Browse Publications Technical Papers 2015-01-1396
2015-04-14

Effects of Sinusoidal Whole Body Vibration Frequency on Drivers' Muscle Responses 2015-01-1396

Low back pain has a higher prevalence among drivers who have long term history of vehicle operations. Vehicle vibration has been considered to contribute to the onset of low back pain. However, the fundamental mechanism that relates vibration to low back pain is still not clear. Little is known about the relationship between vibration exposure, the biomechanical response, and the physiological responses of the seated human. The aim of this study was to determine the vibration frequency that causes the increase of muscle activity that can lead to muscle fatigue and low back pain. This study investigated the effects of various vibration frequencies on the lumbar and thoracic paraspinal muscle responses among 11 seated volunteers exposed to sinusoidal whole body vibration varying from 4Hz to 30Hz at 0.4 g of acceleration. The accelerations of the seat and the pelvis were recorded during various frequency of vibrations. Muscle activity was measured using electromyography (EMG). The results demonstrated that peak muscle response from both upper and low back occurred at 5-6 Hz frequencies, which are also reported frequencies of peak transmissibility in vertical direction. The peak muscle response occurred at frequencies of peak transmissibility indicates that higher stretch amplitude of spinal muscle during resonant frequencies mainly induce the greater muscle activity. Those findings help us better understand the fundamental mechanism of driving discomfort and low back pain and avoid noxious vibration during NVH (noise-vibration-harshness) designs.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

Driving Posture Measurement using 3D Scanning Measuring Technique

2015-01-1392

View Details

TECHNICAL PAPER

Lightweight Seat Design and Crash Simulations

2015-01-1472

View Details

TECHNICAL PAPER

Evalution of Dynamic Seat Comfort and Driver's Fatigue

971573

View Details

X