Browse Publications Technical Papers 2010-01-1770
2010-11-02

System Integration of a Safe, High Power, Lithium Ion Main Battery into a Civil Aviation Aircraft 2010-01-1770

The Cessna Citation CJ4, certified on March 12, 2010, is believed to be the first civil aircraft with a Lithium Ion main battery. The 26.4VDC, 44Ah Lithium Ion main battery weighs 54 lbs, a 35% weight saving over a Nickel-Cadmium battery. Using phosphate-based Lithium Ion cells, which have no positive feedback thermal runaway failure mode, system integration of the battery and aircraft architecture design is simpler. Electronics and software are needed to optimize life only, not to ensure safety. Emergency discharge with failed electronics is enabled with the selection of a less volatile chemistry, the use of an analog Module Management System for cell balancing and protection, and the use of a microcontroller-based digital Central Monitoring System that reports health. System safety failure hazard assessment is considered Major, and the battery software is certified to the requirements of RTCA DO-178B, Design Assurance Level C. New Battery Fault and Battery Fail annunciations supersede the conventional Battery Overtemperature messages to accommodate other non-temperature related failure modes. Heaters enable performance at cold temperatures while its aircraft-in-the-loop circuit ensures safety. The Lithium Ion battery and the Cessna Citation CJ4 electrical bus and avionics suite designs were integrated to optimize performance, safety, protection, and maintenance frequency.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
JOURNAL ARTICLE

Development and Test of Safe, High Power Lithium Ion Main Batteries for General Aviation Aircraft

2008-01-2884

View Details

STANDARD

STARTER SYSTEM OPTIMIZATION START ANALYSIS, TURBINE ENGINE - ELECTRIC, BATTERY POWER

AIR1602

View Details

TECHNICAL PAPER

Deformation and Failure Behavior of Cylindrical Lithium-Ion Batteries Subjected to Mechanical Loading

2020-28-0484

View Details

X