Browse Publications Technical Papers 2007-01-2233
2007-05-15

Transient Clunk Response of a Driveline System: Laboratory Experiment and Analytical Studies 2007-01-2233

A laboratory experiment is designed to examine the clunk phenomenon. A static torque is applied to a driveline system via the mass of an overhanging torsion bar and electromagnet. Then an applied load may be varied via attached mass and released to simulate the step down (tip-out) response of the system. Shaft torques and torsional and translational accelerations are recorded at pre-defined locations. The static torque closes up the driveline clearances in the pinion/ring (crown wheel) mesh. With release of the applied load the driveline undergoes transient vibration. Further, the ratio of preload to static load is adjusted to lead to either no-impact or impact events. Test A provides a ‘linear’ result where the contact stiffness does not pass into clearance. This test is used for confirming transient response and studying friction and damping. Test B is for mass release with sufficient applied torque to pass into clearance, allowing the study of the clunk. A set of non-linear differential equations describe the experiment and the applicable dry friction coefficients are experimentally found. Various test conditions (corresponding to no impacts, and single-sided or double-sided impacts) are successfully simulated. Numerical and experimental time histories compare well.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Suspension and Steering Fundamentals of the BMW 520

741113

View Details

TECHNICAL PAPER

Three-dimensional dynamics of a three-axle vehicle considering the suspension geometry according to the kinematic transformers method

2019-36-0237

View Details

TECHNICAL PAPER

Dynamic Simulation to Predict Suspension Abuse Loads Using a Radial Spring Tire Model

870870

View Details

X