171
HOT – less than protection time, 182
HOT – maximum – neat unheated Type II/IV, 91
HOT – notes and cautions – mandatory use of, 136
HOT – precipitation categories – freezing drizzle, 136
HOT – precipitation categories – freezing fog, 136
HOT – precipitation categories – frost, 136
HOT – precipitation categories – light freezing rain, 136
HOT – precipitation categories – light snow mixed with light rain, 136
HOT – precipitation categories – snow on cold soaked wing, 136
HOT – precipitation categories – snow, 136
HOT – precipitation categories – very light snow mixed with light rain, 136
HOT – precipitation rate – freezing fog – ca 0.2–0.5 mm/h, 2–5 g/dm2/h, 136
HOT – precipitation rate – freezing rain, light – less or equal to 2.5 mm/h, 136
HOT – precipitation rate – frost – low but not quantified, 136
HOT – precipitation rate – snow, light – 0.4–1.0 mm/h, 4–10 g/dm2/h, 136
HOT – precipitation rate – snow, moderate – 1.0–2.5 mm/h [10–25 g/dm2/h], 136
HOT – precipitation rate – snow, very light – 0.3–0.4 mm/h, 3–4 g/dm2/h, 136
HOT – precipitation, mixed – guidance (FAA), 136
HOT – publication by FAA and TC, 26, 91, 171
HOT – purpose, 136
HOT – range – definition, 148
HOT – reduction – flaps and slats deployed. See HOT – 76% adjusted – flaps and slats deployed
HOT – reduction of – heavy precipitation rates, 91, 196
HOT – reduction of – high moisture content precipitation, 91
HOT – reduction of – high wind velocity, 91, 196
HOT – reduction of – jet blast, 91, 196
HOT – reduction of – wing skin temperature lower than OAT, 91, 196
HOT – regression information – changes in 2019-2020, 145, 159
HOT – regression limitations, 146, 159
HOT – regression limitations – annual update, 179
HOT – regression limitations – capping for freezing drizzle 2 h (TC), 179
HOT – regression limitations – capping for freezing fog 4 h (TC), 179
HOT – regression limitations – capping for light freezing rain 2 h (TC), 179
HOT – regression limitations – capping for rain on cold soaked wing 2 h (TC), 179
HOT – regression limitations – capping for snow 2 h (TC), 179
HOT – regression limitations – caution outside precipitation rate limits, 145, 159
HOT – regression limitations – no allowance times, 146, 159
HOT – regression limitations – no interpolation for Type II/III/IV non-standard dilutions, 146, 159
HOT – regression limitations – no regression coefficients for frost, 146, 159
HOT – regression limitations – use at > 0°C, 146, 159, 179
HOT – regression limitations – use of freezing drizzle precipitation rate ≤ 25 g/dm2/h, 179
HOT – regression limitations – use of freezing drizzle precipitation rate ≥ 5 g/dm2/h, 179
HOT – regression limitations – use of freezing fog precipitation rate ≤ 25 g/dm2/h, 179
HOT – regression limitations – use of freezing fog precipitation rate ≥ 5 g/dm2/h, 179
HOT – regression limitations – use of LUPR, 146, 159
HOT – regression limitations – use of precipitation rate ≥ 2 g/dm2/h, 179
HOT – regression limitations – use of rain on cold soaked wing precipitation rate ≤ 75 g/dm2/h, 180
HOT – regression limitations – use of regression coefficients equivalent to those published by TC, 180
HOT – regression limitations – use of regression coefficients published by TC, 180
HOT – regression limitations – use of snow precipitation rate ≤ 50 g/dm2/h, 146, 159, 180
HOT – regression limitations – use with HOTDS conforming to regulations (TC), 146, 159
HOT – responsibility of HOT guideline data remains with user, 91
HOT – rounding of. See HOT, preparation of Type II/III/IV
 – HOT values, rounding
HOT – start of, 91, 148, 149, 154, 160, 171, 190, 196
HOT – start of – for fluid application in a hangar, 136
HOT – start of – one-step deicing anti-icing, 91
HOT – start of – two-step deicing/anti-icing, 91
HOT – tables – definition, 149, 171
HOT – temperature limits, 136
HOT – Type I – aluminum surface, 144, 158, 171
HOT – Type I – aluminum v composite surface – how to select, 136, 171
HOT – Type I – composite surface, 144, 158, 172
HOT – Type I – composite surface – shorter than aluminum, 136
HOT – Type I – guidance (FAA), 136
HOT – Type I – guidance (TC), 160
HOT – Type I – metal surface, 136
HOT – Type I – titanium surface, 136
HOT – Type I fluid-specific – none, 63
HOT – Type I generic – regression calculations, 146, 159
HOT – Type I generic – regression coefficients, 146, 159
HOT – Type I/II/III/IV frost, 144, 158
HOT – Type II fluid-specific, 144, 158
HOT – Type II fluid-specific – regression calculations, 146, 159
HOT – Type II fluid-specific – regression coefficients, 146, 159
HOT – Type II generic, 144, 158
HOT – Type II generic – fluid-specific LOUT, mandatory use of, 136
HOT – Type II generic – HOT minimum (worst case) values of all Type II fluids, 136, 146, 159, 172
HOT – Type II generic – regression calculations, 146, 160
HOT – Type II generic – regression coefficients, 146, 160
HOT – Type II generic – use fluid-specific LOWV, 172
HOT – Type II/III/IV – guidance, general, 136
HOT – Type II/III/IV – non-standard dilutions, 136
HOT – Type II/III/IV – heated v unheated fluid, 136
HOT – Type III fluid-specific, 144, 158
HOT – Type III fluid-specific – heated – no HOT, 144, 158
HOT – Type III fluid-specific – regression calculations, 146, 160
HOT – Type III fluid-specific – regression coefficients, 146, 160
HOT – Type III fluid-specific – unheated, 144, 158
HOT – Type III generic – none, 136, 144, 158, 172
HOT – Type IV fluid-specific, 144, 158
HOT – Type IV fluid-specific – regression calculations, 146, 160
HOT – Type IV fluid-specific – regression coefficients, 146, 160
HOT – Type IV generic, 144, 158
HOT – Type IV generic – fluid-specific LOUT, mandatory use of, 137
HOT – Type IV generic – HOT minimum (worst case) values of all Type IV, 137, 146, 160, 172
HOT – Type IV generic – LOWV, fluid-specific, 172
HOT – Type IV generic – regression calculations, 146, 160
HOT – Type IV generic – regression coefficients, 146, 160
HOT – Type IV generic – use fluid-specific LOWV, 172
HOT – v allowance time, 137, 172
HOT – v taxiing time, 154
HOT – v time from start of last step to takeoff clearance, 154
HOT – validity of – LOWV, 71
HOT – variables – active meteorological condition, 137
HOT – variables – fluid concentration, 137
HOT – variables – OAT, 137
HOT – variables – precipitation intensity, 137
HOT – variables – precipitation type, 137
HOT – variables affecting, 148, 196
HOT – weather conditions, in improving, 172
HOT – weather conditions, in worsening, 172
HOT (FAA), 144
HOT (FAA) – changes for winter 2019-2020, 144
HOT (FAA) – recognition – EASA, 188
HOT (FAA) – recognition – ICAO, 196
HOT (FAA), development of – use of SAE ARP5485 and SAE ARP5945, 137
HOT (TC), 158
HOT (TC) – changes for winter 2019-2020, 158
HOT (TC) – mandatory use of TC application tables, 172
HOT (TC) – recognition – ICAO, 197
HOT maximization – engines-on deicing, 105
HOT table synonym for HOT guideline, 63, 71
hot water deicing. See deicing unit – hot water deicing
HOT, no – freezing rain, heavy, 137, 172
HOT, no – freezing rain, moderate, 137, 172
HOT, no – hail, 137, 172
HOT, no – hail, small. But see allowance time, 137, 172
HOT, no – ice pellets mixed with other precipitation. But see allowance time, 137
HOT, no – ice pellets, light. But see allowance time, 137
HOT, no – ice pellets, moderate. But see allowance time, 137
HOT, no – ice precipitation. But see allowance time, 137
HOT, no – ice precipitation. But see allowance time, 137
HOT, no – local area deicing, 92
HOT, no – local frost prevention, 92
HOT, no – mixed phase conditions, 172
HOT, no – snow heavy, 172
HOT, no – snow, heavy – takeoff under special dispatch procedures (FAA), 137
HOT, no – specific area deicing, 92
HOT, no – Type I – no HOT start time, 160
HOT, no – Type I < 60°C, 137, 144, 158
HOT, no – Type I applied with forced air, 110
HOT, no – Type I unheated, 137, 160
HOT, no (EASA) – freezing precipitation with high water content, 190
HOT, no (EASA) – freezing rain, 190
HOT, no (EASA) – hail, 190
HOT, no (EASA) – heavy snow, 190
HOT, no (EASA) – high wind velocity, 191
HOT, no (EASA) – ice pellets, 191
HOT, no (ICAO) – unspecified weather conditions, 197
HOT, no v no takeoff, 137
HOT, preparation of Type I – cautions – HOT reduced – aircraft skin temperature lower than OAT, 63
HOT, preparation of Type I – cautions – no inflight-protection, 63
HOT, preparation of Type I – cautions – protection time shortened – heavy precipitation rates, 63
HOT, preparation of Type I – cautions – protection time shortened – heavy weather, 63	HOT, preparation of Type II/III/IV – cautions – protection time shortened – heavy weather, 71
HOT, preparation of Type I – cautions – protection time shortened – high moisture content, 63	HOT, preparation of Type II/III/IV – cautions – protection time shortened – high moisture content, 71
HOT, preparation of Type I – cautions – protection time shortened – high winds, 63	HOT, preparation of Type II/III/IV – cells, 71
HOT, preparation of Type I – cautions – protection time shortened – jet blast, 63	HOT, preparation of Type II/III/IV – date of issue, 71
HOT, preparation of Type I – cells, 63	HOT, preparation of Type II/III/IV – date of obsolescence, 71
HOT, preparation of Type I – date of obsolescence, 63	HOT, preparation of Type II/III/IV – date of revision, 71
HOT, preparation of Type I – date of revision, 63	HOT, preparation of Type II/III/IV – fluid product names, 71
HOT, preparation of Type I – HOT values from R&D, 64	HOT, preparation of Type II/III/IV – fluid retesting, 71
HOT, preparation of Type I – HOT values not from endurance time data, 64	HOT, preparation of Type II/III/IV – fluid-specific – manufacturer option not to publish, 71
HOT, preparation of Type I – fluid product names, 64	HOT, preparation of Type II/III/IV – format, 71
HOT, preparation of Type I – generic, 64	HOT, preparation of Type II/III/IV – generic, 71
HOT, preparation of Type I – generic – aluminum materials, 64	HOT, preparation of Type II/III/IV – HOT values from endurance time data, 71
HOT, preparation of Type I – generic – composite materials, 64	HOT, preparation of Type II/III/IV – HOT values range, 71
HOT, preparation of Type I – generic – frost, active, 64	HOT, preparation of Type II/III/IV – HOT values, capping of, 71
HOT, preparation of Type I – generic – unchanging, 64	HOT, preparation of Type II/III/IV – HOT values, rounding of, 72
HOT, preparation of Type I – HOT values range, 64	HOT, preparation of Type II/III/IV – new fluids, 72
HOT, preparation of Type I – licsee, 64	HOT, preparation of Type II/III/IV – new fluids, 72
HOT, preparation of Type I – new fluids, 64	HOT, preparation of Type II/III/IV – notes, 72
HOT, preparation of Type I – notes, 64	HOT, preparation of Type II/III/IV – obsolete data, removal of, 72
HOT, preparation of Type I – obsolete data, removal of, 64	HOT, preparation of Type II/III/IV – precipitation categories, 72
HOT, preparation of Type I – precipitation categories, 72	HOT, preparation of Type II/III/IV – precipitation categories – freezing drizzle, 72
HOT, preparation of Type I – precipitation categories – frost, active, 64	HOT, preparation of Type II/III/IV – precipitation categories – freezing fog or ice crystals, 72
HOT, preparation of Type I – precipitation categories – light freezing rain, 64	HOT, preparation of Type II/III/IV – precipitation categories – frost, active, 72
HOT, preparation of Type I – precipitation categories – rain on cold soaked wing, 64	HOT, preparation of Type II/III/IV – precipitation categories – light freezing rain, 72
HOT, preparation of Type I – precipitation categories – snow, snow grains or snow pellets, 64	HOT, preparation of Type II/III/IV – precipitation categories – rain on cold soaked wing, 72
HOT, preparation of Type I – ready-to-use dilutions, 64	HOT, preparation of Type II/III/IV – precipitation categories – snow, snow grains or snow pellets, 72
HOT, preparation of Type I – removal of obsolete fluid data, 64	HOT, preparation of Type II/III/IV – removal of obsolete fluid data, 64, 72
HOT, preparation of Type I – sample selection, 64	HOT, preparation of Type II/III/IV – removal of obsolete fluid data, 72
HOT, preparation of Type I – sample selection – fluid manufacturer considerations, 64	HOT, preparation of Type II/III/IV – sample selection, 72
HOT, preparation of Type I – temperature ranges, 64	HOT, preparation of Type II/III/IV – sample selection – fluid manufacturer considerations, 72
HOT, preparation of Type I – timeline, 64	HOT, preparation of Type II/III/IV – temperature ranges, 72
HOT, preparation of Type II/III/IV – to exclude Type IV data, 71	HOT, preparation of Type II/III/IV – timeline, 72
HOT, preparation of Type II/III/IV – cautions, 71	HOT, preparation of Type III – generic – none published, 72
HOT, preparation of Type II/III/IV – cautions – HOT reduced – aircraft skin temperature lower than OAT, 71	HOT, preparation of Type IV – generic – to exclude Type II data, 72
HOT, preparation of Type II/III/IV – cautions – HOT reduced – high winds, 71	HOTDR – content of, 180
HOT, preparation of Type II/III/IV – cautions – HOT reduced – jet blast, 71	HOTDR – definition, 180
HOT, preparation of Type II/III/IV – cautions – no inflight- protection, 71	HOTDS, 137, 146, 160
HOT, preparation of Type II/III/IV – cautions – protection time shortened – heavy precipitation rates, 71	HOTDS – definition, 180
	HOTDS – guidance (FAA), 149
Guide to Aircraft Ground Deicing – Issue 12

