Browse Publications Technical Papers 2020-01-0562
2020-04-14

Minimization of Electric Heating of the Traction Induction Machine Rotor 2020-01-0562

The article solves the problem of reducing electric power losses of the traction induction machine rotor to prevent its overheating in nominal and high-load modes. Electric losses of the rotor power are optimized by the stabilization of the main magnetic flow of the electric machine at a nominal level with the amplitude-frequency control in a wide range of speeds and increased loads. The quasi-independent excitation of the induction machine allows us to increase the rigidity of mechanical characteristics, decrease the rotor slip at nominal loads and overloads and significantly decrease electrical losses in the rotor as compared to other control methods. The article considers the technology of converting the power of individual phases into a single energy flow using a three-phase electric machine equivalent circuit and obtaining an energy model in the form of equations of instantaneous active and reactive power balance. The quasi-independent excitation of the induction machine is performed according to the model by stabilizing the current of the magnetizing branch using the algorithms to control the voltage amplitude, synchronous frequency and electromagnetic moment. The magnetizing branch contains resistances of magnetic power losses, which allows us to increase control accuracy. The article considers issues of adapting the energy model to the traction electric drive modes by the criterion of the main magnetic flow constancy. The information support task is solved by a measuring observer, which allows us to calculate the parameters of the generalized energy flow using the measurements of the primary current and voltage sensors and to implement the aforesaid model and control algorithms in software. The article presents the results of modeling traction and energy characteristics of the induction machine and shows the effect of reducing electric losses in the rotor in the main magnetic flow constancy modes.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Hardware-in-the-Loop, Dynamometer Based Driver and Vehicle Simulator

2000-01-0289

View Details

TECHNICAL PAPER

Analysis Lead Drivability Assessment

2015-01-2804

View Details

TECHNICAL PAPER

Hardware-in-the-Loop Power Extraction Using Different Real-Time Platforms

2008-01-2909

View Details

X