Browse Publications Technical Papers 2019-01-0904
2019-04-02

Approximating Convective Boundary Conditions for Transient Thermal Simulations with Surrogate Models for Thermal Packaging Studies 2019-01-0904

The need for transient thermal simulations in vehicle packaging studies has grown rapidly in recent years. To date, the computational costs associated with the transient simulation of 3D conjugate heat transfer phenomena has prohibited the widespread use of full vehicle transient simulations. This paper presents results from a recent study that explored a method to circumvent the computational costs associated with long transient conjugate heat transfer simulations.
The proposed method first segregates the thermal structural and fluid physics domains to take advantage of time scale differences. The two domains are then re-coupled to calculate a series of steady state conjugate heat transfer simulations at various vehicle speeds. The local convection terms are then used to construct a set of surrogate models dependent on vehicle speed, that predict the local heat transfer coefficients and the local near wall fluid temperatures. These surrogate models are then coupled to the thermal structural simulation to simulate the wall temperature history.
Results from transient conjugate heat transfer simulations of several vehicle test cycles were compared to simulations performed with the method described above. Differences in predicted wall temperatures were evaluated to assess the overall accuracy of the proposed methodology. Heat transfer coefficients and fluid temperatures predicted by the surrogate models were also compared to the local heat transfer coefficients and fluid temperatures calculated by the transient conjugate heat transfer simulation. It is concluded that surrogate models can be used to reduce the computational costs associated with transient thermal simulations with an acceptable loss of accuracy for the evaluated test cycles.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Study on Vehicle Braking Transient Thermal Field Based on Fast Finite Element Method Simulation

2005-01-3945

View Details

TECHNICAL PAPER

Underhood Cooling Simulation for Development of New Vehicles

2005-01-2046

View Details

TECHNICAL PAPER

Integrated Cooling Systems for Passenger Vehicles

2001-01-1248

View Details

X