HOTDS – subset of LWES, 149
HOTDS – technical requirements (TC), 180
HOTDS – WSDMM, 97
HOTDS continuously integrated measurement system – definition, 180
HOTDS discrete measurement system – definition, 180
HOWV – definition, 72, 92
HOWV – manufacturer consideration in selecting sample for high viscosity pre-production sample, 72
HOWV – relation to high viscosity pre-production sample, 72
HUPR – definition, 72
HUPR, snow, 146, 160
hydraulic fluid – effect on carbon brake, 216
hydrophilic surface – definition, 33
hydrophobic surface – definition, 33
hydrophobic surface – icephobic properties, does not imply, 33
hygroscopic – definition, 216
IAC, 26
IAI 1125 Astra SPX dimensions, 116
IAI Galaxy dimensions, 116
IATA, 26
Iberia IB3195 collision at Munich airport, 24
ICAO, 3, 26
ICAO – deicing/anti-icing bibliography, 197
ICAO – recognition of AMS1424 (latest version), 197
ICAO – recognition of AMS1428 (latest version), 197
ICAO – recognition of ARP4902 (latest version), 197
ICAO – recognition of ARP6257 (latest version), 197
ICAO – recognition of AS6285 (latest version), 197
ICAO – recognition of AS6286 (latest version), 197
ICAO – recognition of AS6332 (latest version), 197
ICAO – recognition of HOT (TC), 197
ICAO – recognition of HOT (FAA), 197
ICAO Doc 4444, 199
ICAO Doc 9157, 105
ICAO Doc 9640, 199
ICAO Doc 9640, 193
ice – definition, 172, 182
ice accretion – water droplet impact resistance, 33
ice accretion – in-flight, 33, 92, 116, 148
ice accumulation test, static, 33
ice adhesion test – centrifuge ice adhesion test, 33
ice adhesion test – zero-degree cone test, 33
ice contamination, critical – definition, 78
ice contamination, critical – probability estimate, 78
ice crystals. See also dry ice crystals
ice detection camera. See ROGIDS
ice detection pole. See clear ice – detection – tactile wand
ice detection system – aircraft mounted, 197
ice detection system – enclosed cabin, optional equipment for, 111
ice detection system, remote on-ground. See ROGIDS
ice melting test. See RDP ice melting test
ice melting test for RDP. See RDP ice melting test
ice pellet intensity v small hail intensity, 137
ice pellets. See also allowance time
ice pellets – definition, 92, 116, 172, 197
ice pellets – equivalent to small hail, 172
ice pellets – operational guidance (FAA), 137
Ice pellets – operational guidance (TC), 172
ice pellets – visual fluid failure of HOT not applicable, 137
ice penetration test. See RDP ice penetration test
ice ridges on nose – pitot tubes affected by, 92
ice shedding, 33
ice shedding, engine. See engine run-ups; ice, operational
ice undercutting test. See RDP ice undercutting test
ice undercutting test, RDP. See RDP ice undercutting test
ice, clear. See clear ice
ice, ground-accumulated – definition, 202
ice, ground-accumulated – removal before engine start-up, 202
ice, impact. See ice accretion, in-flight
ice, light – removal of, 92
ice, operational – definition, 202
ice, operational – removal by engine run-ups, 202
ice, removal of, 92
icehouse – definition, 100, 172
iceman – definition, 100
icing conditions, AFM – definition, 202
icing conditions, AFM – ice, snow or slush on ramps, taxiways or runways, 202
icing conditions, AFM – visible moisture with visibility of one statute mile or less, 202
icing conditions, AFM ground – OAT ≤ 10°C, 202
icing conditions, AFM in flight – total air temperature ≤ 10°C, 202
icing research, 26
icing, ground, 197
icing, in-flight, 197
illuminance – definition, 78
Ilyushin IL-114 dimensions, 116
Ilyushin IL-62 dimensions, 116
Ilyushin IL-62 spray area diagram, 116
Ilyushin IL-76 dimensions, 116
Ilyushin IL-76 spray area diagram, 116
Ilyushin IL-86 dimensions, 117
Ilyushin IL-96 dimensions, 117
Ilyushin IL-96 spray area diagram, 117
Ilyushin IL-96M dimensions, 117
impact ice. See ice accretion, in-flight
improvement, continual, 117, 126
infrared deicing, 92
infrared deicing – functional description, 92
infrared deicing facilities, 150
infrared deicing facilities, list of. See footnote 96
infrared deicing facility – design of, 154
infrared deicing facility – general requirements, 92
infrared deicing facility – procedure for aircraft inspection, 92
infrared deicing facility – procedure for anti-icing aircraft, 92
infrared deicing facility – procedure for deicing aircraft, 92
infrared deicing facility – ROGIDS recommended, 154
infrared facility. See infrared deicing facility
infrared heat deicing method – definition, 172
infrared heat systems, 172
inspection, tactile (TC) – definition, 172
ISO 9001, 126
Kretschmer, Norman, 25
labeling – discharge points, 105
labeling – fill ports, 105
labeling – fluid transfer system, 105
Index

labeling – storage tanks, 105
laboratories, testing, 172
laboratories, testing – Anti-icing Materials International Laboratory (AMIL), 144, 158
laboratories, testing – APS Aviation, 144, 158
laboratories, testing – Scientific Material International (SMI), 144, 158
LaGuardia Airport, 23
leading edge – aerodynamically critical, 117, 137
leading edge deicing boot. See boot, deicing
leading edge devices, 172
leading edge, heated. See Type II/III/IV – degradation, thermal – heated leading edge dry-out
Learjet 31A dimensions, 117
Learjet 45 dimensions, 117
Learjet 60 dimensions, 117
Learjet spray area diagram, 117
Let L410 dimensions, 117
Let L610G dimensions, 117
lift loss, asymmetric, 182
liquid runway and taxiway deicing/anti-icing compound. See RDP, liquid
liquid water equivalent. See LWE
list of fluids. See fluid list
local frost. See frost – local
Lockheed C-130 spray area diagram, 117
Lockheed Galaxy C5 dimensions, 117
Lockheed Hercules C-130J dimensions, 117
Lockheed L-1011 spray area diagram, 117
lockout procedure, 126
lot – Type I – definition, 43
lot – Type II/III/IV – definition, 52
lot acceptance – Type II/III/IV, 54
LOUT – calculation examples, 137, 172
LOUT – definition, 92, 137, 144, 158, 189
LOUT – effect of cold soaking, 172
LOUT – freezing point buffer, 137
LOUT – guidance (FAA), 137
LOUT – high speed aircraft v low speed aircraft, 137
LOUT – HOT validity, 92
LOUT – list, 144, 158
LOUT – list – data from fluid manufacturers, 137
LOUT – maximum concentration for Type I, 137
LOUT – multiple – for Type II/III/IV, 137
LOUT – Type I – definition, 64
LOUT – Type II, 92
LOUT – Type II/III/IV – definition, 52, 72
LOUT – Type III, 92
LOUT – Type IV, 92
LOUT – wing temperature lower than OAT, 92
low drifting – descriptor [weather], 137
low speed aircraft. See aerodynamic acceptance test – low speed aircraft
low speed ramp. See aerodynamic acceptance test – low speed ramp
lower sales specification viscosity limit. See viscosity limit, lower sales specification
lowest on-wing viscosity. See LOWV
lowest operational use temperature. See LOUT
LOWV – definition, 72, 92, 172
LOWV – for Type II generic HOT, 172
LOWV – for Type IV generic HOT, 172
LOWV – HOT validity, 72, 92
LOWV – list, 144, 158
LOWV – lower than lower sales specification viscosity limit, 72
LOWV – manufacturer considerations in selecting sample for endurance testing, 72
lubricant, aircraft – definition, 216
LUPR – definition, 72
LUPR, snow, 146, 160
LWE – rate – definition, 149
LWE – sampling time – definition, 149
LWE system, 137
LWES, 97, 197
LWES – activation – guidance (FAA), 149
LWES – authorization for freezing drizzle (FAA), 149
LWES – authorization for freezing rain (FAA), 149
LWES – authorization for snow (FAA), 149
LWES – authorization for supercooled large droplets (FAA), 149
LWES – authorization process (FAA), 149
LWES – check time, 149
LWES – construction – guidance (FAA), 149
LWES – definition, 149
LWES – design – guidance (FAA), 149
LWES – endurance time regression equation, use of, 149
LWES – guidance (FAA), 149
LWES – HOT, 149
LWES – installation – guidance (FAA), 149
LWES – maintenance – guidance (FAA), 149
LWES – maintenance log – guidance (FAA), 149
LWES – performance specification (FAA), 150
LWES – performance testing – guidance (FAA), 150
LWES – procurement – guidance (FAA), 150
LWES – quality assurance – guidance (FAA), 150
LWES – siting of – guidance (FAA), 150
LWES – superset of check time determination system, 150
LWES – superset of HOTDS, 150
LWES – system description – guidance (FAA), 150
LWES – testing specification (FAA), 150
LWES – training manual – guidance (FAA), 150
LWES – ultrasonic wind sensor performance standards (FAA), 150
LWES – user manual – guidance (FAA), 150
LWES – verification of CT – guidance (FAA), 150
LWES – verification of HOT – guidance (FAA), 150
LWES – wind speed sensor performance standard (FAA), 150
management team, senior – definition, 117
management, senior – definition, 126
maneuvering area – definition, 172
maneuvering area for deicing units, 154
masks, 172
master lock procedure. See tag-out procedure
maximum on-wing viscosity. See HOWV
McDonnell Douglas. See Boeing MD
message boards, 106, 172
message boards – aircraft entry, 106
message boards – aircraft exit, 106
message boards – aircraft positioning, 154
message boards – deicing/anti-icing information, 106
message boards – design requirements, 106
<table>
<thead>
<tr>
<th>Message Boards</th>
<th>Inspection and Testing, 106</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message Boards</td>
<td>Minimum Design Requirement, 106</td>
</tr>
<tr>
<td>Message Boards</td>
<td>Precedence of Verbal Communications, 106</td>
</tr>
<tr>
<td>Message Boards</td>
<td>Purpose, 106</td>
</tr>
<tr>
<td>Message Boards</td>
<td>Safety Requirements, 106</td>
</tr>
<tr>
<td>Message Boards</td>
<td>System Malfunction, 106</td>
</tr>
<tr>
<td>Message Boards</td>
<td>Technical Requirements, 106</td>
</tr>
<tr>
<td>Message Boards</td>
<td>Use at CDF, 154</td>
</tr>
<tr>
<td>Message Boards</td>
<td>Use at DDF, 100</td>
</tr>
<tr>
<td>METAR</td>
<td>117</td>
</tr>
<tr>
<td>METAR Code GR</td>
<td>- in Canada – hail, 138, 172</td>
</tr>
<tr>
<td>METAR Code GR</td>
<td>- in Canada – no HOT, no allowance time, 138, 172</td>
</tr>
<tr>
<td>METAR Code GR</td>
<td>- in rest of world – hail, 138, 172</td>
</tr>
<tr>
<td>METAR Code GR</td>
<td>- in rest of world – not HOT, no allowance time, 138, 172</td>
</tr>
<tr>
<td>METAR Code GR with Remarks ¼ or Greater</td>
<td>- in US – no HOT, no allowance time, 138, 172</td>
</tr>
<tr>
<td>METAR Code GS or SHGS</td>
<td>- in rest of world – snow pellets or small hail, 138, 172</td>
</tr>
<tr>
<td>METAR Code GS or SHGS</td>
<td>- in rest of world – use ice pellets (and small hail) allowance time, 138, 172</td>
</tr>
<tr>
<td>METAR Code PL</td>
<td>- in Canada – ice pellets, 138, 172</td>
</tr>
<tr>
<td>METAR Code PL</td>
<td>- in Canada – use ice pellets (and small hail) allowance time, 138, 173</td>
</tr>
<tr>
<td>METAR Code PL</td>
<td>- in rest of world – ice pellets, 138, 173</td>
</tr>
<tr>
<td>METAR Code PL</td>
<td>- in rest of world – use ice pellets (and small hail) allowance time, 138, 173</td>
</tr>
<tr>
<td>METAR Code PL</td>
<td>- in US – use ice pellets (and small hail) allowance time, 138, 173</td>
</tr>
<tr>
<td>METAR Code SG</td>
<td>- in Canada – snow grains, 138, 173</td>
</tr>
<tr>
<td>METAR Code SG</td>
<td>- in Canada – use snow HOT, 138, 173</td>
</tr>
<tr>
<td>METAR Code SG</td>
<td>- in rest of world – snow grains, 138, 173</td>
</tr>
<tr>
<td>METAR Code SG</td>
<td>- in rest of world – use snow HOT, 138, 173</td>
</tr>
<tr>
<td>METAR Code SHGS</td>
<td>- with remarks stating diameter of hail in Canada – small hail, 138, 173</td>
</tr>
<tr>
<td>METAR Code SHGS</td>
<td>- with remarks stating diameter of hail in Canada – use ice pellet (and small hail) allowance times, 138, 173</td>
</tr>
<tr>
<td>METAR Code SHGS Without Remarks</td>
<td>- in Canada – use ice pellets (and small hail) allowance time, 138, 173</td>
</tr>
<tr>
<td>METAR Code TSGS</td>
<td>- in Canada – snow pellets with a thunderstorm, 138, 173</td>
</tr>
<tr>
<td>METAR Snowfall Intensity Underestimation</td>
<td>- Meteorological Terminal Aviation Routine Weather Report. See METAR</td>
</tr>
<tr>
<td>Mitsubishi MU-2 Dimensions</td>
<td>- 117</td>
</tr>
<tr>
<td>Mobile Deicing Equipment</td>
<td>- enclosed cabin, 111</td>
</tr>
<tr>
<td>Moisture, Visible</td>
<td>- definition, 197</td>
</tr>
<tr>
<td>Montreal (Mirabel) Collision</td>
<td>- 24</td>
</tr>
<tr>
<td>Moshansky, Virgil P.</td>
<td>- 22, 23</td>
</tr>
<tr>
<td>MOWV</td>
<td>- definition, 173</td>
</tr>
<tr>
<td>MSDS</td>
<td>- See SDS</td>
</tr>
<tr>
<td>Mud</td>
<td>- 223</td>
</tr>
<tr>
<td>Munich Airport</td>
<td>- 24</td>
</tr>
<tr>
<td>Must</td>
<td>- definition, 173</td>
</tr>
<tr>
<td>Myers, Barry B.</td>
<td>- 180</td>
</tr>
<tr>
<td>Name</td>
<td>- See fluid name</td>
</tr>
<tr>
<td>National Transportation Safety Board</td>
<td>- 21, 23</td>
</tr>
<tr>
<td>NCAR</td>
<td>- 74</td>
</tr>
<tr>
<td>Neat</td>
<td>- See Type II/III/IV – neat fluid</td>
</tr>
<tr>
<td>Neat, Scotch</td>
<td>- 141</td>
</tr>
<tr>
<td>Negative Buffer</td>
<td>- See freezing point buffer – negative</td>
</tr>
<tr>
<td>Negative Freezing Point Buffer</td>
<td>- See freezing point buffer – negative</td>
</tr>
<tr>
<td>New Fluid</td>
<td>- See fluid, new</td>
</tr>
<tr>
<td>No HOT</td>
<td>- See HOT, no</td>
</tr>
<tr>
<td>Non-Conformity</td>
<td>- definition, 126</td>
</tr>
<tr>
<td>Non-Convention Glycol</td>
<td>- See Glycol, Non-conventional, See Glycol, Non-conventional</td>
</tr>
<tr>
<td>Non-Glycol</td>
<td>- definition, 43, 52</td>
</tr>
<tr>
<td>Non-Glycol – Organic Salt Mixtures</td>
<td>- with Glycol, 43, 52</td>
</tr>
<tr>
<td>Non-Glycol</td>
<td>- organic salts, mixtures of, 43, 52</td>
</tr>
<tr>
<td>Non-Glycol</td>
<td>- potassium acetate, 43, 52</td>
</tr>
<tr>
<td>Non-Glycol</td>
<td>- potassium formate, 43, 52</td>
</tr>
<tr>
<td>Non-Glycol</td>
<td>- sodium acetate, 43, 52</td>
</tr>
<tr>
<td>Non-Glycol</td>
<td>- sodium formate, 43, 52</td>
</tr>
<tr>
<td>Non-Glycol Based Type I</td>
<td>- Endurance Time Tests Required, 67</td>
</tr>
<tr>
<td>Non-Glycol Based Type I – Guidance</td>
<td>- (EASA), 187</td>
</tr>
<tr>
<td>Non-Glycol Based Type I – Guidance</td>
<td>- (FAA), 138</td>
</tr>
<tr>
<td>Non-Glycol Based Type I – Guidance (TC)</td>
<td>- 173</td>
</tr>
<tr>
<td>No-Spray Area</td>
<td>- See spray, no</td>
</tr>
<tr>
<td>Notice N 8900.519</td>
<td>- Cancellation, 138</td>
</tr>
<tr>
<td>Notice N 8900.525</td>
<td>- 138</td>
</tr>
<tr>
<td>Nowcasting</td>
<td>- 97</td>
</tr>
<tr>
<td>Nozzle</td>
<td>- See also Deicing Unit – nozzle</td>
</tr>
<tr>
<td>Nozzle Requirements</td>
<td>- Enclosed Cabin, 111</td>
</tr>
<tr>
<td>Nozzle Samples</td>
<td>- See fluid sampling, nozzle</td>
</tr>
<tr>
<td>Nucleation Site</td>
<td>- 182</td>
</tr>
<tr>
<td>Nucleation Site Definition</td>
<td>- 182</td>
</tr>
<tr>
<td>OAT, Wing Temperature Lower</td>
<td>- than, 92, 173</td>
</tr>
<tr>
<td>Obscuration</td>
<td>- Dust, 138</td>
</tr>
<tr>
<td>Obscuration</td>
<td>- Fog, 138</td>
</tr>
<tr>
<td>Obscuration</td>
<td>- Freezing Fog – HOT, 138</td>
</tr>
<tr>
<td>Obscuration</td>
<td>- Haze, 138</td>
</tr>
<tr>
<td>Obscuration</td>
<td>- Mist, 138</td>
</tr>
<tr>
<td>Obscuration</td>
<td>- Sand, 138</td>
</tr>
<tr>
<td>Obscuration</td>
<td>- Smoke, 138</td>
</tr>
<tr>
<td>Obscuration</td>
<td>- Volcanic Ash, 138</td>
</tr>
</tbody>
</table>
Index

