Browse Publications Technical Papers 2017-01-0525
2017-03-28

A Study on the Refinement of Turbulence Intensity Prediction for the Estimation of In-Cylinder Pressure in a Spark-Ignited Engine 2017-01-0525

The role of 1D simulation tool is growing as the engine system is becoming more complex with the adoption of a variety of new technologies. For the reliability of the 1D simulation results, it is necessary to improve the accuracy and applicability of the combustion model implemented in the 1D simulation tool. Since the combustion process in SI engine is mainly determined by the turbulence, many models have been concentrating on the prediction of the evolution of in-cylinder turbulence intensity.
In this study, two turbulence models which can resemble the turbulence intensity close to that of 3D CFD tool were utilized. The first model is dedicated to predicting the evolution of turbulence intensity during intake and compression strokes so that the turbulence intensity at the spark timing can be estimated properly. The second model is responsible for predicting the turbulence intensity of burned and unburned zone during the combustion process.
The refined information on turbulence intensity was used for the estimation of flame propagation speed, burn rate, and heat transfer rate. The in-cylinder pressure prediction was then conducted and compared with the experimental results. From the simulation results, it was possible to confirm that the utilization of turbulence models, which can resemble the 3D CFD results enabled accurate prediction of in-cylinder pressure under engine speed of 1500, 2000, and 2500 rpm, part load and full load with various spark timings without the case dependent tuning of the model constants.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

Development of a Phenomenological Turbulence Model through a Hierarchical 1D/3D Approach Applied to a VVA Turbocharged Engine

2016-01-0545

View Details

JOURNAL ARTICLE

A Hybrid Wall Heat Transfer Model for IC Engine Simulations

2015-01-0388

View Details

TECHNICAL PAPER

Fluid Dynamic Modeling of Gasoline Direct Injection for Compact Combustion Chambers

980755

View Details

X