Browse Publications Technical Papers 2020-01-2051
2020-09-15

Relationship between Turbulent Burning Velocity and Karlovitz Number under EGR Conditions 2020-01-2051

The purpose of this paper is to find a universal law to predict a turbulent burning velocity under various operating conditions and engine specifications. This paper presents the relationship between turbulent burning velocity and Karlovitz number. The turbulent burning velocity was measured using a single-cylinder gasoline engine, which has an external Exhaust Gas Recirculation (EGR) system. In the experiment, various engine operating parameters, e.g. engine speed and EGR rates, and various engine specifications, i.e. different types of intake ports were tested. Karlovitz number was calculated with Three Dimensional Computational Fluid Dynamics (3D-CFD) and detailed chemical reaction calculation, which condition was based on the experiment. The experimental and calculation results show that turbulent burning velocity is predicted by using Karlovitz number in the engine conditions, which varies depending on engine speed, EGR rates and the designs of intake ports. The results indicate that Karlovitz number, which shows a local structure of flame and corresponds to the ratio of chemical time scale to turbulent time scale, can be extended to an indicator of the global combustion performance in an engine.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Modeling Diesel Engine NOx and Soot Reduction with Optimized Two-Stage Combustion

2006-01-0027

View Details

TECHNICAL PAPER

Combustion Modeling of Diesel Sprays

2016-01-0592

View Details

JOURNAL ARTICLE

A Comprehensive Evaluation of Diesel Engine CFD Modeling Predictions Using a Semi-Empirical Soot Model over a Broad Range of Combustion Systems

2018-01-0242

View Details

X