obscuration, snowfall intensity overestimation due to. See snowfall intensity – overestimation due to obscuration
observation – definition, 126
occupational health and safety (Canada), 173
Oda, Haruiko, 201
one-step deicing/anti-icing, 92, 197
one-step deicing/anti-icing – definition, 197
operations bulletins – definition, 173
operator program, compliance with, 197
out-of-service procedure, 126
oxidation [of carbon] – definition, 216
oxidation, thermal, 216
pad control – definition, 101
pad control point – definition, 101
pad leadership – definition, 101
paint protectants, 33
paint sealants, 33
PANS-ATM – deicing/anti-icing phraseology, 200
partial – descriptor [weather], 138
passenger briefing, pre-deicing – TC regulation, 173
passenger facility charges (US), 154
patches – descriptor [weather], 139
pavement, 223
personal protective equipment, 173
Petrov, E., 26
pH – indicator paper, 92
pH – method, 92
phraseology, 97
phraseology, deicing/anti-icing, 200
phraseology, use of standard, 97, 148
pilot assessment of precipitation intensity – company (airline) coordination (FAA), 139
pilot assessment of precipitation intensity – company (airline) reporting after the fact (FAA), 139
pilot assessment of precipitation intensity – flightcrew absence during deicing/anti-icing, 139
pilot assessment of precipitation intensity – guidance (FAA), 139
pilot assessment of precipitation intensity – mandatory pretakeoff contamination check (FAA), 139
pilot assessment of precipitation intensity – pilot intensity assessment greater than reported (FAA), 139
pilot assessment of precipitation intensity – pilot intensity assessment grossly different than reported (FAA), 139
pilot assessment of precipitation intensity – pilot intensity assessment less than reported (FAA), 139
pilot assessment of precipitation intensity – pilot request of new weather observation (FAA), 139
pilot assessment of precipitation intensity – snowfall visibility table, 139
pilot assessment of precipitation intensity – training requirement (FAA), 139
pilot-in-command – awareness of aircraft condition, 197
pilot-in-command. See also communication with flightcrew
pilot-in-command – awareness of deicing/anti-icing fluid characteristics, 197
pilot-in-command – awareness of other relevant factors, 197
pilot-in-command – awareness of taxi times and conditions, 197
pilot-in-command – awareness of weather, 197
pilot-in-command – awareness of weather forecast, 197
pilot-in-command – definition, 173
pilot-in-command – responsibility – clean aircraft, 92
pilot-in-command – responsibility for accepting aircraft after deicing, 197
pilot-in-command – responsibility for clean aircraft, 173
pilot-in-command – responsibility for clean aircraft at takeoff, 197
pilot-in-command – responsibility for clean aircraft shared with ground crew, 197
pilot-in-command – responsibility for monitoring aircraft after deicing, 197
pilot-in-command – responsibility to communicate deicing/anti-icing treatment required, 160
pilot-in-command – responsibility to estimate HOT, 197
pilot-in-command – situational awareness, 189
pink snow – definition, 101
PL. See METAR code PL.
plate, frosticator – definition, 182
plate, standard test – definition, 182
POI – aircraft, turbo-prop high wing – inspection, 139
POI – approval of deicing program (FAA), 139
POI – distribution of HOT, 139
POI – operations during light freezing rain/freezing drizzle, 139
POI – program tracking and reporting, 139
POI – SAS reporting, 139
post deicing check. See post deicing/anti-icing check
post deicing/anti-icing check, 92, 139, 197
post deicing/anti-icing check – before aircraft dispatch, 92
post deicing/anti-icing check – by qualified personnel, 197
post deicing/anti-icing check – by qualified staff, 92
post deicing/anti-icing check – definition, 92
post deicing/anti-icing check – elements of, 92, 173
post deicing/anti-icing check – excludes clear ice check, 92
post deicing/anti-icing check – from points offering visibility of all treated surfaces, 92
post deicing/anti-icing check – incorporated in deicing/anti-icing operation or as separate check, 92
post deicing/anti-icing check – repetition, 92
post deicing/anti-icing check – responsibility to conduct, 92
post deicing/anti-icing check (FAA), 148
post deicing/anti-icing check (FAA) – integral part of deicing/anti-icing process, 148
post deicing/anti-icing check (FAA) – recordkeeping mandatory, 148
post deicing/anti-icing inspection. See post deicing/anti-icing check
potassium acetate. See also alkali organic salts
potassium formate. See also alkali organic salts
POTW (US), 154
precipitation intensity – definition, 197
precipitation intensity assessment by pilot. See pilot assessment of precipitation intensity
precipitation rate, lowest usable. See LUPR
precipitation rate, peak – definition, 182
precipitation, mixed – guidance (FAA), 139
Guide to Aircraft Ground Deicing – Issue 12

pre-deicing process, 93
pre-deicing process – brooms, 92
pre-deicing process – definition, 92
pre-deicing process – forced air, 92
pre-deicing process – forced air with fluid, 92
pre-deicing process – heat, 93
pre-deicing process – heavy frozen contaminant accumulation, 93
pre-deicing process – hot air, 93
pre-deicing process – hot water, 93
pre-deicing process – infrared, 93
pre-deicing process – negative freezing point buffer hot fluid, 93
preflight check – aircraft icing protective system considerations, 117
preflight check – by flightcrew, 93, 197
preflight check – by ground crew, 93, 197
preflight check – contamination check, 197
preflight check – definition, 93
preflight check – walk-around, 197
pretakeoff check, 93, 197
pretakeoff check – assessment by flightcrew if HOT is still appropriate, 93
pretakeoff check – definition, 93
pretakeoff check – factor in selection of categories of snow precipitation, 139
pretakeoff check – single engine high wing turboprop, 139
pretakeoff check – wing tip devices, 139
pretakeoff check (EASA), 189
pretakeoff check (FAA) – by flightcrew, 148
pretakeoff check (FAA) – definition, 148
pretakeoff check (FAA) – flightcrew situational awareness, 148
pretakeoff check (FAA) – guidance, 148
pretakeoff check (FAA) – regulation 14 CFR § 121.629(c)(3), 148
pretakeoff check (FAA) – within HOT, 148
pretakeoff contamination check, 93, 197
pretakeoff contamination check – alternative is re-deicing, 93
pretakeoff contamination check – definition, 93
pretakeoff contamination check – when critical surface conditions cannot be determined by flightcrew, 93
pretakeoff contamination check – when HOT exceeded, 93
pretakeoff contamination check (EASA), 189
pretakeoff contamination check (EASA) – definition, 189
pretakeoff contamination check (FAA) – 5 minutes rule, 139
pretakeoff contamination check (FAA) – definition, 148
pretakeoff contamination check (FAA) – fluid failure recognition training for persons conducting, 139
pretakeoff contamination check (FAA) – fluid failure recognition training for pilots, 139
pretakeoff contamination check (FAA) – for allowance time, not, 139
pretakeoff contamination check (FAA) – for HOT, 139
pretakeoff contamination check (FAA) – guidance, 148
pretakeoff contamination check (FAA) – hard wing aircraft with aft mounted engines, 139
pretakeoff contamination check (FAA) – regulation 14 CFR § 121.629(c)(3)(i), 148
pretakeoff contamination check (FAA) – when HOT exceeded, 139, 148
pretakeoff contamination check (FAA) – wingtip devices, of, 139
pretakeoff contamination check (FAA) – within 5 minutes of takeoff, 148
pretakeoff contamination check (FAA), external – light freezing rain and freezing drizzle, 139
pretakeoff contamination check (TC). See pretakeoff contamination inspection (TC)
pretakeoff contamination inspection (TC), 173
pretakeoff contamination inspection (TC) – definition, 173
pretakeoff contamination inspection (TC) – from inside, 173
pretakeoff contamination inspection (TC) – from outside, 173
pretakeoff contamination inspection (TC) – ice pellet and small hail, not required in, 173
pretakeoff contamination inspection (TC) – not with Type I, 173
pretakeoff contamination inspection (TC) – not with Type II/III/IV with HOT < 20 minutes, 173
pretakeoff contamination inspection (TC) – wingtip devices, 173
pretakeoff contamination inspection (TC) – with approved ground deicing program, 173
pretakeoff contamination inspection (TC) – within 5 minutes of takeoff ground roll, 173
pretakeoff contamination inspection report (TC) – definition, 174
preventive action, 126
primary deicing vehicle operator – definition, 101
product name, 72, See fluid name
program, ground deicing and anti-icing, 93
program, ground deicing/anti-icing (FAA). See ground deicing program (FAA)
propeller balance. See contamination [frozen] – effect on propeller balance
propeller efficiency. See contamination [frozen] – effect on propeller efficiency
propeller-brake, 117
propylene glycol, 65, See also Glycol, Conventional – propylene glycol; EG v PG, See also Glycol;
Conventional – propylene glycol; EG v PG
propylene glycol based Type I – endurance time tests not required, 67
propeller efficiency – deicing unit – definition, 182
proximity sensor – definition, 93
proximity sensor activation – communications with flightcrew, 93
proximity sensor activation – deicing unit, 93
proximity sensor activation – reporting procedure, 93
publication date, 228
pump. See deicing unit – fluid pump
qualified personnel – definition, 126
qualified staff – definition, 93
quality – management responsibilities, 126, 127
quality – management responsibilities – continual improvement, 126
quality – management responsibilities – documentation requirements, 126
quality – management responsibilities – management commitments, 126
quality – management responsibilities – management representative, 126
quality – management responsibilities – management review, 126
quality – management responsibilities – planning objectives, 126
quality – management responsibilities – responsibility and authority, 126
quality – management responsibilities – review input, 126
quality – management responsibilities – review output, 126
quality – management responsibilities – training, head of, 126
quality – service provider responsibilities – aircraft requirement after deicing, 127
quality – service provider responsibilities – approved locations for deicing, 127
quality – service provider responsibilities – awareness, 127
quality – service provider responsibilities – calibration, 127
quality – service provider responsibilities – clean aircraft concept, 127
quality – service provider responsibilities – communication systems, 127
quality – service provider responsibilities – communications with flightcrews, 127
quality – service provider responsibilities – competence of personnel, 127
quality – service provider responsibilities – contamination check, 127
quality – service provider responsibilities – continual improvement, 127
quality – service provider responsibilities – deicing facilities documentation, 127
quality – service provider responsibilities – deicing infrastructure, 127
quality – service provider responsibilities – deicing procedures, 127
quality – service provider responsibilities – deicing unit, 127
quality – service provider responsibilities – deicing unit boom inspections, 127
quality – service provider responsibilities – education records, 127
quality – service provider responsibilities – engines-on training, 127
quality – service provider responsibilities – equipment walk around check, 127
quality – service provider responsibilities – experience records, 127
quality – service provider responsibilities – fall protection systems, 127
quality – service provider responsibilities – fire extinguishers, 127
quality – service provider responsibilities – fire suppression systems, 127
quality – service provider responsibilities – fluid acceptance checks, 127
quality – service provider responsibilities – fluid certificates of conformance with delivery, 127
quality – service provider responsibilities – fluid field testing, 127
quality – service provider responsibilities – fluid handling systems, 127
quality – service provider responsibilities – fluid manufacturer recommendations, abide by, 127
quality – service provider responsibilities – fluid quality control checks, 127
quality – service provider responsibilities – fluid sampling procedures, 127
quality – service provider responsibilities – fluid storage, 127
quality – service provider responsibilities – fluid testing equipment, 127
quality – service provider responsibilities – fluid testing, laboratory, 127
quality – service provider responsibilities – fluids, 127
quality – service provider responsibilities – hazard labeling, 127
quality – service provider responsibilities – information systems, 127
quality – service provider responsibilities – inspection records, 127
quality – service provider responsibilities – lockout procedures, 127
quality – service provider responsibilities – maintenance records, 127
quality – service provider responsibilities – out-of-service procedures, 127
quality – service provider responsibilities – personal protective equipment, 127
quality – service provider responsibilities – planning deicing operations, 127
quality – service provider responsibilities – post deicing anti-icing check, 127
quality – service provider responsibilities – qualification records, 127
quality – service provider responsibilities – qualified personnel, 127
quality – service provider responsibilities – tag-out procedures, 127
quality – service provider responsibilities – trainer certification, 127
quality – service provider responsibilities – training effectiveness, 127
quality – service provider responsibilities – training examinations, 127
quality – service provider responsibilities – training programs, 127
quality – service provider responsibilities – training qualification requirements, 127
quality – service provider responsibilities – training records, 127
quality – service provider responsibilities – training, initial, 128
quality – service provider responsibilities – training, recurrent, 128
quality – service provider responsibilities – transport systems, 128
quality – service provider responsibilities – work instructions, 128
quality assurance, 93
quality assurance – audit, 93
quality assurance – definition, 128
quality assurance – subset of quality program, 93
quality assurance program – auditing, 197
quality assurance program – deicing/anti-icing fluids
quality control, 197
quality assurance program – documentation, 197
quality assurance program – equipment maintenance, 197
quality assurance program – methods, 197
quality assurance program – training, 197
quality assurance program – training records, 197
quality assurance system (TC), 174
quality control, 93
quality control – definition, 128
quality control – subset of quality program, 93
quality improvement – definition, 128
quality management, 128
quality management – definition, 128
quality management system – aircraft size limits, 128
quality management system – communications, 128
quality management system – conformance to AS6285, 128
quality management system – conformance to AS6286, 128
quality management system – conformance to regulations, 128
quality management system – control of documents, 128
quality management system – definition, 117, 128
quality management system – deicing location procedures, 128
quality management system – document control, 128
quality management system – documentation requirements, 128
quality management system – emergency procedures, 128
quality management system – engines-on procedures, 128
quality management system – ground deicing program, 128
quality management system – procedures, 128
quality management system – process control documents, 128
quality management system – quality manual, 128
quality management system – quality objectives, 128
quality management system – quality policy, 128
quality management system – records, 128
quality management system – safety zones, 128
quality management system – SMS, 128
quality management system – winter operation documents, 128
quality management system – winter planning documents, 128
quality manual – definition, 128
quality manual – ground deicing program, comprised in, 128
quality objectives, 128
quality policy, 128
quality program – superset of quality assurance and quality control, 93
quality system accountable executive, 128
quality system accountable person, 128
quality system program manager, 128
quality system responsible person – definition, 128
rain – definition, 197
rain on cold soaked wing – clear ice, difficulty to detect, 174
Raytheon Premier 1 dimensions, 117
RDP. See RDP, liquid
RDP – aluminum corrosion, 223
RDP – cadmium corrosion, 223
RDP – cadmium plate corrosion test, 210
RDP – carbon brake oxidation test, 217
RDP – catalytic oxidation of carbon brakes, 216, 217, 220, 221, 223
RDP – comparative melting capability, 210
RDP – effect on carbon brakes, 216, 217
RDP – effect on Type II/III/IV, 174
RDP – electrical wire bundle degradation, 223
RDP – electrical wire bundle degradation, Kapton® insulated, 223
RDP – market introduction history, 216
RDP – oxidation of carbon brakes, 216, 220, 221, 222, 223, 225
RDP – reporting recommendation, 222
RDP – SNOWTAM display, 222
RDP – spent deicing fluid as, 154
RDP – undesirable corrosion criterion, 210
RDP – use on taxiways, 210
RDP ice melting capability, comparative, 211
RDP ice melting relative capacity, 211
RDP ice melting test, 211
RDP ice melting test ice preparation, 211
RDP ice melting test procedure, 211
RDP ice melting test reference control solution, 211
RDP ice melting test report, 211
RDP ice melting test sample preparation, 211
RDP ice melting test significance, 211
RDP ice melting test temperatures, 211
RDP ice melting v temperature, 211
RDP ice melting v time, 211
RDP ice penetration test, 212
RDP ice penetration test description, 212
RDP ice penetration test dye, 212
RDP ice penetration test procedure, 212
RDP ice penetration test reference control solution, 212
RDP ice penetration test ice preparation, 212
RDP ice penetration test procedure, 212
RDP ice penetration test reference control solution, 212
RDP ice penetration test significance, 212
RDP ice penetration test sample preparation, 212
RDP ice penetration test significance – reporting, 212
RDP ice penetration test temperature, 212
RDP ice penetration test time, 212
RDP ice undercutting test, 211
RDP ice undercutting test description, 211
RDP ice undercutting test dye, 211
RDP ice undercutting test procedure, 211
RDP ice undercutting test time, 212
RDP, liquid – acceptance tests – flash point, 207
RDP, liquid – acceptance tests – pH, 207
RDP, liquid – acceptance tests – specific gravity, 207
RDP, liquid – AIR6130 reporting, 207
RDP, liquid – airfield use label, 207
RDP, liquid – appearance, 207
RDP, liquid – approval by vendor, 208
RDP, liquid – aquatic toxicity, 208
RDP, liquid – asphalt concrete degradation resistance, 208
RDP, liquid – biodegradation, 208
RDP, liquid – BOD, 208
RDP, liquid – bulk shipments, 208
RDP, liquid – cadmium as contaminant, 208
RDP, liquid – cadmium corrosion, 208
RDP, liquid – carbon brake oxidation, 208
RDP, liquid – changes in ingredients, 208
RDP, liquid – changes in manufacturing, 208
RDP, liquid – chromium as contaminant, 208
RDP, liquid – composition, 208
RDP, liquid – containers, 208
RDP, liquid – delivery, 208
RDP, liquid – dilution, 208
RDP, liquid – drum shipments, 208
RDP, liquid – effect on aircraft materials, 208
RDP, liquid – effect on carbon brake systems, 208
RDP, liquid – effect on painted surfaces, 208
RDP, liquid – effect on runway pavement, 208
RDP, liquid – effect on transparent plastics, 208
RDP, liquid – effect on unpainted surface, 208
RDP, liquid – Federal (US) Supply Classification 6850, 208
RDP, liquid – flash point, 208
RDP, liquid – formamide, 208
RDP, liquid – freezing point, 208
RDP, liquid – friction evaluation, 208
RDP, liquid – halogens as contaminant, 208
RDP, liquid – handling, 208
RDP, liquid – heavy metals as contaminant, 208
RDP, liquid – hydrogen embrittlement, 208
RDP, liquid – ice melting, 208
RDP, liquid – ice melting test. See RDP ice melting test
RDP, liquid – ice penetration, 208
RDP, liquid – ice penetration test. See RDP ice penetration test
RDP, liquid – ice undercutting, 208
RDP, liquid – independent laboratory testing, 208
RDP, liquid – inspection, 208
RDP, liquid – labels, 208
RDP, liquid – lead as contaminant, 208
RDP, liquid – licensee, 208
RDP, liquid – lot – acceptance, 208
RDP, liquid – lot – definition, 208
RDP, liquid – lot number, 208
RDP, liquid – low embrittling cadmium plate, 208
RDP, liquid – mercury as contaminant, 208
RDP, liquid – nitrate as contaminant, 208
RDP, liquid – packaging, 208
RDP, liquid – performance, 208
RDP, liquid – periodic tests, 208
RDP, liquid – pH, 209
RDP, liquid – phosphate as contaminant, 209
RDP, liquid – physical properties, 209
RDP, liquid – preproduction tests, 209
RDP, liquid – purchase orders, 209
RDP, liquid – quotations, 209
RDP, liquid – rejection, 209
RDP, liquid – reports, 209
RDP, liquid – resampling, 209
RDP, liquid – retesting, 209
RDP, liquid – right-to-know, 209
RDP, liquid – rinsibility, 209
RDP, liquid – runway concrete surface scaling resistance, 209
RDP, liquid – safety data sheet, 209
RDP, liquid – sampling, 209
RDP, liquid – sandblasting, 209
RDP, liquid – specific gravity, 209
RDP, liquid – storage stability, 209
RDP, liquid – stress corrosion resistance, 209
RDP, liquid – subcontractor manufacturing, 209
RDP, liquid – sulfur as contaminant, 209
RDP, liquid – test for Europe, 209
RDP, liquid – TOD, 209
RDP, liquid – total immersion corrosion, 209
RDP, liquid – trace contaminants, 209
RDP, liquid – transportation, 209
RDP, liquid – urea, 209
RDP, solid – acceptance tests – chloride content, 205
RDP, solid – acceptance tests – flash point, 205
RDP, solid – acceptance tests – total water content, 205
RDP, solid – AIR6130 reporting, 205
RDP, solid – airfield use label, 205
RDP, solid – appearance, 205
RDP, solid – approval by purchaser, 205
RDP, solid – aquatic toxicity, 205
RDP, solid – asphalt concrete degradation resistance, 205
RDP, solid – biodegradation, 205
RDP, solid – BOD, 205
RDP, solid – brining, 205
RDP, solid – cadmium as contaminant, 205
RDP, solid – cadmium corrosion, 205
RDP, solid – carbon brake oxidation, 205
RDP, solid – changes in ingredients, 205
RDP, solid – changes in manufacturing, 205
RDP, solid – chloride content, 205
RDP, solid – chromium as contaminant, 205
RDP, solid – compatibility with other RDP, 205
RDP, solid – composition, 205
RDP, solid – containers, 205
RDP, solid – delivery, 205
RDP, solid – dissolution, 205
RDP, solid – ecological behavior, 205
RDP, solid – effect on aircraft metals, 205
RDP, solid – effect on asphalt concrete., 206
RDP, solid – effect on carbon brake systems, 206
RDP, solid – effect on painted surfaces, 206
RDP, solid – effect on runway concrete, 206
RDP, solid – effect on transparent plastics, 206
RDP, solid – effect on unpainted surfaces, 206
Guide to Aircraft Ground Deicing – Issue 12

