Browse Publications Technical Papers 2017-01-2000
2017-09-23

Traffic Modeling Considering Motion Uncertainties 2017-01-2000

Simulation has been considered as one of the key enablers on the development and testing for autonomous driving systems as in-vehicle and field testing can be very time-consuming, costly and often impossible due to safety concerns. Accurately modeling traffic, therefore, is critically important for autonomous driving simulation on threat assessment, trajectory planning, etc. Traditionally when modeling traffic, the motion of traffic vehicles is often considered to be deterministic and modeled based on its governing physics. However, the sensed or perceived motion of traffic vehicles can be full of errors or inaccuracy due to the inaccurate and/or incomplete sensing information. In addition, it is naturally true that any future trajectories are unknown. This paper proposes a novel modeling method on traffic considering its motion uncertainties, based on Gaussian process (GP). A probability distribution function is employed to represent traffic vehicles’ future trajectories, which are further classified based on Gaussian Mixture Model (GMM) into typical motion trajectories. Then the GP-based motion model is built from the typical motion trajectories. With this model, any potential trajectories of traffic vehicles can be simulated by sampling the GP conditional distribution. The experiment has been performed in a high-fidelity driving simulator with a full-motion base. The results have demonstrated that the proposed GP-based model can faithfully represent the uncertainties of traffic vehicles motion, thus, is suitable for the high-fidelity simulation of autonomous driving systems.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Studies on Drivers’ Driving Styles Based on Inverse Reinforcement Learning

2018-01-0612

View Details

TECHNICAL PAPER

Evaluation of Heavy Tractor-Trailer Model used in the National Advanced Driving Simulator

2003-01-1324

View Details

TECHNICAL PAPER

Evaluation Method for Road Load Simulation Using a Tire Model and an Applied Example

2006-01-1256

View Details

X