Browse Publications Technical Papers 2021-01-0435
2021-04-06

Experimental Validation of Eco-Driving and Eco-Heating Strategies for Connected and Automated HEVs 2021-01-0435

This paper presents experimental results that validate eco-driving and eco-heating strategies developed for connected and automated vehicles (CAVs). By exploiting vehicle-to-infrastructure (V2I) communications, traffic signal timing, and queue length estimations, optimized and smoothed speed profiles for the ego-vehicle are generated to reduce energy consumption. Next, the planned eco-trajectories are incorporated into a real-time predictive optimization framework that coordinates the cabin thermal load (in cold weather) with the speed preview, i.e., eco-heating. To enable eco-heating, the engine coolant (as the only heat source for cabin heating) and the cabin air are leveraged as two thermal energy storages. Our eco-heating strategy stores thermal energy in the engine coolant and cabin air while the vehicle is driving at high speeds, and releases the stored energy slowly during the vehicle stops for cabin heating without forcing the engine to idle to provide the heating source. To test and validate these solutions, a power-split hybrid electric vehicle (HEV) has been instrumented for cabin thermal management, allowing to regulate heating, ventilation, and air conditioning (HVAC) system inputs (cabin temperature setpoint and blower flow rate) in real-time. Experiments were conducted to demonstrate the energy-saving benefits of eco-driving and eco-heating strategies over real-world city driving cycles at different cold ambient temperatures. The data confirmed average fuel savings of 14.5% and 4.7% achieved by eco-driving and eco-heating, respectively, offering a combined energy saving of more than 19% when comparing to the baseline vehicle driven by a human driver with a constant-heating strategy.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Modeling Climate Control Loads and the Impact on Vehicle Range for Last-Mile Electric Delivery Trucks in Cold Climates

2022-01-0199

View Details

JOURNAL ARTICLE

Willans Line Bidirectional Power Flow Model for Energy Consumption of Electric Vehicles

2022-01-0531

View Details

TECHNICAL PAPER

Impact of Thermal Architecture on Electric Vehicle Energy Consumption/Range: A Study with Full Vehicle Simulation

2021-01-0207

View Details

X