RDP, solid – Federal (US) Supply Classification 6850, 206
RDP, solid – flash point, 206
RDP, solid – freezing point curve, 206
RDP, solid – friction evaluation, 206
RDP, solid – halogens as contaminant, 206
RDP, solid – handling, 206
RDP, solid – heavy metals as contaminant, 206
RDP, solid – hydrogen embrittlement, 206
RDP, solid – ice melting, 206
RDP, solid – ice melting test. See RDP ice melting test
RDP, solid – ice penetration, 206
RDP, solid – ice penetration test. See RDP ice penetration test
RDP, solid – ice undercutting, 206
RDP, solid – ice undercutting test. See RDP ice undercutting test
RDP, solid – independent laboratory testing, 206
RDP, solid – inspection, 206
RDP, solid – labels, 206
RDP, solid – lead as contaminant, 206
RDP, solid – licensee, 206
RDP, solid – liquefaction, 206
RDP, solid – lot – acceptance tests, 206
RDP, solid – lot – definition, 206
RDP, solid – lot number, 206
RDP, solid – low embrittling cadmium plate, 206
RDP, solid – mercury as contaminant, 206
RDP, solid – nitrate as contaminant, 206
RDP, solid – packaging, 206
RDP, solid – performance, 206
RDP, solid – periodic tests, 206
RDP, solid – pH, 206
RDP, solid – phosphate as contaminant, 206
RDP, solid – physical properties, 206
RDP, solid – preproduction tests, 206
RDP, solid – production same as approved sample, 206
RDP, solid – purchase orders, 206
RDP, solid – quotation, 206
RDP, solid – rejection, 206
RDP, solid – reports, 206
RDP, solid – resampling, 206
RDP, solid – retesting, 206
RDP, solid – right-to-know regulations, 206
RDP, solid – runway concrete surface scaling resistance, 206
RDP, solid – safety data sheet, 206
RDP, solid – sampling, 206
RDP, solid – sampling plan, 206
RDP, solid – sandwich corrosion, 207
RDP, solid – statistical sampling, 207
RDP, solid – storage stability, 207
RDP, solid – stress corrosion resistance, 207
RDP, solid – subcontractor manufacturing, 207
RDP, solid – sulfur as contaminant, 207
RDP, solid – TOD, 207
RDP, solid – total immersion corrosion, 207
RDP, solid – total water content, 207
RDP, solid – trace contaminants, 207
RDP, solid – transportation, 207
receding contact angle. See contact angle, receding
record keeping (EASA) – deicing/anti-icing incidents, 189
record keeping (TC), 174

record keeping (TC) – audit dates, results and actions, 174
record keeping (TC) – deicing vehicle refill records, 174
record keeping (TC) – equipment log sheets, 174
record keeping (TC) – fluid acceptance records, 174
record keeping (TC) – fluid application records, 174
record keeping (TC) – fluid field test records, 174
record keeping (TC) – fluid storage records, 174
record keeping (TC) – fluid tests by manufacturers, 174
record keeping (TC) – glycol mitigation plan, 174
record keeping (TC) – minimum records, 174
record keeping (TC) – refractometer calibration, 174
record keeping (TC) – retention time, 174
record keeping (TC) – test frequency, 174
record keeping (TC) – training records, 174
recycled glycol. See Type I – recycled glycol
refractive index – definition, 93
refractive index – method, 93
refractometer, 174
refractometer – Brix scale, 52, 174
refractometer – calibration, 174
refractometer – definition, 93
refractometer – temperature compensation, 135, 169
refueling, effect of. See fueling, effect of
regression analysis (TC) – definition, 180
regression analysis method – icing intensity, 67, 76
regression analysis method for icing intensity measurement, Type I, 67
regression analysis method for icing intensity measurements, Type II/III/IV, 76
regression analysis, endurance time – definition, 150
regression coefficient tables, interpretation of, 146, 160
regression coefficients – best fit power law, 146, 160
regression equation, use of endurance time – for LWES, 150
regulations, 25
regulations, Canada – guidance (TC), 174
regulations, history of early, 198
regulations, justification for, 198
regulations, US, 139
regulations, US – guidance (FAA), 139
regulator – responsibility – aircraft operator deicing program, approval of, 93
regulator – responsibility – aircraft operator deicing program, review of, 93
regulator – responsibility – clean aircraft concept policies and standards, 93
regulator – responsibility – clean aircraft concept, advocacy of, 93
regulator – responsibility for airport sequence reports, 198
regulator – responsibility for ATC winter operations plan, 198
regulator – responsibility for clean aircraft concept compliance by air operator, 198
regulator – responsibility for runway condition reports, 198
regulator – responsibility for taxiway condition reports, 198
regulator – responsibility for weather reports, 198
remote aircraft deicing facility. See CDF; DDF
remote deicing facility. See deicing facility, remote, See also DDF
remote deicing facility – definition, 101
remote deicing facility – subset of DDF, 101
remote on-ground ice detection systems. See ROIGIDS
Index

removal of frozen contamination with forced air, 110
removal of ice – forced air, 110
removal of snow – forced air v fluid comparison, 110
representative surface, 148
representative surface – aircraft manufacturer recommendations, 174
representative surface – definition, 174
representative surface – fluid failure, indication of first, 139
representative surface – for wingtip devices, 139
representative surface – inclusion of wing leading edge, 139
representative surface – purpose, 174
representative surface – use of (TC), 174
representative surface – use of (TC) for wingtip devices, 174
representative surface – visibility from within the aircraft, 139
resampling and retesting – Type I, 56
residual fluid. See Type II/III/IV – residual fluid
residual fluid – on trailing edge in flight, 139
residual fluid, in flight. See fluid, residual residue. See Type II/III/IV – residue
residue/gel – definition, 93
residues, presence of – field spray test, 72
respiratory protection, 174
responsible person – definition, 117
rheological properties – Type II/III/IV, 56
rime, 117
rime – definition, 198
rime ice – definition, 93
risk – definition, 117
risk assessment, 117
ROGIDS, 79, 198
ROGIDS – alternative to tactile post deicing/anti-icing check, 78
ROGIDS – alternative to visual post deicing/anti-icing check, 78
ROGIDS – approval by regulator, 78
ROGIDS – approval for post deicing/anti-icing check, 78
ROGIDS – approval for pre-deicing checks, 78
ROGIDS – clear ice detection v tactile check, 78
ROGIDS – definition, 78, 189
ROGIDS – design requirement, 78
ROGIDS – detection angle, maximum – definition, 78
ROGIDS – detection angle, minimum – definition, 78
ROGIDS – detection distance, maximum – definition, 78
ROGIDS – detection distance, minimum – definition, 78
ROGIDS – detection of clear ice pre-deicing, 78
ROGIDS – detection of frost – below reliable detection threshold, 78
ROGIDS – detection of frost – undefined, 78
ROGIDS – detection of residual clear ice post-deicing, 78
ROGIDS – detection of residual clear ice post-deicing during precipitation, 78
ROGIDS – detection of slush – undefined, 78
ROGIDS – detection of snow – undefined, 78
ROGIDS – detection threshold, 78
ROGIDS – effect of fluid foam on, 78
ROGIDS – enclosed cabin, optional equipment for, 111
ROGIDS – false negative – definition, 78
ROGIDS – false positive – definition, 78
ROGIDS – frost detection v visual check, 79
ROGIDS – functional description – clear ice detection, 79
ROGIDS – guidance (TC), 174
ROGIDS – hand held, 79
ROGIDS – human factors tests, 79
ROGIDS – infrared deicing facility, for, 154
ROGIDS – latent failure rate, 79
ROGIDS – minimum operational performance specification, 79
ROGIDS – monitored surface – definition, 79
ROGIDS – MOPS, 79
ROGIDS – pedestal mounted, 79
ROGIDS – performance specification in environmental test conditions, minimum, 79
ROGIDS – performance specification, minimum, 79
ROGIDS – performance, minimum operational, 79
ROGIDS – regulatory requirements, 79
ROGIDS – v human inspection, 79
ROGIDS – vehicle mounted, 79
roll-off angle, 33
roll-off angle – definition, 33
root cause, 128
root cause – definition, 128
ropes. See contamination [frozen] – removal with ropes
rotorcraft – clean aircraft concept, 174
rotorcraft – effect of contamination, 174
rotorcraft – effect of contamination – decrease in main rotor thrust, 174
rotorcraft – effect of contamination – decrease in tail rotor thrust, 174
rotorcraft – effect of contamination – handling and control issues, 174
rotorcraft – effect of deicing fluid, 174
rotorcraft – issues, 174
rotorcraft – methods to remove contamination, 174
rotorcraft – SAE G-12 Rotorcraft Working Group, 174
roughness, effect of, 117, 174, 182
Royal Air Maroc – collision at Montreal (Mirabel), 24
rubber deposits, 223
runway anti-icing/deicing solids and fluids – definition, 216
runway deicer. See RDP
runway deicing chemical. See RDP
runway deicing compound. See RDP
runway deicing fluid. See RDP, liquid
runway deicing product. See RDP
runway deicing solid. See RDP, solid
runway deicing/anti-icing compound. See RDP
runway friction, 223
runway visual range – do not use with snowfall visibility table, 174
SAAB. See also aerodynamic effect of fluids – evaluation by SAAB
SAAB 2000 dimensions, 117
SAAB 340 dimensions, 117
SAAB 340/2000 spray area diagram, 117
SAE A-5A, Wheels, Brakes and Skid Control Committee, 3
SAE AMS1424 Type I. See Type I
SAE AMS1428 Type II. See Type II
SAE AMS1428 Type III. See Type III
SAE AMS1428 Type IV. See Type IV
SAE documents, categories of, 27
SAE G-12 ADF mid-year meeting timeline, 64, 72
SAE G-12 ADF, role of, 64, 72
Guide to Aircraft Ground Deicing – Issue 12

