Browse Publications Technical Papers 2020-01-0911
2020-04-14

A Methodology to Enhance the Directional Load Bearing Performance of Cowl Cover and Its Effect on Pedestrian Head Impact 2020-01-0911

In the modern automobile scenario in developing countries, customers are getting more meticulous and market more competitive. Now even the budget vehicle customer expects desirable vehicle performance in specific use cases of the vehicle that were previously not focused by designers. Hence, the focus on perceived quality challenges automobile engineers to go the extra mile when it comes to the cost-effective design of parts that are tangible to the customer. A vehicle's cowl cover is one such exterior component. The primary functions of this part are to provide air intake opening for the HVAC system and cover the components like wiper motor. The aesthetic function is to cover the gaps between windshield, hood, and fender as seamlessly as possible. A specific role of cowl cover, which calls for a designer's attention, is its load-bearing capability. This component has to be stiff enough to bear external loads like snow accumulation or application of hand on the part by customer or service personnel. Simultaneously, it plays a significant role in absorbing the energy of a pedestrian's head impact during a crash. This engenders a need to optimize the cowl cover design for energy absorption in one direction and deformation resistance in another direction. This paper explains the methodology in which a cowl cover can be designed to cater to the need for directional load bearing without adversely affecting the pedestrian impact performance of the part. With the help of FEA, cost-effective design approaches for improving the stiffness of cowl cover assembly are studied, and their effect on pedestrian energy absorption is checked. Finally, the study identifies and discusses the concepts which have favorable stiffness with a limited impact on pedestrian energy absorption.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Impact Simulation and Structural Optimization of a Vehicle CFRP Engine Hood in terms of Pedestrian Safety

2020-01-0626

View Details

TECHNICAL PAPER

A System Approach to Safe Winter Driving Considerations: The Visual System

920020

View Details

TECHNICAL PAPER

A Research on Kinematic Optimization of Auto Flush Door Handle System

2020-01-0623

View Details

X