Browse Publications Technical Papers 2003-01-2633
2003-07-07

The Effect of Mission Location on Mission Costs and Equivalent System Mass 2003-01-2633

Equivalent System Mass (ESM) is used by the Advanced Life Support (ALS) community to quantify mission costs of technologies for space applications (Drysdale et al, 1999, Levri et al, 2000). Mass is used as a cost measure because the mass of an object determines propulsion (acceleration) cost (i.e. amount of fuel needed), and costs relating to propulsion dominate mission cost. Mission location drives mission cost because acceleration is typically required to initiate and complete a change in location. Total mission costs may be reduced by minimizing the mass of materials that must be propelled to each distinct location.
In order to minimize fuel requirements for missions beyond low-Earth orbit (LEO), the hardware and astronauts may not all go to the same location. For example, on a Lunar or Mars mission, some of the hardware or astronauts may stay in orbit while the rest of the hardware and astronauts descend to the planetary surface. In addition, there may be disposal of waste or used hardware at various mission locations to avoid propulsion of mass that is no longer needed in the mission. This paper demonstrates how using location factors in the calculation of ESM can account for the effects of various acceleration events and can improve the accuracy and value of the ESM metric to mission planners.
Even a mission with one location can benefit from location factor analysis if the alternative technologies under consideration consume resources at different rates. For example, a mission that regenerates resources will have a relatively constant mass compared to one that uses consumables and vents/discards mass along the way. This paper shows examples of how location factors can affect ESM calculations and how the inclusion of location factors can change the relative value of technologies being considered for development.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

The Analysis of a Modified Membrane-Aerated Biofilm Reactor for Space Flight Applications

2008-01-2016

View Details

TECHNICAL PAPER

Intake Manifold Fuel Film Transient Dynamics

870569

View Details

STANDARD

Definition of Commonly Used Day Types (Atmospheric Ambient Temperature Characteristics Versus Pressure Altitude)

ARP210A

View Details

X