SAE G-12 Aircraft Ground Deicing Committee, 3
SAE G-12 annual meeting timeline, 64, 72
SAE G-12 Committees, list of, 26
SAE G-12 HOT co-chairs, 64, 72
SAE G-12 HOT mid-year meeting timeline, 64, 72
SAE G-12 HOT, role of, 64, 67, 72, 174, 198
SAE G-12 meetings, 27
SAE ICAO IATA Council for Globalized Aircraft Deicing Standards, role of, 198
safety – accident investigation, 174
safety – aircraft movement, 174
safety – aircraft positioning, 174
safety – deicing unit movement, 174
safety – employee, role of (Canada), 174
safety – employer, role of (Canada), 174
safety – engine inlets, 174
safety – first aid, 175
safety – hazardous substances, 175
safety – jet blast, 175
safety – job analysis, 175
safety – personal protective equipment, 175
safety – personnel, 175
safety – procedures, 175
safety – safety zones, 175
safety – slipperiness, 175
safety – visibility, 175
safety – weather, 175
safety – wind, 175
safety – workplace inspections, 175
safety data sheet requirements (Canada), 175
safety management system. See SMS
sample bottle label – concentration, 93
sample bottle label – date sample taken, 93
sample bottle label – hazard category, 93
sample bottle label – name of firm sending the sample, 93
sample bottle label – name of vessel, 93
sample bottle label – origin, 93
sample bottle label – product name, 93
sample bottle label – where the sample was taken from, 93
sampling – frequency. See fluid test- frequency
sampling – nozzle, 198
sampling – nozzle – collection with stand, 94
sampling – nozzle – collection with trash cans, 94
sampling – procedure, 94, 198
sampling, nozzle. See fluid sampling, nozzle
sand, 223
sand – aircraft engine, detrimental to, 219
sand – boxed dry, 219
sand – chlorides as contaminant, 219
sand – containers, 219
sand – effect on aircraft engines, 219
sand – free form corrosive agent, 219
sand – free from clay, 219
sand – free from debris, 219
sand – free from organic matter, 219
sand – free from salts, 219
sand – free from stones, 219
sand – gradation, 219
sand – impurities, 219
sand – periodic tests, 219
sand – preproduction tests, 219
sand – quality assurance, 219
sand – rejection, 219
sand – report, 219
sand – sampling, 219
sand – specification, 219
sand – use on ramp, 219
sand – use on runway, 219
sand – use on taxiway, 219
sand – washed, 219
SAS (FAA), 139
SAS reporting (FAA), 139
Scientific Material International (SMI), 144, 158
scimitar. See wingtip devices
scimitar, split. See wingtip devices
Scotch, 141
scrapers. See contamination [frozen] – removal with scrapers
seals, shipment. See fluid acceptance – seals
service provider, 105
service provider – definition, 94, 128, 175
service provider – management responsibilities – airline ground deicing program is followed, 175
service provider – management responsibilities – audit program, 175
service provider – management responsibilities – convey changes in local procedures to deicing personnel, 175
service provider – management responsibilities – training program, 175
service provider – responsibility – anti-icing code communication to flightcrew, 94
service provider – responsibility – communication protocol with flightcrew, 94
service provider – responsibility – compliance with regulations, 94
service provider – responsibility – deicing according to standards, 94
service provider – responsibility – deicing facility, operability of, 94
service provider – responsibility – deicing facility, safety of, 94
service provider – responsibility – documentation of deicing processes, 94
service provider – responsibility – environmental compliance, 94
service provider – responsibility – post deicing/anti-icing check, 94
service provider – responsibility – qualification of personnel, 94
service provider – responsibility – quality control program, 94
service provider – responsibility – remote facility instructions, 94
service provider – responsibility – reporting anti-icing code to flightcrew, 94
service provider – responsibility – safety of personnel, 94
service provider – responsibility – sufficient number of personnel, 94
service provider – responsibility – supervision, 94
service provider – responsibility – supervision of deicing processes, 94
service provider – responsibility – tools and clothing for personnel, 94
service provider – responsibility – training of personnel, 94
service provider – responsibility for deicing facilities, 198
service provider – responsibility for deicing/anti-icing, 198
service provider – responsibility to follow air operator procedure, 198
service provider, deicing/anti-icing. See service provider SG. See METAR code SG
shall (SAE) – definition, 94
shall (TC) – definition, 175
shallow – descriptor [weather], 139
sharklets. See wingtip devices
shear force – definition, 198
shear thinning. See Type II/III/IV – shear thinning
Sheehan, Terry, 201
shelf life, fluid, 175
SHGS. See METAR code SHGS
Shorts 330 dimensions, 117
Shorts 330 spray area diagram, 117
Shorts 360 dimensions, 117
Shorts 360 spray area diagram, 117
should (SAE) – definition, 94
should (TC) – definition, 175
showers – descriptor [weather], 140
SHRP H-332, 211, 212
Sino Swearinger SJ30-2 dimensions, 117
slats. See flaps and slats
sliding angle – definition, 33
slipperiness, 94
slot management – definition, 101
slush – definition, 94, 175, 183, 198
slush, formation of, 183
slush, mat of, 183
smoke. See snowfall intensity – overestimation due to obscuration
SMS – definition, 128
SMS – functional description, 117
SMS (TC), 175
snow. See also HOT – precipitation categories; HOT – precipitation rate
snow – definition, 94, 117, 183, 198
snow – guidance (TC), 175
Snow and Ice Control Plan, FAA-approved, 154
snow desk, 154
snow desk – definition, 101
snow gauge, 97
snow gauge – GEONOR, 97
snow gauge – hotplate, 97
snow gauge – precipitation, 97
snow grains – definition, 94, 117, 175
snow grains – subset of snow [for HOT], 94
snow occurrence, 140
snow pellets – definition, 94, 117, 175
snow pellets – subset of snow [for HOT], 94
snow pellets on cold dry aircraft. See also dry snow
snow removal, 94, 105
snow removal – DDF, 101
snow tests, 74
snow, blowing, 117
snow, blowing – effect on aerodynamically quiet areas, 175
snow, cold dry. See dry snow
snow, dry. See dry snow
snow, dry – definition, 198
snow, heavy – aircraft flight instrument sensing device limitations, 140
snow, heavy – engine anti-icing system limitations, 140
snow, heavy – engine power run-ups, 140
snow, heavy – operational guidance (FAA), 140
snow, heavy – precipitation rate greater than 2.5 mm/h, 140
snow, heavy – takeoff – guidance (FAA), 140
snow, light. See also HOT – precipitation rate
snow, moderate. See also HOT – precipitation rate
snow, pink – definition, 101
snow, very light. See also HOT – precipitation rate
snow, wet – definition, 198
snowfall intensity. See also HOT – precipitation rate
snowfall intensity – ASOS reported, 145
snowfall intensity – category – light, 144, 158
snowfall intensity – category – moderate, 144, 158
snowfall intensity – category – very light, 144, 158
snowfall intensity – heavy, 144, 158
snowfall intensity – overestimation due to obscuration, 140
snowfall intensity – overestimation due to obscuration – dust, 175
snowfall intensity – overestimation due to obscuration – fog, 140, 144, 158, 175
snowfall intensity – overestimation due to obscuration – freezing fog, 175
snowfall intensity – overestimation due to obscuration – haze, 140, 144, 158, 175
snowfall intensity – overestimation due to obscuration – mist, 175
snowfall intensity – overestimation due to obscuration – other, 145, 158
snowfall intensity – overestimation due to obscuration – other obscuration, 140
snowfall intensity – overestimation due to obscuration – smoke, 145, 158, 175
snowfall intensity – v snowfall rate, 145, 158
snowfall intensity – weather observer reported, 145, 158
snowfall intensity visibility table. See snowfall visibility table
snowfall intensity, METAR – underestimation in heavily rimed snow, 97
snowfall intensity, METAR – underestimation in snow containing single crystals of compact shape, 98
snowfall intensity, METAR – underestimation in wet snow, 98
snowfall rate – liquid water equivalent, 98
snowfall visibility table, 145, 159
snowfall visibility table – guidance (FAA), 140
snowfall visibility table – guidance (TC), 175
snowfall visibility table – use of prevailing visibility, 140
snowflake, formation of, 94
snowmaker, 74
SNOWTAM – EG, 222
SNOWTAM – GAC, 222
SNOWTAM – KAC, 222
SNOWTAM – KFOR, 222
SNOWTAM – NAAC, 222
SNOWTAM – NAFO, 222
SNOWTAM – PG, 222
SNOWTAM – SAND, 222
SNOWTAM – UREA, 222
SNOWTAM reporting – RDP, 222
Index

surface area, horizontal stabilizer, 117
surface area, one third fuselage, 118
surface area, wing, 118
surface, clean – description of, 36
surface, hydrophilic. See hydrophilic surface
surface, hydrophobic. See hydrophobic surface
surface, icephobic. See icephobic surface
surface, super-hydrophobic. See super-hydrophobic surface
surface, treated – definition, 33
surface, untreated – definition, 33
Suter, E.T. (Tom), 201
system – definition, 77, 79
tactile inspection. See check, tactile
tactile inspection (TC) – definition, 176
tactile pole, 176
tactile wand, 176
TAF, 118
TAF – definition, 198
tag-out procedure, 128
takeoff clearance v HOT, 154
takeoff, no – freezing rain, heavy – guidance (FAA), 140
takeoff, no – freezing rain, moderate – guidance (FAA), 140
takeoff, no – hail – guidance (FAA), 140
takeoff, no – ice pellets, heavy – guidance (FAA), 140
taxi routes, 105
taxing time v HOT, 154
taxing time, acceptable, 154
taxing time, slower in winter-contaminated conditions, 154
taxiway – definition, 176
taxiway deicing compound. See RDP
-taxiway deicing product. See RDP
taxiways, 223
TC regulations. See Canadian Aviation Regulations
telescopic boom, fixed, 154
temperature at nozzle, 95
terminal aerodrome forecast. See TAF
terminal deicing facility – definition, 176
terminal deicing facility – subset of deicing facility, 105
testing laboratories, 176
thermal conductivity, 33
thickeners, 49
three-minute rule, 95, 145, 159, 176, 189
thunderstorm – descriptor [weather], 140
total oxygen demand. See TOD
TP 13750E, 185
TP 13832, 180
TP 14052E, 161
TP 14052E – scope, 176
TP 14052E – use in conjunction with Holdover Time Guidelines, 176
trailing edge, residual frozen fluid on, 140
trainer – qualification, 118
training, 95
training – accident prevention, 198
training – accident/incident analysis, 118
training – accident/incident reporting, 118
training – aerodynamic acceptance test, 118
training – aerodynamics, 118
training – aerodynamics – acceptance test, 118
training – aerodynamics – aerodynamic forces, 118
training – aerodynamics – angle of attack, 118
training – aerodynamics – angle of attack, critical, 118
training – aerodynamics – contamination, effect of, 118
training – aerodynamics – critical surfaces, 118
training – aerodynamics – downwash, 118
training – aerodynamics – flaps and slats, 118
training – aerodynamics – frost, effect of, 118
training – aerodynamics – fuselage, 118
training – aerodynamics – laminar and turbulent air flow, 118
training – aerodynamics – lift coefficient, 118
training – aerodynamics – operating envelope, 118
training – aerodynamics – stall, 118
training – aerodynamics – stall speed, 118
training – aerodynamics – upwash, 118
training – aircraft manufacturer recommendations, 118
training – all clear signal, 118
training – annual, 118
training – anti-icing, 118
training – anti-icing code, 118, 198
training – asphyxiation hazard – combustion heater in confined spaces, 118
training – asphyxiation hazard – combustion heater in poorly ventilated areas, 118
training – certificate, 118
training – certificate of analysis, 118
training – check, special, 118
training – check, tactile, 118
training – checks, 198
training – classroom vs practical, 118
training – clean aircraft concept, 118, 128
training – clear ice, 118
training – clear ice – conditions conducive to, 118
training – clear ice – detection, 118
training – clear ice – difficulty to detect, 118
training – cockpit windows, 118
training – cold soaking – conditions conducive to, 118
training – cold soaking – fuel caused, 118
training – cold soaking – functional description, 118
training – cold weather hazard, 118
training – communication procedures, 198
training – communications with flightcrew, 118, 176
training – communications with flightcrew – English language, 118
training – computer based, 119
training – computer based – deicing simulators, 119
training – contamination recognition, 198
training – course content, 119
training – critical surface – air conditioning inlets/outlets, 119
training – critical surface – airstream direction detector probes, 119
training – critical surface – angle of attack sensors, 119
training – critical surface – contamination recognition, 198
training – critical surface – engine fan blades, 119
training – critical surface – engine inlets, 119
training – critical surface – flaps, 119
training – critical surface – fuel tank vents, 119
training – critical surface – fuselage, 119
training – critical surface – landing gear, 119
training – critical surface – landing gear doors, 119
training – critical surface – outflow valves, 119
training – critical surface – pitot tubes, 119
training – critical surface – propellers, 119
training – critical surface – static ports, 119
training – critical surface – stationary surfaces underneath moveable surfaces, 119
training – critical surface – wing, tail and control surfaces, 119
training – deicing operation, 119
training – deicing unit, 198
training – deicing unit – asphyxiation hazard – combustion heaters, 119
training – deicing unit – awareness of surroundings, 119
training – deicing unit – basket layout, open, 119
training – deicing unit – boom description, 119
training – deicing unit – braking test, 119
training – deicing unit – cabin layout, enclosed, 119
training – deicing unit – communication system, 119
training – deicing unit – communications between driver and sprayer, 119
training – deicing unit – communications monitoring, 119
training – deicing unit – components, basic, 119
training – deicing unit – deicing data collection, 119
training – deicing unit – description, 119
training – deicing unit – emergency lowering of boom, 119
training – deicing unit – emergency shut off, 119
training – deicing unit – emergency stop, 119
training – deicing unit – filling of, 119
training – deicing unit – filling station, 119
training – deicing unit – fire extinguisher, 119
training – deicing unit – fluid concentration monitoring, 119
training – deicing unit – fluid flow rate, 119
training – deicing unit – fluid overfilling prevention system, 119
training – deicing unit – fluid pressure monitoring, 119
training – deicing unit – fluid temperature monitoring, 119
training – deicing unit – labeling, 119
training – deicing unit – lifting device, 119
training – deicing unit – maximum speed when deicing, 119
training – deicing unit – maximum wind with boom elevated, 119
training – deicing unit – nozzle, use of, 119
training – deicing unit – readiness, 119
training – deicing unit – safety precautions, 119
training – deicing unit – underwing spraying, 119
training – deicing unit – walk-around pre-operation check – basket/cabin, 119
training – deicing unit – walk-around pre-operation check – boom, 120
training – deicing unit – walk-around pre-operation check – emergency and safety equipment, 120
training – deicing unit – walk-around pre-operation check – engine, 120
training – deicing unit – walk-around pre-operation check – fuel, 120
training – deicing unit – walk-around pre-operation check – nozzle, 120
training – deicing unit – walk-around pre-operation check – windshield washer fluid, 120
training – deicing unit hazards, 120
training – deicing v anti-icing, 120
training – deicing/anti-icing – purpose of, 120
training – deicing/anti-icing – restore operating envelope, 120
training – deicing/anti-icing decision, 120
training – deicing/anti-icing fluid handling, 198
training – deicing/anti-icing fluid, 198
training – deicing/anti-icing fluid hazard, 120
training – deicing/anti-icing fluid storage. See training – fluid storage
training – deicing/anti-icing fluid, no flammability hazard, 120
training – deicing/anti-icing fluids, 198
training – deicing/anti-icing procedures, 198
training – deicing/anti-icing procedures with specific aircraft, 198
training – deicing/anti-icing procedures with specific fluids, 198
training – EASA requirements, 189
training – eHOT app, 161
training – emergency procedures, 198
training – engine manufacturer recommendations, 120
training – engines-on deicing, 128, 176
training – environmental consideration, 198
training – ethylene glycol – handling of, 120
training – evaluation, 120
training – evaluation – computer-based training, 120
training – evaluation – failed, 120
training – evaluation – plagiarism, 120
training – evaluation – practical, 120
training – evaluation – theoretical, 120
training – eye/face protection, use of, 120
training – fall hazard, 120
training – fall protection equipment, use of, 120
training – fatigue, 120
training – flight control check, 120
training – flightcrew, 120
training – fluid – thickened v unthickened, 120
training – fluid acceptance, 120
training – fluid application – air conditioning off, 120
training – fluid application – aircraft manufacturer requirements, 120
training – fluid application – anti-icing – amount required, 120
training – fluid application – APU, 120
training – fluid application – APU bleed air off, 120
training – fluid application – cabin windows, 120
training – fluid application – exhausts, 120
training – fluid application – one-step, 120
training – fluid application – pitot tubes, 120
training – fluid application – propellers, 120
training – fluid application – re-deicing, 120
training – fluid application – static ports, 120
training – fluid application – symmetrical, 120
training – fluid application – temperature, 120
training – fluid application – thrust reversers, 120
training – fluid application – two-step, 120
training – fluid certificate of conformance, 120
training – fluid failure description, 120
training – fluid failure recognition – for persons conducting pretakeoff contamination checks (FAA), 140
training – fluid failure recognition – for pilots (FAA), 140
training – fluid heat degradation, 120
training – fluid heat hazard, 120
Index

