Browse Publications Technical Papers 2020-01-1612
2020-10-05

Braking Systems for High Performance Electric Vehicles - A Design Study 2020-01-1612

Any young person who has taken delight in playing with toy slot cars knows that the world of racing and the world of electric cars has been intertwined for a long time. And anyone who has driven a modern performance electric vehicle knows that the instant acceleration, exhilarating speeds, and joy of driving of slot cars is reflected in these full sized “toys”, with the many more practical benefits that come from being full-sized and steerable. There is strong foreshadowing of a vibrant future for performance cars in some of the EV’s on the market now and in the near future, some offering “ludicrous” acceleration, and others storied nameplates with performance to match. The ease at which powerful electric drives can capably hurtle a massive vehicle around the track at high speeds, combined with the potential for the same electric drives to exert powerful regenerative braking, creates a very interesting situation for brake engineers. What wins out in the end - raw power or regenerative braking? What can change in the course of a track session that would affect how braking energy is shared between the friction brake system and electric drives? How does this affect the brake system design and specification for a performance EV? This paper will walk through a design study to explore these questions, and in the course of doing so, will also explore some methodologies for engineering the brake systems for high performance EV’s that will include Driver In the Loop (DIL) simulations, brake system performance simulations, and inertia dynamometer testing, as well as “simple but sufficient” means of accounting for the drive and regenerative braking system behavior.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
TECHNICAL PAPER

Pre-Curve Braking Planning of Battery Electric Vehicle Based on Vehicle Infrastructure Cooperative System

2020-01-1643

View Details

TECHNICAL PAPER

Analysis of Changes in Disc-Brake Squeal Characteristic due to Regenerative Braking Simulation on Brake-Inertia-Dynamometer

2019-26-0203

View Details

TECHNICAL PAPER

Simulation of the Combined Braking Control System for Hybrid Electric Vehicles

2020-01-0217

View Details

X