Browse Publications Technical Papers 2020-01-1193
2020-04-14

Efficient Thermal Electric Skipping Strategy Applied to the Control of Series/Parallel Hybrid Powertrain 2020-01-1193

The optimal control of hybrid powertrains represents one of the most challenging tasks for the compliance with the legislation concerning CO2 and pollutant emission of vehicles. Most common off-line optimization strategies (Pontryagin minimum principle - PMP - or dynamic programming) allow to identify the optimal control along a predefined driving mission at the expense of a quite relevant computational effort. On-line strategies, suitable for on-vehicle implementation, involve a certain performance degradation depending on their degree of simplification and computational effort.
In this work, a simplified control strategy is presented, where the conventional power-split logics, typical of the above-mentioned strategies, is here replaced with an alternative utilization of the thermal and electric units for the vehicle driving (Efficient Thermal Electric Skipping Strategy - ETESS). The choice between the units is realized at each time and is based on the comparison between the effective fuel rate of the thermal engine and an equivalent fuel rate related to the electrical power consumption. The equivalent fuel rate in a pure electric driving is associated to a combination of brake specific fuel consumption of the thermal engine, and electro-mechanical efficiencies along the driveline.
The ETESS is applied for the simulation of segment C hybrid vehicle, equipped with a thermal engine and two electric units (motor and generator). The methodology is tested along regulatory driving cycles (WLTP, Artemis) and RDE, with different powertrain variants. Numerical results underline that the proposed approach performs very close to most common control strategies (consumed fuel per kilometer higher than PMP of about 1% on average). The main advantage is a reduced computational effort (decrease of 99% on average). The ETESS is straightforwardly adapted for an on-line implementation, through the introduction of an adaptative factor, preserving the computational effort and the fuel economy.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Consumers, Electronics, and the Link to Hybrid Vehicles and the Environment

2000-01-C045

View Details

TECHNICAL PAPER

A Feasible CFD Methodology for Gasoline Intake Flow Optimization in a HEV Application - Part 2: Prediction and Optimization

2010-01-2238

View Details

TECHNICAL PAPER

A Study on Optimizing SHEV Components Specifications and Control Parameter Values for the Reduction of Fuel Consumption by Using a Genetic Algorithm

2022-01-0655

View Details

X