training – fluid manufacturer recommendations – fluid handling system, 121
training – fluid manufacturer recommendations – fluid heating, 121
training – fluid manufacturer recommendations – storage temperature limits, 121
training – fluid pressurization hazard, 121
training – fluid recovery, 121
training – fluid shear degradation, 121
training – fluid specification – AMS1424, 121
training – fluid specification – AMS1428, 121
training – fluid storage, 121, 199
training – fluid storage – drums, 121
training – fluid storage – fluid manufacturer recommendations, 121
training – fluid storage – labeling, 121
training – fluid storage – tank inspection, 121
training – fluid storage – tank level, 121
training – fluid storage – totes, 121
training – fluid testing – brand name, 121
training – fluid testing – color, 121
training – fluid testing – contamination check, 121
training – fluid testing – pH, 121
training – fluid testing – refraction, 121
training – fluid testing – viscosity, 121
training – fluid transfer system, 121
training – fluid transfer system – dedicated, 121
training – fluid transfer system – labels, 121
training – fluid, Newtonian v non-Newtonian, 121
training – footwear, safety, use of, 121
training – fundamentals – case studies, 121
training – fundamentals – demonstration, 121
training – fundamentals – evaluations and evaluations, 121
training – fundamentals – forgetfulness, 121
training – fundamentals – human factors, 121
training – fundamentals – learning process, 121
training – fundamentals – lectures, 121
training – fundamentals – misconceptions, 121
training – fundamentals – motivation, 121
training – fundamentals – professionalism, 121
training – fundamentals – training aids, 121
training – fundamentals – training material, 121
training – fundamentals – training methods, 121
training – fundamentals – training process, 121
training – fundamentals – unsafe habits, 121
training – fundamentals – what if scenarios, 121
training – galvanic couples, 121
training – global deicing standards, 121
training – gloves, use of, 121
training – ground crew, 121
training – hazard v risk, 121
training – hazards of ice, snow and frost, 121, 199
training – head of deicing, 128
training – head of deicing – definition, 128
training – head of training, 121
training – health and safety, 121
training – health effects, 199
training – hearing protection, use of, 121
training – heat loss, 121
training – HHET, 122
training – HOT guidelines, 122
training – HOT, limitations of, 199
training – HOT, start of, 122
training – HOT, use of, 122, 199
training – human error, 122
training – human factors, 122
training – ICAO – alphabet, 122
training – ICAO – language proficiency rating scale, 122
training – ICAO – requirements, 199
training – in-flight icing, 122
training – initial, 122, 128
training – instructor. See training – trainer
training – jet blast hazard, 122
training – landing gear, deicing of, 122
training – language proficiency rating scale, ICAO, 122
training – language, English, 122
training – language, other, 122
training – lessons learned, 122, 199
training – local variations, 122
training – low visibility hazard, 122
training – management plan, 122
training – management, senior, 122
training – manager, program, 122
training – materials compatibility, 122
training – new equipment, 122
training – new procedures, 199
training – noise level hazard, 122
training – no-spray zones, 122
training – one-step deicing/anti-icing, 122
training – personal protective equipment, 122
training – personnel qualification, 199
training – personnel trained and qualified, 122
training – pilot assessment of precipitation intensity (FAA), 140
training – plan, practical – areas, 122
training – plan, practical – centralized deicing, 122
training – plan, practical – communications, 122
training – plan, practical – competence demonstration, 122
training – plan, practical – contamination check, 122
training – plan, practical – deicing unit auxiliary engine operation, 122
training – plan, practical – deicing unit basket operation, 122
training – plan, practical – deicing unit control panel, 122
training – plan, practical – deicing unit driving, 122
training – plan, practical – deicing unit layout, 122
training – plan, practical – deicing unit operation, 122
training – plan, practical – deicing unit positioning, 122
training – plan, practical – deicing unit safety around the aircraft, 122
training – plan, practical – emergency situations, 122
training – plan, practical – fluid checks, 122
training – plan, practical – fluid heater operation, 122
training – plan, practical – fluid spraying, 122
training – plan, practical – gate deicing, 122
training – plan, practical – ground hose operation, 122
training – plan, practical – hot air use, 122
training – plan, practical – multiple unit deicing, 122
training – plan, practical – nozzle setting, 122
training – plan, practical – pre-spray checks, 123
training – plan, practical – tactile check, 123
training – plan, theoretical – anti-icing code, 123
training – plan, theoretical – anti-icing fluids, 123
training – plan, theoretical – audits, 123
training – plan, theoretical – clean aircraft concept, 123
training – plan, theoretical – clear ice, 123
training – plan, theoretical – communications with flightcrew, 123
training – plan, theoretical – contamination [frozen] – effect on aircraft performance, 123
training – plan, theoretical – contamination [frozen] – removal, 123
training – plan, theoretical – critical aircraft surfaces, 123
training – plan, theoretical – deicing facility operations, 123
training – plan, theoretical – deicing fluids, 123
training – plan, theoretical – environmental impact, 123
training – plan, theoretical – fluid handling, 123
training – plan, theoretical – hazards, 123
training – plan, theoretical – HOT, limitations of, 123
training – plan, theoretical – HOT, use of, 123
training – plan, theoretical – introduction, 123
training – plan, theoretical – lessons learned, 123
training – plan, theoretical – no-spray areas, 123
training – plan, theoretical – quality control of fluids, 123
training – plan, theoretical – regulations, 123
training – plan, theoretical – rules and permits, local, 123
training – plan, theoretical – SAE standards, compliance with, 123
training – plan, theoretical – safety, 123
training – plan, theoretical – safety, aircraft, 123
training – plan, theoretical – safety, personnel, 123
training – plan, theoretical – Type I/II/III/IV, 123
training – plan, theoretical – weather, 123
training – poor visibility hazard, 123
training – post deicing/anti-icing check, 123
training – preflight check, 123
training – pretakeoff contamination check, 123
training – professional attitude, 123
training – propeller hazard, 123
training – propylene glycol – handling of, 123
training – qualification level – cabin crew, 123
training – qualification level – deicing coordinator, 123
training – qualification level – deicing instructor, 123
training – qualification level – deicing operator, 123
training – qualification level – deicing supervisor, 123
training – qualification level – deicing unit driver, 123
training – qualification level – deicing vehicle driver, 123
training – qualification level – dispatch personnel, 123
training – qualification level – flightcrew, 123
training – qualification level – fluid quality inspector, 123
training – qualification level – head of deicing training, 124
training – qualification level – laboratory staff. See training qualification level – fluid quality inspector
training – qualification level – pre/post-deicing inspector, 124
training – quality control procedures, 199
training – radio communications, 124
training – records, 129, 199
training – records – date, 124
training – records – evaluation results, 124
training – records – failures, 124
training – records – flightcrew, 199
training – records – ground crew, 199

Guide to Aircraft Ground Deicing – Issue 12

training – records – initial training, 199
training – records – proof of qualification, as, 124
training – records – qualification level, 124
training – records – qualification restrictions, 124
training – records – recurrent training, 199
training – records – retrievability, 124
training – records – subject matter, 124
training – records – trainer name, 124
training – recurrent, 129
training – recycling, 124
training – refractometer, use of, 124
training – regulators, role of, 124
training – respiratory protection, use of, 124
training – risk v hazard, 124
training – SAE G-12, role of, 124
training – SAE standards, 124
training – safety equipment, use of, 124
training – safety harness, 124
training – safety lanyard, 124
training – safety precautions, 199
training – schedule, 124
training – seat belt, use of, 124
training – slipperiness hazard, 124
training – spill control, 199
training – spill reporting, 199
training – standards, use of latest edition, 124
training – storage tank corrosion, 124
training – storage tank inspection, 124
training – TC, 176
training – theoretical vs practical, 124
training – timing, recommended, 124
training – trainer background, 124
training – trainer name, 124
training – two-step deicing/anti-icing, 124
training – Type I, 124
training – Type I – color – orange, 124
training – Type I – quantity, minimum, 124
training – Type I – temperature, minimum, 124
training – Type I, use of, 124
training – Type II – color – yellow, 124
training – Type II/III/IV, 124
training – Type II/III/IV – quantity, minimum, 124
training – Type II/III/IV – temperature, 124
training – Type II/III/IV, use of, 124
training – Type III – color – bright yellow, 124
training – Type IV – color – green, 124
training – weather, 124, 199
training – weatherproof clothing, use of, 124
training – WSET, 124
training, head of deicing – definition, 124
training, postholder – definition, 124
transfer point – definition, 101
Transport Canada, 3, 23
Transport Canada Guidelines for Aircraft Ground Icing Operations TP 14052E, 161
Transport Canada icing research, 26
Transport Canada/FAA list of fluids. See fluid list (FAA/TC)
Transportation Safety Board of Canada, 24
TSGS. See METAR code TSGS
Tupolev TU-134 dimensions, 124
Tupolev TU-154M dimensions, 125
Type I – contamination, 199, See also Type I – degradation
Type I – contamination – corrosion in storage vessel, 176, 199
Type I – contamination – galvanic corrosion in storage vessel, 176
Type I – contamination – improper corrosion, 199
Type I – contamination – leaky tank covers, 176
Type I – contamination – leaky truck covers, 176
Type I – contamination – mislabeled equipment, 176
Type I – contamination – other fluids, 44
Type I – contamination – trace contaminants, 44
Type I – contamination – unlabeled equipment, 176
Type I – contamination – uncleaned equipment, 176
Type I – contamination – unintended transfer, 176
Type I – contamination – uncleaned new equipment, 176
Type I – contamination – undedicated equipment, 176
Type I – corrosion – recycled glycol, 44
Type I – corrosion, low embrittling cadmium plate, 44
Type I – corrosion, sandwich, 44
Type I – corrosion, stress-, 45
Type I – coverage, 176
Type I – crawling, 45
Type I – definition, 140
Type I – degradation. See also Type I – contamination
Type I – degradation – chemical contamination, 140
Type I – degradation – heating, 199
Type I – degradation – shelf life, 176
Type I – degradation – UV light, 176
Type I – degradation, thermal – application temperature, excessive, 177
Type I – degradation, thermal – discoloration, 177
Type I – degradation, thermal – evaporation, 177
Type I – degradation, thermal – glycol concentration increase, evaporative, 140
Type I – degradation, thermal – oxidation, 140, 177
Type I – degradation, thermal – pH, low, 177
Type I – degradation, thermal – standby heating, excessive, 177
Type I – degradation, thermal – undesirable aerodynamic effects, 95
Type I – degradation, thermal – upon low fluid usage (turnover), 95
Type I – degradation, thermal – water loss, 95, 140, 177
Type I – drums, 45
Type I – effect on aircraft materials, 45
Type I – environmental information, 45
Type I – exposure, human, 45
Type I – failure at leading edge, 140
Type I – failure at structurally thin areas, 141
Type I – failure at trailing edge, 141
Type I – failure at wing tips, 141
Type I – failure criteria, 67
Type I – field spray test, 65
Type I – field test with deicing unit, 45
Type I – fire breaks, 45
Type I – fire hazard – circuit breakers, 45
Type I – fire hazard – direct current, 45
Type I – fire hazard – glycol, 45
Type I – fire hazard – inhibitor, 45
Type I – fire hazard – noble metal coated wiring, 45
Type I – fire hazard – silver coated wiring, 45
Type I – fire hazard – switches, electrical, 45
Type I – recycled glycol – obligation to report presence of, 46
Type I – recycled glycol – obligation to report source of, 46
Type I – recycled glycol – quality assurance s, 46
Type I – recycled glycol – source of, 46
Type I – refraction, 47
Type I – refractive index, 47
Type I – rejection, 47
Type I – reports by independent facilities, 47
Type I – requalification. See Type I – qualification, periodic re-
Type I – Right to Know Regulation (US), 47
Type I – runway concrete resistance, 47
Type I – safety data sheet, 47
Type I – same ingredients, 47
Type I – same manufacturing procedures, 47
Type I – same methods of inspection, 47
Type I – sample selection considerations, 65
Type I – sampling, bulk shipments, 47
Type I – sampling, drum shipments, 47
Type I – sampling, statistical, 47
Type I – sampling, tote shipments, 47
Type I – shear, resistance to, 47
Type I – skins, free from, 47
Type I – slipperiness, 47
Type I – specific gravity, 47
Type I – specification – AMS1424, 47
Type I – specification – AMS1424/1, 48
Type I – specification – AMS1424/2, 49
Type I – stability, hard water, 47
Type I – stability, storage, 47
Type I – stability, thermal, 47
Type I – storage stability, 47
Type I – sulfur as contaminant, 47
Type I – surface tension, 47
Type I – suspended matter, 47
Type I – temperature, minimum application, 145
Type I – testing, autonomous facilities, 47
Type I – testing, confirmatory, 47
Type I – testing, independent facilities, 47
Type I – testing, independent laboratories, 47
Type I – thermal degradation. See Type I – degradation, thermal
Type I – thermal stability, 47
Type I – thickeners, free from, 47
Type I – totes, 47
Type I – transparent plastics, effect on, 47
Type I – transportation, 47
Type I – unheated, 177
Type I – unheated – HOT, no, 141
Type I – unpainted surface, effect on, 47
Type I – use criteria (TC) – conformance to AMS1424, 177
Type I – use criteria (TC) – conformance to AMS1424, independent laboratory confirmation of, 177
Type I – use of concentrate form, 47
Type I – use of concentrate form, no, 95
Type I – use of dilution, 47, 177
Type I – use on aircraft. See Type I – commercialization condition
Type I – water loss – undesirable aerodynamic effects, 95
Type I – water, composition of hard, 47
Type I – water, soft, 47

Type I – wetting, 47
Type I – wetting test s, 33
Type I – wetting v time test, 33
Type I – WSET – 3 minutes minimum, 47
Type I – WSET – sample sheared, 47
Type II. See also Type II/III/IV, Type II/IV
Type II 50/50 – HHET 0.5 hours minimum, 52
Type II 50/50 – WSET 5 minutes minimum, 52
Type II 75/25 – HHET 2 hours minimum, 52
Type II 75/25 – WSET 20 minutes minimum, 52
Type II color – yellow, 52
Type II neat – HHET 4 hours minimum, 53
Type II neat – WSET 30 minutes minimum, 53
Type II/III/IV degradation – exposure to alkali organic salts, 141
Type II/III/IV – 50/50 – cold soaked wing, do not used for, 95
Type II/III/IV – 50/50 – tolerance on fluid/water mixtures, 95
Type II/III/IV – 75/25 – tolerance on fluid/water mixtures, 95
Type II/III/IV – aerodynamic acceptance, 53
Type II/III/IV – aerodynamic acceptance of sheared sample, 53
Type II/III/IV – aerodynamic acceptance of unsheared sample, 53
Type II/III/IV – aerodynamic performance of highest viscosity dilution sample, 53
Type II/III/IV – aircraft operational considerations. See also aerodynamic effect of fluids – performance adjustments
Type II/III/IV – aircraft operational considerations – aircraft attitude, 189
Type II/III/IV – aircraft operational considerations – flightcrew briefing, 189
Type II/III/IV – aircraft operational considerations – increased takeoff speed, 189
Type II/III/IV – aircraft operational considerations – mass decrease, 189
Type II/III/IV – aircraft operational considerations – rotation speed and rate, 190
Type II/III/IV – aircraft operational considerations – stick force, 190
Type II/III/IV – aluminum alloy, 53
Type II/III/IV – anti-icing performance, 53
Type II/III/IV – apparent viscosity, 53
Type II/III/IV – appearance, 53
Type II/III/IV – application, 53
Type II/III/IV – application – biodegradability, 53
Type II/III/IV – application guideline. See fluid application
Type II/III/IV – application with forced air – foam, 110
Type II/III/IV – application with forced air – thickness, 110
Type II/III/IV – application with forced air – viscosity check required, 110
Type II/III/IV – approval by purchaser, 53
Type II/III/IV – approval, re-, 53
Type II/III/IV – aquatic toxicity, 53
Type II/III/IV – baking. See Type II/III/IV – degradation, thermal – heated leading edge dry-out
Type II/III/IV – BOD, 53
Type II/III/IV – Brix, 53
Type II/III/IV – Brookfield LV viscometer, 53
Type II/III/IV – carbon brake compatibility, 53
Type II/III/IV – certificate of analysis, 53
Type II/III/IV – change in formulation, 53
Type II/III/IV – change in ingredients, 53
Type II/III/IV – change in production method, 53
Type II/III/IV – chemical contamination. See Type II/III/IV – contamination
Type II/III/IV – chromium reporting requirement, 53
Type II/III/IV – circuit breakers, defective, 53
Type II/III/IV – classification, 53
Type II/III/IV – COD, 53
Type II/III/IV – cold storage stability, 53
Type II/III/IV – color, 53
Type II/III/IV – color – mandatory, 53
Type II/III/IV – commercialization condition – field spray test, 73
Type II/III/IV – commercialization condition – fluid list (FAA/TC), be on the, 73
Type II/III/IV – commercialization condition – HOT guideline, have a, 73
Type II/III/IV – commercialization decision, 73
Type II/III/IV – commingling, 53
Type II/III/IV – compatibility with brake material, 53
Type II/III/IV – compatibility with Type I, 47, 141
Type II/III/IV – composition, 53, 199
Type II/III/IV – concentration, 141
Type II/III/IV – contaminants, 53
Type II/III/IV – contamination. See also Type II/III/IV – degradation
Type II/III/IV – contamination – corrosion in storage vessel, 177, 202
Type II/III/IV – contamination – galvanic corrosion in storage vessel, 177
Type II/III/IV – contamination – leaky tank covers, 177
Type II/III/IV – contamination – leaky truck covers, 177
Type II/III/IV – contamination – mislabeled equipment, 177
Type II/III/IV – contamination – RDP, 177
Type II/III/IV – contamination – runway deicing products, 177
Type II/III/IV – contamination – uncleaned equipment, 177
Type II/III/IV – contamination – uncleaned new equipment, 177
Type II/III/IV – contamination – undedicated equipment, 177
Type II/III/IV – contamination – unintended transfer, 177
Type II/III/IV – contamination – unlabeled equipment, 177
Type II/III/IV – contamination by RDP on aircraft, 141
Type II/III/IV – contamination by RDP on aircraft – activation of thrust reversers, 202
Type II/III/IV – contamination by RDP on aircraft – during taxi, 141
Type II/III/IV – contamination by RDP on aircraft – jet blast from other aircraft, 141, 202
Type II/III/IV – contamination by RDP on aircraft – spray from nose gear, 202
Type II/III/IV – contamination by RDP on aircraft – while landing, 141
Type II/III/IV – corrosion, sandwash, 53
Type II/III/IV – corrosion, sandwich, 53
Type II/III/IV – corrosion, stress-, 53
Type II/III/IV – degradation. See also Type II/III/IV – contamination
Type II/III/IV – degradation – contamination, 141, 199
Type II/III/IV – degradation – excessive shearing, 199, 202
Type II/III/IV – degradation – excessive shearing – control valves, 141
Type II/III/IV – degradation – excessive shearing – filters, 177
Type II/III/IV – degradation – excessive shearing – forced air, 177
Type II/III/IV – degradation – excessive shearing – nozzles, 177
Type II/III/IV – degradation – exposure to RDP, 202
Type II/III/IV – degradation – exposure to alkaline salt RDP, 202
Type II/III/IV – degradation – exposure to RDP, 141
Type II/III/IV – degradation – forced air, 110
Type II/III/IV – degradation – heating, 199, 202
Type II/III/IV – degradation – improper storage, 199
Type II/III/IV – degradation – shelf life, 177
Type II/III/IV – degradation – UV light, 177
Type II/III/IV – degradation, thermal – application temperature, excessive, 177
Type II/III/IV – degradation, thermal – discoloration, 177
Type II/III/IV – degradation, thermal – evaporation, 177
Type II/III/IV – degradation, thermal – heated leading edge dry-out, 53, 184
Type II/III/IV – degradation, thermal – heating, direct, 96
Type II/III/IV – degradation, thermal – heating, indirect, 96
Type II/III/IV – degradation, thermal – HOT reduction, 96
Type II/III/IV – degradation, thermal – oxidation, 141, 177
Type II/III/IV – degradation, thermal – pH, low, 177
Type II/III/IV – degradation, thermal – standby heating, excessive, 96, 177
Type II/III/IV – degradation, thermal – viscosity reduction, 96
Type II/III/IV – degradation, thermal – water loss, 96, 141, 177
Type II/III/IV – dehydration. See Type II/III/IV – degradation, thermal – water loss
Type II/III/IV – direct current hazard, 53
Type II/III/IV – dry-out exposure to cold dry air, 53
Type II/III/IV – dry-out exposure to dry air, 53
Type II/III/IV – dry-out, heated leading edge, 53, 202
Type II/III/IV – dry-out, successive. See Type II/III/IV – residue; Type II/IV – residue
Type II/III/IV – dry-out, successive test. See Type II/III/IV – successive dry-out and rehydration test
Type II/III/IV – effect on acrylic plastics, 53
Type II/III/IV – effect on aircraft materials, 53
Type II/III/IV – effect on painted surfaces, 53
<table>
<thead>
<tr>
<th>Type II/III/IV – fluid application</th>
<th>Type II/III/IV – Low Viscosity sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type II/III/IV – effect on plastics</td>
<td>Type II/III/IV – LOWV, 141</td>
</tr>
<tr>
<td>Type II/III/IV – effect on unpainted surfaces</td>
<td>Type II/III/IV – magnesium alloy, corrosion of, 55</td>
</tr>
<tr>
<td>Type II/III/IV – electrochemical dehydrolysis</td>
<td>Type II/III/IV – manufacturer. See fluid manufacturer</td>
</tr>
<tr>
<td>Type II/III/IV – environmental information</td>
<td>Type II/III/IV – materials compatibility, 55</td>
</tr>
<tr>
<td>Type II/III/IV – exposure to dry air</td>
<td>Type II/III/IV – maximum on-wing viscosity. See Type II/III/IV – HOWV</td>
</tr>
<tr>
<td>Type II/III/IV – exposure to dry air, human</td>
<td>Type II/III/IV – mercury reporting requirement, 55</td>
</tr>
<tr>
<td>Type II/III/IV – flight control restrictions</td>
<td>Type II/III/IV – minimum quantity (1 liter/m²), 96</td>
</tr>
<tr>
<td>Type II/III/IV – flash point</td>
<td>Type II/III/IV – mixing with fluid from different manufacturers, 55</td>
</tr>
<tr>
<td>Type II/III/IV – fire hazard</td>
<td>Type II/III/IV – mixture with other fluids, 55</td>
</tr>
<tr>
<td>Type II/III/IV – fire hazard inhibitor</td>
<td>Type II/III/IV – multiple location manufacturing, 55</td>
</tr>
<tr>
<td>Type II/III/IV – exposure to dry air</td>
<td>Type II/III/IV – name change upon reformulation, 73</td>
</tr>
<tr>
<td>Type II/III/IV – exposure to dry air</td>
<td>Type II/III/IV – name, experimental, 73</td>
</tr>
<tr>
<td>Type II/III/IV – fluid application</td>
<td>Type II/III/IV – name, final commercial – date due May 01, 73</td>
</tr>
<tr>
<td>See fluid application</td>
<td>Type II/III/IV – neat, 55, 142</td>
</tr>
<tr>
<td>Type II/III/IV – fluid concentration, 141</td>
<td>Type II/III/IV – nitrate reporting requirement, 55</td>
</tr>
<tr>
<td>Type II/III/IV – fluid elimination, 54</td>
<td>Type II/III/IV – noble metal coated wiring, 55</td>
</tr>
<tr>
<td>Type II/III/IV – fluid list (FAA/TC), 54</td>
<td>Type II/III/IV – non-glycol based, 55</td>
</tr>
<tr>
<td>Type II/III/IV – fluid residue table, AMIL, 73</td>
<td>Type II/III/IV – non-Newtonian, 55</td>
</tr>
<tr>
<td>Type II/III/IV – fluid transfer system, 96</td>
<td>Type II/III/IV – nozzle sample procedure, 142</td>
</tr>
<tr>
<td>Type II/III/IV – fluid transfer system – dedicated, 96</td>
<td>Type II/III/IV – overnight exposure to dry air. See Type II/III/IV – exposure to dry air</td>
</tr>
<tr>
<td>Type II/III/IV – fluid transfer system – labeling, 96</td>
<td>Type II/III/IV – packaging, 55</td>
</tr>
<tr>
<td>Type II/III/IV – foam, tendency to, 54</td>
<td>Type II/III/IV – pavement compatibility, 55</td>
</tr>
<tr>
<td>Type II/III/IV – forced air application, 141</td>
<td>Type II/III/IV – pH, 55</td>
</tr>
<tr>
<td>Type II/III/IV – freezing point, 54</td>
<td>Type II/III/IV – phosphate reporting requirement, 55</td>
</tr>
<tr>
<td>Type II/III/IV – freezing point buffer, 54</td>
<td>Type II/III/IV – polycarbonate, effect on. See Type II/III/IV – effect on transparent plastics</td>
</tr>
<tr>
<td>Type II/III/IV – friction, 54</td>
<td>Type II/III/IV – preproduction tests, 55</td>
</tr>
<tr>
<td>Type II/III/IV – functional description, 36, 96, 199</td>
<td>Type II/III/IV – protection for airborne aircraft, no, 142</td>
</tr>
<tr>
<td>Type II/III/IV – gel residue table, AMIL, 73</td>
<td>Type II/III/IV – pseudoplastic, 55</td>
</tr>
<tr>
<td>Type II/III/IV – Glycol (Conventional and Non-conventional) based, 58</td>
<td>Type II/III/IV – purchase documents, 58</td>
</tr>
<tr>
<td>Type II/III/IV – Glycol (Conventional) based, 58</td>
<td>Type II/III/IV – purchase order, 55</td>
</tr>
<tr>
<td>Type II/III/IV – Glycol (Non-conventional) based, 58</td>
<td>Type II/III/IV – qualification. See ARP5718B</td>
</tr>
<tr>
<td>Type II/III/IV – glycol dehydrolysis, 54</td>
<td>Type II/III/IV – qualification, initial, 55</td>
</tr>
<tr>
<td>Type II/III/IV – halogen reporting requirement, 54</td>
<td>Type II/III/IV – qualification, initial – report, 55</td>
</tr>
<tr>
<td>Type II/III/IV – hard water composition, 54</td>
<td>Type II/III/IV – qualification, periodic re-, 55</td>
</tr>
<tr>
<td>Type II/III/IV – hard water stability, 54</td>
<td>Type II/III/IV – qualification, periodic re-, 50/50, 55</td>
</tr>
<tr>
<td>Type II/III/IV – heated leading edge dry-out, 54</td>
<td>Type II/III/IV – qualification, periodic re-, 75/25, 55</td>
</tr>
<tr>
<td>Type II/III/IV – heating issues. See Type II/III/IV – degradation, thermal</td>
<td>Type II/III/IV – qualification, periodic re-, comparison to initial qualification, 55</td>
</tr>
<tr>
<td>Type II/III/IV – HHET requirements, 54</td>
<td>Type II/III/IV – qualification, periodic re-, neat, 55</td>
</tr>
<tr>
<td>Type II/III/IV – high viscosity sample, 54</td>
<td>Type II/III/IV – qualification, periodic re-, sample, ≤ 6 months, 55</td>
</tr>
<tr>
<td>Type II/III/IV – highest viscosity dilution, 54</td>
<td>Type II/III/IV – qualification, periodic re-, test facility, approved, 55</td>
</tr>
<tr>
<td>Type II/III/IV – HOWV, 54</td>
<td>Type II/III/IV – qualification, periodic re-, test facility, independent, 55</td>
</tr>
<tr>
<td>Type II/III/IV – hydrogen embrittlement, 54</td>
<td>Type II/III/IV – qualification, periodic re-, test variability, 55</td>
</tr>
<tr>
<td>Type II/III/IV – label, 54</td>
<td>Type II/III/IV – qualification, periodic re-, what: viscosity, 55</td>
</tr>
<tr>
<td>Type II/III/IV – label – AMS1428/1 or AMS1428/2, 54</td>
<td>Type II/III/IV – qualification, periodic re-, what: WSET and HHET, 55</td>
</tr>
<tr>
<td>Type II/III/IV – label – fluid manufacturer’s identification, 54</td>
<td>Type II/III/IV – qualification, periodic re-, when: every 2 years, 55</td>
</tr>
<tr>
<td>Type II/III/IV – low embrittling cadmium plate, 54</td>
<td>Type II/III/IV – quality assurance, 55</td>
</tr>
<tr>
<td>Type II/III/IV – heating issues.</td>
<td>Type II/III/IV – quality control, 199</td>
</tr>
</tbody>
</table>
Guide to Aircraft Ground Deicing – Issue 12

Type II/III/IV – quality control – appearance: contamination, separation, 142
Type II/III/IV – quality control – pH, 142
Type II/III/IV – quality control – refractive index, 142
Type II/III/IV – quality control – viscosity, 142
Type II/III/IV – quantity, estimated, 125
Type II/III/IV – quantity, estimated – by aircraft type, 125
Type II/III/IV – reaction, exothermic, 55
Type II/III/IV – re-approval, 55
Type II/III/IV – refractive index, 55
Type II/III/IV – rejection, 55
Type II/III/IV – removal from cockpit windows, 96, 202
Type II/III/IV – requalification. See Type II/III/IV – requalification, periodic re-
Type II/III/IV – resampling, 55
Type II/III/IV – residual fluid, 177
Type II/III/IV – residual fluid – on trailing edge in flight, 142, 177
Type II/III/IV – residual fluid v fluid residue, 229
Type II/III/IV – residue, 96, 190, 203, See also Type II/IV residue
Type II/III/IV – residue – aileron jamming, 190
Type II/III/IV – residue – along control surface hinge lines, 156
Type II/III/IV – residue – control force changes, 156
Type II/III/IV – residue – control surface buffeting, 156
Type II/III/IV – residue – control surface vibrations, 156
Type II/III/IV – residue – drain hole clogging, 190
Type II/III/IV – residue – dried, 156, 184, 190, 203
Type II/III/IV – residue – effect on flight control systems, 185
Type II/III/IV – residue – effect on flight safety, 55
Type II/III/IV – residue – effect on powered flight control systems, 156
Type II/III/IV – residue – effect on unpowered flight control systems, 156
Type II/III/IV – residue – elevator jamming, 190
Type II/III/IV – residue – elevator limitations, 156
Type II/III/IV – residue – elevator vibration, 156
Type II/III/IV – residue – flap jamming, 190
Type II/III/IV – residue – flight control restrictions, 96, 156, 185, 199, 202
Type II/III/IV – residue – frozen, 156, 185
Type II/III/IV – residue – guidance (Boeing), 202
Type II/III/IV – residue – guidance (EASA), 190
Type II/III/IV – residue – guidance (FAA), 142
Type II/III/IV – residue – guidance (TC), 177
Type II/III/IV – residue – in aerodynamically quiet areas, 55, 156, 185, 199
Type II/III/IV – residue – in balance bays, 156
Type II/III/IV – residue – in cavities, 55
Type II/III/IV – residue – in control surface balance bays, 156
Type II/III/IV – residue – in gaps, 55, 156
Type II/III/IV – residue – in gaps between stabilizers, elevators, tabs and hinge areas, 156
Type II/III/IV – residue – lift reduction, 190
Type II/III/IV – residue – on cables, 156
Type II/III/IV – residue – on flight control actuators, 156
Type II/III/IV – residue – on pulleys, 156
Type II/III/IV – residue – periodic inspection, 156
Type II/III/IV – residue – rehydrated, 156, 185, 190, 203
Type II/III/IV – residue – rotation issues, 199
Type II/III/IV – residue – stall speed increase, 190
Type II/III/IV – residue – unbalanced control surfaces, 156
Type II/III/IV – residue check, 199
Type II/III/IV – residue cleaning, 96, 203
Type II/III/IV – residue cleaning – application of corrosion inhibitors to areas cleaned, 202
Type II/III/IV – residue cleaning – lubrication of areas cleaned, 203
Type II/III/IV – residue cleaning – program, 96
Type II/III/IV – residue detection, 96, See also Type II/IV – residue detection
Type II/III/IV – residue formation, 56, 190, 203, See also
Type II/IV – residue formation
Type II/III/IV – residue formation – conditions conducive to, 96
Type II/III/IV – residue formation – first step application of Type II/III/IV in two-step application, 55
Type II/III/IV – residue formation – inadequate drainage, 156
Type II/III/IV – residue formation – no takeoff and no precipitation after fluid application, 96
Type II/III/IV – residue formation – one-step application of Type II/III/IV, 55, 156, 185
Type II/III/IV – residue formation – role of RDP alkali organic salts, 203
Type II/III/IV – residue formation – Type I to alleviate, 96, 203
Type II/III/IV – residue formation – Type II/III/IV without hot water or Type I, 156, 199
Type II/III/IV – residue formation – use of Type II/III/IV without Type I, 96, 203
Type II/III/IV – residue formation test. See Type II/III/IV – successive dry out and rehydration test
Type II/III/IV – residue inspection, 96, 203
Type II/III/IV – residue inspection – according to AMM, 203
Type II/III/IV – residue inspection – auxiliary power unit bay, 203
Type II/III/IV – residue inspection – bilge area of the tail cone, 203
Type II/III/IV – residue inspection – control linkages, 203
Type II/III/IV – residue inspection – control tabs, 203
Type II/III/IV – residue inspection – periodic, 185
Type II/III/IV – residue inspection – stabilizer rear spar, horizontal, 203
Type II/III/IV – residue inspection – stabilizer, vertical, 203
Type II/III/IV – residue inspection – wing leading edge devices, 203
Type II/III/IV – residue inspection – wing rear spar, 203
Type II/III/IV – residue reduction – aircraft design modifications, 185
Type II/III/IV – residue reduction – cleaning procedures, 185
Type II/III/IV – residue reduction – scheduled maintenance tasks, 185
Type II/III/IV – residue reduction – specific deicing/anti-icing procedures, 185
Type II/III/IV – residue table, AMIL, 73
Type II/III/IV – runway concrete scaling, 56
Type II/III/IV – same ingredients, 56
Index

Type II/III/IV – sample selection, 56, See also HOT, process to obtain – sample selection
Type II/III/IV – sample selection considerations, 73
Type II/III/IV – sampling procedure, 142
Type II/III/IV – shear stability, 56
Type II/III/IV – shear stress, effect on apparent viscosity, 56
Type II/III/IV – shear thinning, 56, 199
Type II/III/IV – silver coated wiring, 56
Type II/III/IV – slipperiness, 56
Type II/III/IV – specific gravity, 56
Type II/III/IV – specification – AMS1428, 56
Type II/III/IV – specification – AMS1428/1, 58
Type II/III/IV – specification – AMS1428/2, 58
Type II/III/IV – storage stability, 56
Type II/III/IV – storage stability waived, 56
Type II/III/IV – storage stability, cold, 56
Type II/III/IV – storage, long term, 56
Type II/III/IV – stress-corrosion resistance, 56
Type II/III/IV – subcontractor manufacturing, 56
Type II/III/IV – successive dry out and rehydration test, 56
Type II/III/IV – sulfur reporting requirement, 56
Type II/III/IV – surface tension, 56
Type II/III/IV – switches, defective, 56
Type II/III/IV – technical requirements, 56
Type II/III/IV – temperature cycling, 56
Type II/III/IV – thermal degradation. See Type II/III/IV – degradation, thermal
Type II/III/IV – thermal stability, accelerated aging, 56
Type II/III/IV – thermal stability, thin film, 56
Type II/III/IV – thickened fluid, 56
Type II/III/IV – thickness application, sufficient, 96
Type II/III/IV – thickness v time test, 33
Type II/III/IV – titanium corrosion resistance, 56
Type II/III/IV – TOD, 56
Type II/III/IV – toxicity, 56
Type II/III/IV – trace contaminants, 56
Type II/III/IV – transportation, 56
Type II/III/IV – U.S Military procurement, 56
Type II/III/IV – undiluted fluid, 56
Type II/III/IV – use as deicing fluid – residue inspection and cleaning program required, 96
Type II/III/IV – use criteria (TC) – conformance to AMS1428, 178
Type II/III/IV – use criteria (TC) – conformance to AMS1428, independent laboratory confirmation of, 178
Type II/III/IV – use in first-step of two-step process – residue inspection and cleaning program required, 96
Type II/III/IV – use in one-step deicing – residue inspection and cleaning program required, 96
Type II/III/IV – use on aircraft. See Type II/III/IV – commercialization condition
Type II/III/IV – viscosity limits, 56
Type II/III/IV – viscosity measurement, 56, 59
Type II/III/IV – viscosity, fluid manufacturer methods, 145, 159
Type II/III/IV – water loss, 96
Type II/III/IV – water loss – degradation and lower HOT, 96
Type II/III/IV – wing anti-ice system OFF on ground, 203
Type II/III/IV – wiring, defective, 56
Type II/III/IV – WSET limits, 56
Type II/III/IV – fluid residue v residual fluid, 229
Type II/IV – heated – no reduction in HOT, 142
Type II/IV – residue – dried, 142, 178
Type II/IV – residue – effect on non-powered control surfaces, 142, 178
Type II/IV – residue – effect on powered control surfaces, 178
Type II/IV – residue – frozen, 142, 178
Type II/IV – residue – guidance (FAA), 142
Type II/IV – residue – guidance (TC), 178
Type II/IV – residue – in aerodynamically quiet areas, 142, 178
Type II/IV – residue – in and around gaps between stabilizers, elevators, tabs, hinges, 142, 178
Type II/IV – residue – in crevices, 142, 178
Type II/IV – residue – in drain holes, 178
Type II/IV – residue – lubrication of areas affected by, 142, 178
Type II/IV – residue – rehydrated, 142, 178
Type II/IV – residue – restricted control surface movement, 142, 178
Type II/IV – residue cleaning, 142, 178
Type II/IV – residue cleaning – with aircraft manufacturer recommended cleaning agent, 142
Type II/IV – residue cleaning – with high pressure washing, 178
Type II/IV – residue cleaning – with hot Type I and or water mix, 142
Type II/IV – residue detection, 142
Type II/IV – residue formation. See also Type II/III/IV – residue formation
Type II/IV – residue formation – conditions conducive to, 178
Type II/IV – residue formation – diluted Type II/IV v neat Type II/IV, 142, 178
Type II/IV – residue formation – European practices conducive to, 142, 178
Type II/IV – residue formation – hot Type I or hot water to alleviate, 178
Type II/IV – residue formation – North American practices preventing, 142, 178
Type II/IV – residue formation – Type II v Type IV, 142
Type II/IV – residue formation – Type II/IV without hot water or Type I, 142, 178
Type II/IV – residue inspection, 142, 178
Type II/IV – residue inspection – actuators, 142
Type II/IV – residue inspection – between flaps and wing, 178
Type II/IV – residue inspection – drain holes, 178
Type II/IV – residue inspection – flight control bays, 142, 178
Type II/IV – residue inspection – frequency, 142, 178
Type III. See also Type II/III/IV
Type III – color – bright yellow, 56
Type III – degradation, thermal, 178
Type III 50/50 – HHET determine and report, 56
Type III 50/50 – WSET determine and report, 56
Type III 75/25 – HHET determine and report, 56
Type III 75/25 – WSET determine and report, 56
Type III neat – HHET 2 hours minimum, 56
Type III neat – WSET 20 minutes minimum, 56
Type III residue – monitoring recommended, 178
Guide to Aircraft Ground Deicing – Issue 12

Type IV. See also Type II/III/IV; Type II/IV
Type IV – color – green, 57
Type IV – thickness, 178
Type IV 50/50 – HHET 0.5 hours minimum, 57
Type IV 50/50 – WSET 5 minutes minimum, 57
Type IV 75/25 – HHET 2 hours minimum, 57
Type IV 75/25 – WSET 20 minutes minimum, 57
Type IV neat – HHET 8 hours minimum, 57
Type IV neat – WSET 80 minutes minimum, 57
United States Department of Transportation, Federal Aviation Administration. See FAA
upper sales specification viscosity limit. See viscosity limit, upper sales specification
upper sales specification viscosity limit – definition, 73
USAir Flight 405, 23
Van Dyke, Donald L., 22
vehicle safety zone, 154
vehicle, deicing. See deicing unit
viscometer, Brookfield LV – cold storage stability, 57
viscometer, Brookfield LV – highest viscosity dilution, 57
viscometer, Brookfield LV – small sample adapter, 57
viscometer, Brookfield LV – Type II/III/IV viscosity measurement, 57
viscosity field check, 60
viscosity field check – air bubble removal by centrifugation, 60
viscosity field check – air bubbles, 60
viscosity field check – falling ball, 96
viscosity field check – fluid manufacturer recommendation, 96
viscosity field check – screening method, 60
viscosity field check – Stony Brook apparatus, 60, 96
viscosity field check – Type II/III/IV, 60
viscosity field check – v fluid manufacturer method, 60
viscosity field test. See viscosity field check
viscosity limit, lower sales specification – definition, 73
viscosity limit, lower sales specification – higher than LOWV, 73
viscosity limit, upper sales specification – definition, 73
viscosity limit, upper sales specification – lower than HOWV, 73
viscosity limits – sales specification – Type II/III/IV, 56
viscosity measurement method – air bubble free sample, 59
viscosity measurement method – air bubble removal by centrifugation, 59
viscosity measurement method – AS9968, 59, 96
viscosity measurement method – AS9968 v fluid manufacturer, 59
viscosity measurement method – Brookfield LV viscometer, 59
viscosity measurement method – fluid manufacturer, 59, 96, 145, 159
viscosity measurement method – precedence of fluid manufacturer method over AS9968, 59, 145, 159
viscosity measurement method – report, 59
viscosity measurement method – Type II/III/IV, 59
viscosity measurement method – v field check, 60
viscosity test, laboratory. See viscosity measurement method
viscosity, high preproduction sample, 73
viscosity, highest on-wing viscosity. See HOWV
viscosity, lowest on-wing. See LOWV
viscosity, maximum on-wing. See HOWV
visibility. See also snowfall visibility
visibility – flightcrew observed, 159, 178
visibility – MANOBS, 178
visibility – METAR, 142, 159, 178
visibility – METAR/SPECI, 178
visibility – prevailing, 142, 145, 159, 178
visibility – prevailing – snowfall intensity as a function of.
See snowfall visibility table
visibility – reported, 178
visibility – rounding of, 145
visibility – runway visual range, 178
visibility – RVR, 142, 178
visibility – surface, 142, 145
visibility – surface v tower, 142, 145
visibility – tower, 142, 145
visibility table, snowfall, 178
von Karman Institute for Fluid Dynamics, 36
waiver, 228
water droplet size – dye stain method, 67, 76
water droplet size – laser diffraction method, 40, 67, 76
water droplet size – slide impact method with colloidal silver, 67, 68, 76
water droplet size – slide impact method with oil, 40, 68, 76
water quality guidelines. See also deicing facility – water quality guidelines
water quality guidelines, purpose of, 105
water quality standard. See deicing facility – water quality guidelines
water spray endurance test. See WSET
wave roughness, 36
weather support to deicing decision making, 98
weight – definition, 125
Wenzel state. See state, Wenzel
West Wind Flight 282, 23
wettability. See also contact angle
wettability, quantification of, 33
wetting – water droplet impact resistance, 33
wetting test, Type I, 33
WHMIS, 178
wind shield – single alter, 98
wind tunnel – sample selection, 73
wind tunnel testing – frequency, 73
wind tunnel testing – purpose – establish allowance time, 73
wind tunnel testing – purpose – simulate ice pellet conditions, 73
wind tunnel testing – Type III/IV neat only, 73
windows, cabin, 178
windows, cockpit – removal of Type II/III/IV, 96
windows, heated – precaution, 96
windrows – definition, 101
wing anti-ice system – not a substitute for ground deicing, 203
wing covers, use of, 178
wing skin temperature lower than OAT, 96
wing stall characteristics, 36
wing temperature v OAT, 190
winglets. See wingtip devices
wingspan, 125
wingtip devices – Boeing B737, 142, 178
<table>
<thead>
<tr>
<th>Field</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>wingtip devices – Boeing B747, 142, 178</td>
<td></td>
</tr>
<tr>
<td>wingtip devices – Boeing B757, 142, 178</td>
<td></td>
</tr>
<tr>
<td>wingtip devices – Boeing B767, 142, 178</td>
<td></td>
</tr>
<tr>
<td>wingtip devices – Boeing MD11, 143, 178</td>
<td></td>
</tr>
<tr>
<td>wingtip devices – pretakeoff contamination inspection (TC), 178</td>
<td></td>
</tr>
<tr>
<td>wingtip devices – raked wingtips, 143, 178</td>
<td></td>
</tr>
<tr>
<td>wingtip devices – representative surface, use of, 143</td>
<td></td>
</tr>
<tr>
<td>wingtip devices – scimitar, 143, 178</td>
<td></td>
</tr>
<tr>
<td>wingtip devices – scimitar, split, 143, 179</td>
<td></td>
</tr>
<tr>
<td>wingtip devices – scimitar, split – representative surface, use of, 178</td>
<td></td>
</tr>
<tr>
<td>wingtip devices – sharklets, 143, 179</td>
<td></td>
</tr>
<tr>
<td>wingtip devices – strakes, 143, 179</td>
<td></td>
</tr>
<tr>
<td>wingtip devices – winglets, 143, 179</td>
<td></td>
</tr>
<tr>
<td>winter operations, 129</td>
<td></td>
</tr>
<tr>
<td>winter operations – guidance (Boeing), 203</td>
<td></td>
</tr>
<tr>
<td>winter operations – guidance (Boeing) – for flightcrews, 203</td>
<td></td>
</tr>
<tr>
<td>winter operations – guidance (Boeing) – for maintenance crews, 203</td>
<td></td>
</tr>
<tr>
<td>winter operations – guidance (FAA), 143</td>
<td></td>
</tr>
<tr>
<td>winter operations – guidance (ICAO), 199</td>
<td></td>
</tr>
<tr>
<td>winter operations – guidance (TC), 179</td>
<td></td>
</tr>
<tr>
<td>winter program manager – definition, 125</td>
<td></td>
</tr>
<tr>
<td>Winter Weather Nowcasting System, 97</td>
<td></td>
</tr>
<tr>
<td>WSDMM, 98</td>
<td></td>
</tr>
<tr>
<td>WSET – air temperature, 40</td>
<td></td>
</tr>
<tr>
<td>WSET – calibration, 40</td>
<td></td>
</tr>
<tr>
<td>WSET – definition, 65, 73, 179</td>
<td></td>
</tr>
<tr>
<td>WSET – description, 40</td>
<td></td>
</tr>
<tr>
<td>WSET – failure criterion, 40</td>
<td></td>
</tr>
<tr>
<td>WSET – failure zone, 40</td>
<td></td>
</tr>
<tr>
<td>WSET – fluid preparation, 40</td>
<td></td>
</tr>
<tr>
<td>WSET – fluid sheared, 40</td>
<td></td>
</tr>
<tr>
<td>WSET – fluid temperature, 40</td>
<td></td>
</tr>
<tr>
<td>WSET – icing intensity (5 g/dm².h), 40</td>
<td></td>
</tr>
<tr>
<td>WSET – nucleation, no, 40</td>
<td></td>
</tr>
<tr>
<td>WSET – report, 40</td>
<td></td>
</tr>
<tr>
<td>WSET – reproducibility – Type I (20%), 40</td>
<td></td>
</tr>
<tr>
<td>WSET – reproducibility – Type II/III/IV (10%), 40</td>
<td></td>
</tr>
<tr>
<td>WSET – spray equipment, 40</td>
<td></td>
</tr>
<tr>
<td>WSET – test chamber, 40</td>
<td></td>
</tr>
<tr>
<td>WSET – test description, 40</td>
<td></td>
</tr>
<tr>
<td>WSET – test plate, 40</td>
<td></td>
</tr>
<tr>
<td>WSET – test plate cleanliness, 40</td>
<td></td>
</tr>
<tr>
<td>WSET – Type I – 3 minutes minimum, 47</td>
<td></td>
</tr>
<tr>
<td>WSET – Type II 50/50 – 5 minutes minimum, 57</td>
<td></td>
</tr>
<tr>
<td>WSET – Type II 75/25 – 20 minutes minimum, 57</td>
<td></td>
</tr>
<tr>
<td>WSET – Type II neat – 30 minutes minimum, 57</td>
<td></td>
</tr>
<tr>
<td>WSET – Type III 50/50 – determine and report, 57</td>
<td></td>
</tr>
<tr>
<td>WSET – Type III 75/25 – determine and report, 57</td>
<td></td>
</tr>
<tr>
<td>WSET – Type III neat – 20 minutes minimum, 57</td>
<td></td>
</tr>
<tr>
<td>WSET – Type IV 50/50 – 5 minutes minimum, 57</td>
<td></td>
</tr>
<tr>
<td>WSET – Type IV 75/25 – 20 minutes minimum, 57</td>
<td></td>
</tr>
<tr>
<td>WSET – Type IV neat – 80 minutes minimum, 57</td>
<td></td>
</tr>
<tr>
<td>WSET – water droplet size, 40</td>
<td></td>
</tr>
<tr>
<td>XAC MA-60 dimensions, 125</td>
<td></td>
</tr>
<tr>
<td>Yakolev YAK-40/42D dimensions, 125</td>
<td></td>
</tr>
<tr>
<td>zone sampler, 94</td>
<td></td>
</tr>
</tbody>
</table>